Biological Properties of JNK3 and Its Function in Neurons, Astrocytes, Pancreatic β-Cells and Cardiovascular Cells
Abstract
:1. Introduction
2. Biological Properties of JNK3
2.1. Structure of JNK3
2.2. Downstream Target Proteins of JNK3
2.3. Downstream Target Genes of JNK3
2.4. Endogenous Stimulator for JNK3
2.5. Regulatory Proteins Upstream of JNK3
2.6. Scaffold Protein for JNK3 Activation
2.6.1. JNK-Binding Proteins
2.6.2. β-Arrestin 2
2.7. Palmitoylation in JNK3
2.8. Other Proteins Interacting with JNK3
2.9. Regulation of JNK3 mRNA Expression Level
3. Physiological Role and Cellular Signaling of JNK3
3.1. The Distribution of JNK3 in Neuronal Tissue
3.2. In Vivo Function of JNK3 in Neuronal Tissue
3.3. In Vivo Function of JNK3 in Neuronal Regeneration
3.4. Ex Vivo and In Vitro Function of JNK3 in Cultured Neurons
3.5. In Vitro Function of JNK3 in Cellular Models of Neuronal Differentiation and Reprogramming
3.6. In Vitro Function of JNK3 in Other Types of Cells
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Kyriakis, J.M.; Avruch, J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 2001, 81, 807–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyriakis, J.M.; Avruch, J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10-year update. Physiol. Rev. 2002, 92, 689–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namba, S.; Nakano, R.; Kitanaka, T.; Kitanaka, N.; Nakayama, T.; Sugiya, H. ERK2 and JNK1 contribute to TNF-α-induced IL-8 expression in synovial fibroblasts. PLoS ONE 2017, 12, e0182923. [Google Scholar] [CrossRef] [PubMed]
- Kitanaka, T.; Nakano, R.; Kitanaka, N.; Kimura, T.; Okabayashi, K.; Narita, T.; Sugiya, H. JNK activation is essential for activation of MEK/ERK signaling in IL-1β-induced COX-2 expression in synovial fibroblasts. Sci. Rep. 2017, 7, 39914. [Google Scholar] [CrossRef]
- Nakano, R.; Kitanaka, T.; Namba, S.; Kitanaka, N.; Sato, M.; Shibukawa, Y.; Masuhiro, Y.; Kano, K.; Matsumoto, T.; Sugiya, H. All-trans retinoic acid induces reprogramming of canine dedifferentiated cells into neuron-like cells. PLoS ONE 2020, 15, e0229892. [Google Scholar] [CrossRef]
- Imajo, M.; Tsuchiya, Y.; Nishida, E. Regulatory mechanisms and functions of MAP kinase signaling pathways. IUBMB Life 2006, 58, 312–317. [Google Scholar] [CrossRef]
- Kim, E.K.; Choi, E.J. Compromised MAPK signaling in human diseases: An update. Arch. Toxicol. 2015, 89, 867–882. [Google Scholar] [CrossRef]
- Pulverer, B.J.; Kyriakis, J.M.; Avruch, J.; Nikolakaki, E.; Woodgett, J.R. Phosphorylation of c-jun mediated by MAP kinases. Nature 1991, 353, 670–674. [Google Scholar] [CrossRef]
- Smeal, T.; Binetruy, B.; Mercola, D.A.; Birrer, M.; Karin, M. Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on Sers 63 and 73. Nature 1991, 354, 494–496. [Google Scholar] [CrossRef]
- Dérijard, B.; Raingeaud, J.; Barrett, T.; Wu, I.H.; Han, J.; Ulevitch, R.J.; Davis, R.J. Independent human +MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 1995, 267, 682–685. [Google Scholar] [CrossRef]
- Tournier, C. The 2 Faces of JNK Signaling in Cancer. Genes Cancer 2013, 4, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Destrument, A.; Tournier, C. Physiological roles of MKK4 and MKK7: Insights from animal models. Biochim. Biophys. Acta 2007, 1773, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Ichijo, H.; Nishida, E.; Irie, K.; ten Dijke, P.; Saitoh, M.; Moriguchi, T.; Takagi, M.; Matsumoto, K.; Miyazono, K.; Gotoh, Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997, 275, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Hirai, S.; Izawa, M.; Osada, S.; Spyrou, G.; Ohno, S. Activation of the JNK pathway by distantly related protein kinases, MEKK and MUK. Oncogene 1996, 12, 641–650. [Google Scholar]
- Fan, G.; Merritt, S.E.; Kortenjann, M.; Shaw, P.E.; Holzman, L.B. Dual leucine zipper-bearing kinase (DLK) activates p46SAPK and p38mapk but not ERK2. J. Biol. Chem. 1996, 271, 24788–24793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasuda, J.; Whitmarsh, A.J.; Cavanagh, J.; Sharma, M.; Davis, R.J. The JIP group of mitogen-activated protein kinase scaffold proteins. Mol. Cell. Biol. 1999, 19, 7245–7254. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Barrett, T.; Whitmarsh, A.J.; Cavanagh, J.; Sluss, H.K.; Dérijard, B.; Davis, R.J. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 1996, 15, 2760–2770. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.J. Signal transduction by the JNK group of MAP kinases. Cell 2000, 103, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Ronai, Z. JNKing revealed. Mol. Cell 2004, 15, 843–844. [Google Scholar] [CrossRef] [PubMed]
- Sabapathy, K.; Wagner, E.F. JNK2: A negative regulator of cellular proliferation. Cell Cycle 2004, 3, 1520–1523. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Fukino, K.; Harada, H.; Nagai, H.; Imoto, I.; Inazawa, J.; Takahashi, H.; Teramoto, A.; Emi, M. The c-Jun NH2-terminal kinase3 (JNK3) gene: Genomic structure, chromosomal assignment, and loss of expression in brain tumors. J. Hum. Genet. 2001, 46, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Bogoyevitch, M.A. The isoform-specific functions of the c-Jun N-terminal Kinases (JNKs): Differences revealed by gene targeting. Bioessays 2006, 28, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Mohit, A.A.; Martin, J.H.; Miller, C.A. p493F12 kinase: A novel MAP kinase expressed in a subset of neurons in the human nervous system. Neuron 1995, 14, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.H.; Mohit, A.A.; Miller, C.A. Developmental expression in the mouse nervous system of the p493F12 SAP kinase. Mol. Brain Res. 1996, 35, 47–57. [Google Scholar] [CrossRef]
- Kumagae, Y.; Zhang, Y.; Kim, O.J.; Miller, C.A. Human c-Jun N-terminal kinase expression and activation in the nervous system. Mol. Brain Res. 1999, 67, 10–17. [Google Scholar] [CrossRef]
- Xie, X.; Gu, Y.; Fox, T.; Coll, J.T.; Fleming, M.A.; Markland, W.; Caron, P.R.; Wilson, K.P.; Su, M.S. Crystal structure of JNK3: A kinase implicated in neuronal apoptosis. Structure 1998, 6, 983–991. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Yun, Y.; Chung, K.Y. Conformations of JNK3α splice variants analyzed by hydrogen/deuterium exchange mass spectrometry. J. Struct. Biol. 2017, 197, 271–278. [Google Scholar] [CrossRef]
- Mishra, P.; Günther, S. New insights into the structural dynamics of the kinase JNK3. Sci. Rep. 2018, 8, 9435. [Google Scholar] [CrossRef] [Green Version]
- Adler, V.; Franklin, C.C.; Kraft, A.S. Phorbol esters stimulate the phosphorylation of c-Jun but not v-Jun: Regulation by the Nterminal delta domain. Proc. Natl. Acad. Sci. USA 1992, 89, 5341–5345. [Google Scholar] [CrossRef] [Green Version]
- Hibi, M.; Lin, A.; Smeal, T.; Minden, A.; Karin, M. Identification of an oncoprotein- and UV-responsive protein kinase that bind and potentiate the c-Jun activation domain. Genes Dev. 1993, 7, 2135–2148. [Google Scholar] [CrossRef] [Green Version]
- Franklin, C.C.; Sanchez, V.; Wagner, F.; Woodgett, J.R.; Kraft, A.S. Phorbol ester-induced amino-terminal phosphorylation of human Jun but not JunB regulates transcriptional activity. Proc. Natl Acad. Sci. USA 1992, 89, 7247–7251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, M.C.; Qiu, W.R.; Wang, Y.P. JNK1, JNK2 and JNK3 are p53 N-terminal Ser 34 kinases. Oncogene 1997, 15, 2277–2287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhou, L.; Miller, C.A. A splicing variant of a death domain protein that is regulated by a mitogen-activated kinase is a substrate for c-Jun N-terminal kinase in the human central nervous system. Proc. Natl. Acad. Sci. USA 1998, 95, 2586–2591. [Google Scholar] [CrossRef] [Green Version]
- Del Villar, K.; Miller, C.A. Down-regulation of DENN/MADD, a TNF receptor binding protein, correlates with neuronal cell death in Alzheimer’s disease brain and hippocampal neurons. Proc. Natl. Acad. Sci. USA 2004, 101, 4210–4215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neidhart, S.; Antonsson, B.; Gilliéron, C.; Vilbois, F.; Grenningloh, G.; Arkinstall, S. c-Jun N-terminal kinase-3 (JNK3)/stress-activated protein kinase-beta (SAPKbeta) binds and phosphorylates the neuronal microtubule regulator SCG10. FEBS Lett. 2001, 508, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Buckley, C.T.; Sekiya, F.; Kim, Y.J.; Rhee, S.G.; Caldwell, K.K. Identification of phospholipase C-gamma1 as a mitogen-activated protein kinase substrate. J. Biol. Chem. 2004, 279, 41807–41814. [Google Scholar] [CrossRef] [Green Version]
- Junyent, F.; de Lemos, L.; Verdaguer, E.; Folch, J.; Ferrer, I.; Ortuño-Sahagún, D.; Beas-Zárate, C.; Romero, R.; Pallàs, M.; Auladell, C.; et al. Gene expression profile in JNK3 null mice: A novel specific activation of the PI3K/AKT pathway. J. Neurochem. 2011, 117, 244–252. [Google Scholar] [CrossRef]
- Butterfield, L.; Zentrich, E.; Beekman, A.; Heasley, L.E. Stress- and cell type-dependent regulation of transfected c-Jun N-terminal kinase and mitogen-activated protein kinase kinase isoforms. Biochem. J. 1999, 338, 681–686. [Google Scholar] [CrossRef]
- McDonald, P.H.; Chow, C.W.; Miller, W.E.; Laporte, S.A.; Field, M.E.; Lin, F.T.; Davis, R.J.; Lefkowitz, R.J. β-arrestin 2: A receptor-regulated MAPK scaffold for the activation of JNK3. Science 2000, 290, 1574–1577. [Google Scholar] [CrossRef]
- Pierce, K.L.; Luttrell, L.M.; Lefkowitz, R.J. New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 2001, 20, 1532–1539. [Google Scholar] [CrossRef] [Green Version]
- Chang, N.S. Hyaluronidase activation of c-Jun N-terminal kinase is necessary for protection of L929 fibrosarcoma cells from staurosporine-mediated cell death. Biochem. Biophys. Res. Commun. 2001, 283, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Kieran, M.W.; Katz, S.; Vail, B.; Zon, L.I.; Mayer, B.J. Concentration-dependent positive and negative regulation of a MAP kinase by a MAP kinase kinase. Oncogene 1999, 18, 6647–6657. [Google Scholar] [CrossRef] [PubMed]
- Lisnock, J.; Griffin, P.; Calaycay, J.; Frantz, B.; Parsons, J.; O’Keefe, S.J.; LoGrasso, P. Activation of JNK3 alpha 1 requires both MKK4 and MKK7: Kinetic characterization of in vitro phosphorylated JNK3α 1. Biochemistry 2000, 39, 3141–3148. [Google Scholar] [PubMed]
- Fleming, Y.; Armstrong, C.G.; Morrice, N.; Paterson, A.; Goedert, M.; Cohen, P. Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7. Biochem. J. 2000, 352, 145–154. [Google Scholar] [CrossRef]
- Ho, D.T.; Bardwell, A.J.; Abdollahi, M.; Bardwell, L. A docking site in MKK4 mediates high affinity binding to JNK MAPKs and competes with similar docking sites in JNK substrates. J. Biol. Chem. 2003, 278, 32662–32672. [Google Scholar] [CrossRef] [Green Version]
- Zhan, X.; Kaoud, T.S.; Kook, S.; Dalby, K.N.; Gurevich, V.V. JNK3 enzyme binding to arrestin-3 differentially affects the recruitment of upstream mitogen-activated protein (MAP) kinase kinases. J. Biol. Chem. 2013, 288, 28535–28547. [Google Scholar] [CrossRef] [Green Version]
- Willoughby, E.A.; Collins, M.K. Dynamic interaction between the dual specificity phosphatase MKP7 and the JNK3 scaffold protein β-arrestin 2. J. Biol. Chem. 2005, 280, 25651–25658. [Google Scholar] [CrossRef] [Green Version]
- Koyano, S.; Ito, M.; Takamatsu, N.; Shiba, T.; Yamamoto, K.; Yoshioka, K. A novel Jun N-terminal kinase (JNK)-binding protein that enhances the activation of JNK by MEK kinase 1 and TGF-β-activated kinase 1. FEBS Lett. 1999, 457, 385–388. [Google Scholar] [CrossRef] [Green Version]
- Ito, M.; Yoshioka, K.; Akechi, M.; Yamashita, S.; Takamatsu, N.; Sugiyama, K.; Hibi, M.; Nakabeppu, Y.; Shiba, T.; Yamamoto, K.I. JSAP1, a novel jun N-terminal protein kinase (JNK)-binding protein that functions as a Scaffold factor in the JNK signaling pathway. Mol. Cell. Biol. 1999, 19, 7539–7548. [Google Scholar] [CrossRef] [Green Version]
- Kelkar, N.; Gupta, S.; Dickens, M.; Davis, R.J. Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3. Mol. Cell. Biol. 2000, 20, 1030–1043. [Google Scholar] [CrossRef] [Green Version]
- Ito, M.; Akechi, M.; Hirose, R.; Ichimura, M.; Takamatsu, N.; Xu, P.; Nakabeppu, Y.; Tadayoshi, S.; Yamamoto, K.; Yoshioka, K. Isoforms of JSAP1 scaffold protein generated through alternative splicing. Gene 2000, 255, 229–234. [Google Scholar] [CrossRef]
- Matsuura, H.; Nishitoh, H.; Takeda, K.; Matsuzawa, A.; Amagasa, T.; Ito, M.; Yoshioka, K.; Ichijo, H. Phosphorylation-dependent scaffolding role of JSAP1/JIP3 in the ASK1-JNK signaling pathway. A new mode of regulation of the MAP kinase cascade. J. Biol. Chem. 2002, 277, 40703–40709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, P.H.; Lefkowitz, R.J. β-Arrestins: New roles in regulating heptahelical receptors’ functions. Cell. Signal. 2001, 13, 683–689. [Google Scholar] [CrossRef]
- Luttrell, L.M.; Lefkowitz, R.J. The role of β-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell. Sci. 2002, 115, 455–465. [Google Scholar] [PubMed]
- Shenoy, S.K.; Lefkowitz, R.J. Multifaceted roles of β-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem. J. 2003, 375, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Whitmarsh, A.J. The β-arrestin-2 scaffold protein promotes c-Jun N-terminal kinase-3 activation by binding to its nonconserved N terminus. J. Biol. Chem. 2008, 283, 15903–15911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurevich, V.V.; Gurevich, E.V.; Cleghorn, W.M. Arrestins as multi-functional signaling adaptors. Handb. Exp. Pharmacol. 2008, 186, 15–37. [Google Scholar]
- Miller, W.E.; McDonald, P.H.; Cai, S.F.; Field, M.E.; Davis, R.J.; Lefkowitz, R.J. Identification of a motif in the carboxyl terminus of β-arrestin2 responsible for activation of JNK3. J. Biol. Chem. 2001, 276, 27770–27777. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.E.; Lefkowitz, R.J. Expanding roles for β-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr. Opin. Cell. Biol. 2001, 13, 139–145. [Google Scholar] [CrossRef]
- Seo, J.; Tsakem, E.L.; Breitman, M.; Gurevich, V.V. Identification of arrestin-3-specific residues necessary for JNK3 kinase activation. J. Biol. Chem. 2011, 286, 27894–27901. [Google Scholar] [CrossRef] [Green Version]
- Zhan, X.; Perez, A.; Gimenez, L.E.; Vishnivetskiy, S.A.; Gurevich, V.V. Arrestin-3 binds the MAP kinase JNK3α2 via multiple sites on both domains. Cell. Signal. 2014, 26, 766–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, X.; Kook, S.; Kaoud, T.S.; Dalby, K.N.; Gurevich, E.V.; Gurevich, V.V. Arrestin-3-Dependent Activation of c-Jun N-Terminal Kinases (JNKs). Curr. Protoc. Pharmacol. 2015, 68, 2–12. [Google Scholar] [CrossRef]
- Scott, M.G.; Le Rouzic, E.; Périanin, A.; Pierotti, V.; Enslen, H.; Benichou, S.; Marullo, S.; Benmerah, A. Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in β-arrestin2. J. Biol. Chem. 2002, 277, 37693–37701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.Y.; Qu, C.X.; Li, R.R.; Yang, F.; Yu, X.; Tian, Z.M.; Shen, Y.M.; Cai, B.Y.; Yun, Y.; Sun, J.P.; et al. Structural Mechanism of the Arrestin-3/JNK3 Interaction. Structure 2019, 27, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Perry, N.A.; Kaoud, T.S.; Ortega, O.O.; Kaya, A.I.; Marcus, D.J.; Pleinis, J.M.; Berndt, S.; Chen, Q.; Zhan, X.; Dalby, K.N.; et al. Arrestin-3 scaffolding of the JNK3 cascade suggests a mechanism for signal amplification. Proc. Natl. Acad. Sci. USA 2019, 116, 810–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Liu, Y.; Yang, K.; Liu, R.; Zhu, S.; Coquinco, A.; Wen, W.; Kojic, L.; Jia, W.; Cynader, M. Isoform-specific palmitoylation of JNK regulates axonal development. Cell Death Differ. 2012, 19, 553–561. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.Y.; Choi, H.S.; Ko, K.; Cho, Y.Y.; Zhu, F.; Kang, B.S.; Ermakova, S.P.; Ma, W.Y.; Bode, A.M.; Dong, Z. The tumor suppressor p16(INK4a) prevents cell transformation through inhibition of c-Jun phosphorylation and AP-1 activity. Nat. Struct. Mol. Biol. 2005, 12, 699–707. [Google Scholar] [CrossRef]
- Chen, W.K.; Yeap, Y.Y.; Bogoyevitch, M.A. The JNK1/JNK3 interactome–contributions by the JNK3 unique N-terminus and JNK common docking site residues. Biochem. Biophys. Res. Commun. 2014, 453, 576–581. [Google Scholar] [CrossRef]
- Yoshida, S.; Harada, H.; Nagai, H.; Fukino, K.; Teramoto, A.; Emi, M. Head-to-head juxtaposition of Fas-associated phosphatase-1 (FAP-1) and c-Jun NH2-terminal kinase 3 (JNK3) genes: Genomic structure and seven polymorphisms of the FAP-1 gene. J. Hum. Genet. 2002, 47, 614–619. [Google Scholar] [CrossRef] [Green Version]
- Ying, J.; Li, H.; Cui, Y.; Wong, A.H.; Langford, C.; Tao, Q. Epigenetic disruption of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia 2006, 20, 1173–1175. [Google Scholar] [CrossRef] [Green Version]
- Nakano, R.; Edamura, K.; Nakayama, T.; Narita, T.; Okabayashi, K.; Sugiya, H. Fibroblast growth factor receptor-2 contributes to the basic fibroblast growth factor-induced neuronal differentiation in canine bone marrow stromal cells via phosphoinositide 3-kinase/Akt signaling pathway. PLoS ONE 2015, 10, e0141581. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zheng, X.; Wang, Y.; Song, J. Effect of PI3K/Akt/mTOR signaling pathway on JNK3 in Parkinsonian rats. Exp. Ther. Med. 2019, 17, 1771–1775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ham, J.; Eilers, A.; Whitfield, J.; Neame, S.J.; Shah, B. c-Jun and the transcriptional control of neuronal apoptosis. Biochem. Pharmacol. 2000, 60, 1015–1021. [Google Scholar] [CrossRef]
- Xu, P.; Yoshioka, K.; Yoshimura, D.; Tominaga, Y.; Nishioka, T.; Ito, M.; Nakabeppu, Y. In vitro development of mouse embryonic stem cells lacking JNK/stress-activated protein kinase-associated protein 1 (JSAP1) scaffold protein revealed its requirement during early embryonic neurogenesis. J. Biol. Chem. 2003, 278, 48422–48433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carboni, L.; Carletti, R.; Tacconi, S.; Corti, C.; Ferraguti, F. Differential expression of SAPK isoforms in the rat brain. An in situ hybridisation study in the adult rat brain and during post-natal development. Mol. Brain Res. 1998, 60, 57–68. [Google Scholar] [CrossRef]
- Yang, D.D.; Kuan, C.Y.; Whitmarsh, A.J.; Rincón, M.; Zheng, T.S.; Davis, R.J.; Rakic, P.; Flavell, R.A. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 1997, 389, 865–870. [Google Scholar] [CrossRef]
- Kuan, C.Y.; Yang, D.D.; Samanta Roy, D.R.; Davis, R.J.; Rakic, P.; Flavell, R.A. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 1999, 22, 667–676. [Google Scholar] [CrossRef] [Green Version]
- Castro-Torres, R.D.; Landa, J.; Rabaza, M.; Busquets, O.; Olloquequi, J.; Ettcheto, M.; Beas-Zarate, C.; Folch, J.; Camins, A.; Auladell, C.; et al. JNK Isoforms Are Involved in the Control of Adult Hippocampal Neurogenesis in Mice, Both in Physiological Conditions and in an Experimental Model of Temporal Lobe Epilepsy. Mol. Neurobiol. 2019, 56, 5856–5865. [Google Scholar] [CrossRef]
- Reinecke, K.; Herdegen, T.; Eminel, S.; Aldenhoff, J.B.; Schiffelholz, T. Knockout of c-Jun N-terminal kinases 1, 2 or 3 isoforms induces behavioural changes. Behav. Brain Res. 2013, 245, 88–95. [Google Scholar] [CrossRef]
- Barnat, M.; Enslen, H.; Propst, F.; Davis, R.J.; Soares, S.; Nothias, F. Distinct roles of c-Jun N-terminal kinase isoforms in neurite initiation and elongation during axonal regeneration. J. Neurosci. 2010, 30, 7804–7816. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, P.J.; Cho, C.H.; Hansen, M.R.; Green, S.H. Activity of all JNK isoforms contributes to neurite growth in spiral ganglion neurons. Hear. Res. 2011, 278, 77–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruff, C.A.; Staak, N.; Patodia, S.; Kaswich, M.; Rocha-Ferreira, E.; Da Costa, C.; Brecht, S.; Makwana, M.; Fontana, X.; Hristova, M.; et al. Neuronal c-Jun is required for successful axonal regeneration, but the effects of phosphorylation of its N-terminus are moderate. J. Neurochem. 2012, 121, 607–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meeker, R.; Fernandes, A. Osmotic and glutamate receptor regulation of c-Jun NH(2)-terminal protein kinase in neuroendocrine cells. Am. J. Physiol. Endocrinol. Metab. 2000, 279, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Tönges, L.; Planchamp, V.; Koch, J.C.; Herdegen, T.; Bähr, M.; Lingor, P. JNK isoforms differentially regulate neurite growth and regeneration in dopaminergic neurons in vitro. J. Mol. Neurosci. 2011, 45, 284–293. [Google Scholar] [CrossRef] [Green Version]
- Mielke, K.; Damm, A.; Yang, D.D.; Herdegen, T. Selective expression of JNK isoforms and stress-specific JNK activity in different neural cell lines. Mol. Brain Res. 2000, 75, 128–137. [Google Scholar] [CrossRef]
- Malek, R.L.; Nie, Z.; Ramkumar, V.; Lee, N.H. Adenosine A(2A) receptor mRNA regulation by nerve growth factor is TrkA-, Src-, and Ras-dependent via extracellular regulated kinase and stress-activated protein kinase/c-Jun NH(2)-terminal kinase. J. Biol. Chem. 1999, 274, 35499–35504. [Google Scholar] [CrossRef] [Green Version]
- Zentrich, E.; Han, S.Y.; Pessoa-Brandao, L.; Butterfield, L.; Heasley, L.E. Collaboration of JNKs and ERKs in nerve growth factor regulation of the neurofilament light chain promoter in PC12 cells. J. Biol. Chem. 2002, 277, 4110–4118. [Google Scholar] [CrossRef] [Green Version]
- Waetzig, V.; Herdegen, T. A single c-Jun N-terminal kinase isoform (JNK3-p54) is an effector in both neuronal differentiation and cell death. J. Biol. Chem. 2003, 278, 567–572. [Google Scholar] [CrossRef] [Green Version]
- Levresse, V.; Butterfield, L.; Zentrich, E.; Heasley, L.E. Akt negatively regulates the cJun N-terminal kinase pathway in PC12 cells. J. Neurosci. Res. 2000, 62, 799–808. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, W.; Reiser, G. Proteinase-activated receptor-1 and -2 induce the release of chemokine GRO/CINC-1 from rat astrocytes via differential activation of JNK isoforms, evoking multiple protective pathways in brain. Biochem. J. 2007, 401, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Laukeviciene, A.; Brecht, S.; Kevelaitis, E.; Herdegen, T. Enhanced contractility of small blood vessels in JNK knockout mice. Eur. J. Pharm. Sci. 2006, 29, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Kant, S.; Craige, S.M.; Chen, K.; Reif, M.M.; Learnard, H.; Kelly, M.; Caliz, A.D.; Tran, K.V.; Ramo, K.; Peters, O.M.; et al. Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis. Nat. Commun. 2019, 10, 4223. [Google Scholar] [CrossRef] [PubMed]
- Abdelli, S.; Bonny, C. JNK3 maintains expression of the insulin receptor substrate 2 (IRS2) in insulin-secreting cells: Functional consequences for insulin signaling. PLoS ONE 2012, 7, e35997. [Google Scholar] [CrossRef] [Green Version]
- Ezanno, H.; Pawlowski, V.; Abdelli, S.; Boutry, R.; Gmyr, V.; Kerr-Conte, J.; Bonny, C.; Pattou, F.; Abderrahmani, A. JNK3 is required for the cytoprotective effect of exendin 4. J. Diabetes Res. 2014, 2014, 814854. [Google Scholar] [CrossRef]
- Tenenbaum, M.; Plaisance, V.; Boutry, R.; Pawlowski, V.; Jacovetti, C.; Sanchez-Parra, C.; Ezanno, H.; Bourry, J.; Beeler, N.; Pasquetti, G.; et al. The Map3k12 (Dlk)/JNK3 signaling pathway is required for pancreatic β-cell proliferation during postnatal development. Cell. Mol. Life Sci. 2020, 1–12. [Google Scholar] [CrossRef]
- Cheng, Y.Y.; Yan, Y.T.; Lundy, D.J.; Lo, A.H.; Wang, Y.P.; Ruan, S.C.; Lin, P.J.; Hsieh, P.C. Reprogramming-derived gene cocktail increases cardiomyocyte proliferation for heart regeneration. EMBO Mol. Med. 2017, 9, 251–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kisfali, M.; Lrincz, T.; Vizi, E.S. Comparison of Ca2+ transients and [Ca2+]i in the dendrites and boutons of non-fast-spiking GABAergic hippocampal interneurons using two-photon laser microscopy and high- and low-affinity dyes. J. Physiol. 2013, 591, 5541–5553. [Google Scholar] [CrossRef]
- Lőrincz, T.; Kisfali, M.; Lendvai, B.; Vizi, E.S. Phenotype-dependent Ca2+ dynamics in single boutons of various anatomically identified GABAergic interneurons in the rat hippocampus. Eur. J. Neurosci. 2016, 43, 536–547. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Shen, X.; Lv, C.; Xu, T.; Pei, D. CaMKII antisense oligodeoxynucleotides protect against ischemia-induced neuronal death in the rat hippocampus. J. Neurol. Sci. 2012, 314, 104–110. [Google Scholar] [CrossRef]
- Ramarao, G.; Waghmare, C.; Srivastava, N.; Bhattacharya, B. Regional alterations of JNK3 and CaMKIIα subunit expression in the rat brain after soman poisoning. Hum. Exp. Toxicol. 2011, 30, 448–459. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakano, R.; Nakayama, T.; Sugiya, H. Biological Properties of JNK3 and Its Function in Neurons, Astrocytes, Pancreatic β-Cells and Cardiovascular Cells. Cells 2020, 9, 1802. https://doi.org/10.3390/cells9081802
Nakano R, Nakayama T, Sugiya H. Biological Properties of JNK3 and Its Function in Neurons, Astrocytes, Pancreatic β-Cells and Cardiovascular Cells. Cells. 2020; 9(8):1802. https://doi.org/10.3390/cells9081802
Chicago/Turabian StyleNakano, Rei, Tomohiro Nakayama, and Hiroshi Sugiya. 2020. "Biological Properties of JNK3 and Its Function in Neurons, Astrocytes, Pancreatic β-Cells and Cardiovascular Cells" Cells 9, no. 8: 1802. https://doi.org/10.3390/cells9081802
APA StyleNakano, R., Nakayama, T., & Sugiya, H. (2020). Biological Properties of JNK3 and Its Function in Neurons, Astrocytes, Pancreatic β-Cells and Cardiovascular Cells. Cells, 9(8), 1802. https://doi.org/10.3390/cells9081802