Shared Neurodevelopmental Perturbations Can Lead to Intellectual Disability in Individuals with Distinct Rare Chromosome Duplications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chromosomal Microarray Analysis (CMA)
2.2. Interactome Construction and the Expanded Duplication Syndromes Interactome (eDSi)
2.3. Functional Modules Detection and Enrichment Analysis
2.4. Prioritization of Candidate Genes
2.5. Functional Tissue-Specific Data
3. Results
3.1. Identification of Rare Chromosome Duplications
3.2. DSi Proteins Tend to Have High Values of Betweenness
3.3. Biological Processes Associated with Rare Duplications
3.4. DSi-Genes Are Widely Expressed in the CNS
3.5. Candidate Proteins from Different Chromosome Rearrangements Interact with Each Other in the CNS Network
3.6. Candidate Genes Are Associated with the ID
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Carvalho, C.M.; Lupski, J.R. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 2016, 17, 224–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harel, T.; Lupski, J. Genomic disorders 20 years on-mechanisms for clinical manifestations. Clin. Genet. 2017, 93, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.M.; Coe, B.P.; Girirajan, S.; Rosenfeld, J.A.; Vu, T.H.; Baker, C.; A Williams, C.; Stalker, H.J.; Hamid, R.; Hannig, V.; et al. A copy number variation morbidity map of developmental delay. Nat. Genet. 2011, 43, 838–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vissers, L.E.L.M.; Gilissen, C.; Veltman, J.A. Genetic studies in intellectual disability and related disorders. Nat. Rev. Genet. 2016, 17, 9–18. [Google Scholar] [CrossRef]
- Papp, B.; Pál, C.; Hurst, L.D. Dosage sensitivity and the evolution of gene families in yeast. Nature 2003, 424, 194–197. [Google Scholar] [CrossRef]
- Cabrejo, L.; Guyant-Maréchal, L.; Laquerrière, A.; Vercelletto, M.; De La Fournière, F.; Thomas-Antérion, C.; Verny, C.; Letournel, F.; Pasquier, F.; Vital, A.; et al. Phenotype associated with APP duplication in five families. Brain 2006, 129, 2966–2976. [Google Scholar] [CrossRef] [Green Version]
- Maulik, P.K.; Mascarenhas, M.N.; Mathers, C.D.; Dua, T.; Saxena, S. Prevalence of intellectual disability: A meta-analysis of population-based studies. Res. Dev. Disabil. 2011, 32, 419–436. [Google Scholar] [CrossRef]
- Chiurazzi, P.; Pirozzi, F. Advances in Understanding—Genetic Basis of Intellectual Disability. F1000Research 2016, 5. [Google Scholar] [CrossRef]
- Miller, D.T.; Adam, M.P.; Aradhya, S.; Biesecker, L.G.; Brothman, A.R.; Carter, N.P.; Church, D.M.; Crolla, J.A.; Eichler, E.E.; Epstein, C.J.; et al. Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies. Am. J. Hum. Genet. 2010, 86, 749–764. [Google Scholar] [CrossRef]
- Verma, V.; Paul, A.; Vishwanath, A.A.; Vaidya, B.; Clement, J.P. Understanding intellectual disability and autism spectrum disorders from common mouse models: Synapses to behaviour. Open Biol. 2019, 9, 180265. [Google Scholar] [CrossRef] [Green Version]
- Van Bokhoven, H. Genetic and Epigenetic Networks in Intellectual Disabilities. Annu. Rev. Genet. 2011, 45, 81–104. [Google Scholar] [CrossRef]
- Menche, J.; Sharma, A.; Kitsak, M.; Ghiassian, S.D.; Vidal, M.; Loscalzo, J.; Barabási, A.-L. Uncovering disease-disease relationships through the incomplete interactome. Science 2015, 347, 1257601. [Google Scholar] [CrossRef] [Green Version]
- Bonaglia, M.C.; Giorda, R.; Tenconi, R.; Pessina, M.; Pramparo, T.; Borgatti, R.; Zuffardi, O. A 2.3 Mb duplication of chromosome 8q24.3 associated with severe mental retardation and epilepsy detected by standard karyotype. Eur. J. Hum. Genet. 2005, 13, 586–591. [Google Scholar] [CrossRef]
- Concolino, D.; Iembo, M.A.; Moricca, M.T.; Rapsomaniki, M.; Marotta, R.; Galesi, O.; Fichera, M.; Romano, C.; Strisciuglio, P. A de Novo 8q22.2-24.3 Duplication in a Patient with Mild Phenotype. Eur. J. Med. Genet. 2012, 55, 67–70. [Google Scholar] [CrossRef]
- Wheeler, P.G. 8q23-Q24 Duplication—Further Delineation of a Rare Chromosomal Abnormality. Am. J. Med. Genet. Part A 2010, 152, 459–463. [Google Scholar] [CrossRef]
- Rezek, R.F.; Rodrigues Abbas, A.A.; Forte Mazzeu, J.; Duarte Miranda, S.M.; Velloso-Rodrigues, C. A Rare Interstitial Duplication of 8q22.1–8q24.3 Associated with Syndromic Bilateral Cleft Lip/Palate. Case Rep. Dent. 2014, 2014, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Orendi, K.; Uhrig, S.; Mach, M.; Tschepper, P.; Speicher, M.R. Complete and Pure Trisomy 18p Due to a Complex Chromosomal Rearrangement in a Male Adult with Mild Intellectual Disability. Am. J. Med. Genet. Part A 2013, 161, 1806–1812. [Google Scholar] [CrossRef]
- Balasubramanian, M.; Sithambaram, S.; Smith, K. Inherited Duplication of the Short Arm of Chromosome 18p11.32-P11.31 Associated with Developmental Delay/Intellectual Disability. Clin. Dysmorphol. 2016, 25, 19–22. [Google Scholar] [CrossRef]
- Giordano, M.; Muratore, V.; Babu, D.; Meazza, C.; Bozzola, M. A 18p11.23-P11.31 Microduplication in a Boy with Psychomotor Delay, Cerebellar Vermis Hypoplasia, Chorioretinal Coloboma, Deafness and GH Deficiency. Mol. Cytogenet. 2016, 9, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Kashevarova, A.A.; Nazarenko, L.P.; Skryabin, N.A.; Nikitina, T.V.; Vasilyev, S.A.; Tolmacheva, E.N.; Lopatkina, M.E.; Salyukova, O.A.; Chechetkina, N.N.; Vorotelyak, E.A.; et al. A Mosaic Intragenic Microduplication of LAMA1 and a Constitutional 18p11.32 Microduplication in a Patient with Keratosis Pilaris and Intellectual Disability. Am. J. Med. Genet. Part A 2018, 176, 2395–2403. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, H.; Li, L.; Yue, F.; Jiang, Y.; Li, S.; Liu, R. Prenatal Detection of Interstitial 18p11.31-P11.22 Microduplications: Phenotypic Diversity and Literature Review. Prenat. Diagn. 2019, 39, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Philippe, A.; Malan, V.; Jacquemont, M.L.; Boddaert, N.; Bonnefont, J.P.; Odent, S.; Munnich, A.; Colleaux, L.; Cormier-Daire, V. Xq25 Duplications Encompassing GRIA3 and STAG2 Genes in Two Families Convey Recognizable X-Linked Intellectual Disability with Distinctive Facial Appearance. Am. J. Med. Genet. Part A 2013, 161, 1370–1375. [Google Scholar] [CrossRef] [PubMed]
- Møller, R.S.; Jensen, L.R.; Maas, S.M.; Filmus, J.; Capurro, M.; Hansen, C.; Marcelis, C.L.M.; Ravn, K.; Andrieux, J.; Mathieu, M.; et al. X-Linked Congenital Ptosis and Associated Intellectual Disability, Short Stature, Microcephaly, Cleft Palate, Digital and Genital Abnormalities Define Novel Xq25q26 Duplication Syndrome. Hum. Genet. 2014, 133, 625–638. [Google Scholar] [CrossRef]
- Kumar, R.; Corbett, M.A.; Van Bon, B.W.M.; Gardner, A.; A.Woenig, J.; Jolly, L.A.; Douglas, E.; Friend, K.; Tan, C.; Van Esch, H.; et al. Increased STAG2 Dosage Defines a Novel Cohesinopathy with Intellectual Disability and Behavioral Problems. Hum. Mol. Genet. 2015, 24, 7171–7181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroy, C.; Jacquemont, M.L.; Doray, B.; Lamblin, D.; Cormier-Daire, V.; Philippe, A.; Nusbaum, S.; Patrat, C.; Steffann, J.; Colleaux, L.; et al. Xq25 Duplication: The Crucial Role of the STAG2 Gene in This Novel Human Cohesinopathy. Clin. Genet. 2016, 89, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fu, F.; Li, R.; Xiao, W.; Yu, Q.; Wang, D.; Jing, X.; Zhang, Y.; Yang, X.; Pan, M.; et al. Genetic Tests Aid in Counseling of Fetuses with Cerebellar Vermis Defects. Prenat. Diagn. 2020, 40, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Alanis-Lobato, G.; Andrade-Navarro, M.A.; Schaefer, M.H. HIPPIE v2.0: Enhancing Meaningfulness and Reliability of Protein-Protein Interaction Networks. Nucleic Acids Res. 2017, 45, D408–D414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 2498–2504. [Google Scholar] [CrossRef]
- Ju, W.; Greene, C.S.; Eichinger, F.; Nair, V.; Hodgin, J.B.; Bitzer, M.; Lee, Y.S.; Zhu, Q.; Kehata, M.; Li, M.; et al. Defining Cell-Type Specificity at the Transcriptional Level in Human Disease. Genome Res. 2013, 23, 1862–1873. [Google Scholar] [CrossRef] [Green Version]
- Greene, C.S.; Krishnan, A.; Wong, A.K.; Ricciotti, E.; Zelaya, R.A.; Himmelstein, D.S.; Zhang, R.; Hartmann, B.M.; Zaslavsky, E.; Sealfon, S.C.; et al. Understanding Multicellular Function and Disease with Human Tissue-Specific Networks. Nat. Genet. 2015, 47, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, A.; Zhang, R.; Yao, V.; Theesfeld, C.L.; Wong, A.K.; Tadych, A.; Volfovsky, N.; Packer, A.; Lash, A.; Troyanskaya, O.G. Genome-Wide Prediction and Functional Characterization of the Genetic Basis of Autism Spectrum Disorder. Nat. Neurosci. 2016, 19, 1454–1462. [Google Scholar] [CrossRef] [Green Version]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A Comprehensive Gene Set Enrichment Analysis Web Server 2016 Update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef] [Green Version]
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET Knowledge Platform for Disease Genomics: 2019 Update. Nucleic Acids Res. 2020, 48, D845–D855. [Google Scholar] [CrossRef] [Green Version]
- Carlin, D.E.; Demchak, B.; Pratt, D.; Sage, E.; Ideker, T. Network Propagation in the Cytoscape Cyberinfrastructure. PLoS Comput. Biol. 2017, 13, e1005598. [Google Scholar] [CrossRef] [Green Version]
- Piñero, J.; Bravo, Á.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong, L.I. DisGeNET: A Comprehensive Platform Integrating Information on Human Disease-Associated Genes and Variants. Nucleic Acids Res. 2017, 45, D833–D839. [Google Scholar] [CrossRef]
- Loscalzo, J.; Barabási, A.L.; Silverman, E.K. Network Medicine: Complex Systems in Human Disease and Therapeutics; Havard University Press: London, UK, 2017. [Google Scholar]
- Girvan, M.; Newman, M.E.J. Community Structure in Social and Biological Networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Kim, P.M.; Sprecher, E.; Trifonov, V.; Gerstein, M. The Importance of Bottlenecks in Protein Networks: Correlation with Gene Essentiality and Expression Dynamics. PLoS Comput. Biol. 2007, 3, e59. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in Social Networks. Soc. Netw. 1979, 1, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E.J. Scientific Collaboration Networks. II. Shortest Paths, Weighted Networks, and Centrality. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2001, 64, 7. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Liu, Q.; Chen, B.; Zhang, X.; Guo, C.; Zhou, H.; Li, J.; Gao, G.; Guo, Y.; Yan, C.; et al. Mutation in CUL4B, Which Encodes a Member of Cullin-RING Ubiquitin Ligase Complex, Causes X-Linked Mental Retardation. Am. J. Hum. Genet. 2007, 80, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Di Gregorio, E.; Bianchi, F.T.; Schiavi, A.; Alessandra, M.A.; Rolando, M.; Verdun, L.; Grosso, E.; Calcia, A.; Lacerenza, D.; Zuffardi, O.; et al. A de novo X;8 translocation creates a PTK2-THOC2 gene fusion with THOC2 expression knockdown in a patient with psychomotor retardation and congenital cerebellar hypoplasia. J. Med. Genet. 2014, 50, 543–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shashi, V.; Xie, P.; Schoch, K.; Goldstein, D.B.; Howard, T.D.; Berry, M.N.; Schwartz, C.E.; Cronin, K.; Sliwa, S.; Allen, A.; et al. The RBMX Gene as a Candidate for the Shashi X-Linked Intellectual Disability Syndrome. Clin. Genet. 2015, 88, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Mierzewska, H.; Rydzanicz, M.; Biegański, T.; Kosinska, J.; Mierzewska-Schmidt, M.; Ługowska, A.; Pollak, A.; Stawiński, P.; Walczak, A.; Kędra, A.; et al. Spondyloepimetaphyseal Dysplasia with Neurodegeneration Associated with AIFM1 Mutation—A Novel Phenotype of the Mitochondrial Disease. Clin. Genet. 2017, 91, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Riazuddin, S.; Hussain, M.; Razzaq, A.; Iqbal, Z.; Shahzad, M.; Polla, D.L.; Song, Y.; Van Beusekom, E.; Khan, A.A.; Tomas-Roca, L.; et al. Exome Sequencing of Pakistani Consanguineous Families Identifies 30 Novel Candidate Genes for Recessive Intellectual Disability. Mol. Psychiatry 2017, 22, 1604–1614. [Google Scholar] [CrossRef] [Green Version]
- Pennica, D.; Swanson, T.A.; Welsh, J.W.; Roy, M.A.; Lawrence, D.A.; Lee, J.; Brush, J.; Taneyhill, L.A.; Deuel, B.; Lew, M.; et al. WISP Genes Are Members of the Connective Tissue Growth Factor Family That Are Up-Regulated in Wnt-1-Transformed Cells and Aberrantly Expressed in Human Colon Tumors. Proc. Natl. Acad. Sci. USA 1998, 95, 14717–14722. [Google Scholar] [CrossRef] [Green Version]
- Hatta, N.; Dixon, C.; Ray, A.J.; Phillips, S.R.; Cunliffe, W.J.; Dale, M.; Todd, C.; Meggit, S.; Birch-Machin, M.A.; Rees, J.L. Expression, Candidate Gene, and Population Studies of the Melanocortin 5 Receptor. J. Investig. Dermatol. 2001, 116, 564–570. [Google Scholar] [CrossRef]
- Mahoney, W.M.; Hong, J.H.; Yaffe, M.B.; Farrance, I.K.G. The Transcriptional Co-Activator TAZ Interacts Differentially with Transcriptional Enhancer Factor-1 (TEF-1) Family Members. Biochem. J. 2005, 388, 217–225. [Google Scholar] [CrossRef]
- Bosco, P.; Spada, R.; Caniglia, S.; Salluzzo, M.G.; Salemi, M. Cerebellar Degeneration-Related Autoantigen 1 (CDR1) Gene Expression in Alzheimer’s Disease. Neurol. Sci. 2014, 35, 1613–1614. [Google Scholar] [CrossRef]
- Dropchot, E.J.; Chen, Y.; Posnert, J.B.; Old, L.J. Cloning of a Brain Protein Identified by Autoantibodies from a Patient with Paraneoplastic Cerebellar Degeneration. Proc. Natl. Acad. Sci. USA 1987, 84, 4552–4556. [Google Scholar] [CrossRef] [Green Version]
- Cappello, S. Small Rho-GTPases and Cortical Malformations: Fine-Tuning the Cytoskeleton Stability. Small GTPases 2013, 4, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Liao, G.; Waclaw, R.R.; Burns, K.A.; Linquist, D.; Campbell, K.; Zheng, Y.; Kuan, C.Y. Rac1 Controls the Formation of Midline Commissures and the Competency of Tangential Migration in Ventral Telencephalic Neurons. J. Neurosci. 2007, 27, 3884–3893. [Google Scholar] [CrossRef]
- Bruni, V.; Roppa, K.; Scionti, F.; Apa, R.; Sestito, S.; Di Martino, M.T.; Pensabene, L.; Concolino, D. A 46,XY Female with a 9p24.3p24.1 Deletion and a 8q24.11q24.3 Duplication: A Case Report and Review of the Literature. Cytogenet. Genome Res. 2019. [Google Scholar] [CrossRef]
- Neri, G.; Schwartz, C.E.; Lubs, H.A.; Stevenson, R.E. X-Linked Intellectual Disability Update 2017. Am. J. Med. Genet. Part A 2018, 176, 1375–1388. [Google Scholar] [CrossRef] [Green Version]
- Tejada, M.I.; Ibarluzea, N. Non-Syndromic X Linked Intellectual Disability: Current Knowledge in Light of the Recent Advances in Molecular and Functional Studies. Clin. Genet. 2020, 97, 677–687. [Google Scholar] [CrossRef]
- Di Benedetto, D.; Musumeci, S.A.; Avola, E.; Alberti, A.; Buono, S.; Scuderi, C.; Grillo, L.; Galesi, O.; Spalletta, A.; Giudice, M.L.; et al. Definition of Minimal Duplicated Region Encompassing the XIAP and STAG2 Genes in the Xq25 Microduplication Syndrome. Am. J. Med. Genet. Part A 2014, 164, 1923–1930. [Google Scholar] [CrossRef]
- Arya, V.B.; Chawla, G.; Nambisan, A.K.R.; Muhi-Iddin, N.; Vamvakiti, E.; Ajzensztejn, M.; Hulse, T.; Ferreira Pinto, C.; Lahiri, N.; Bint, S.; et al. Xq27.1 Duplication Encompassing SOX3: Variable Phenotype and Smallest Duplication Associated with Hypopituitarism to Date-A Large Case Series of Unrelated Patients and a Literature Review. Horm. Res. Paediatr. 2019. [Google Scholar] [CrossRef]
- Jin, Z.; Yu, L.; Geng, J.; Wang, J.; Jin, X.; Huang, H. A Novel 47.2Mb Duplication on Chromosomal Bands Xq21.1-25 Associated with Mental Retardation. Gene 2015, 567, 98–102. [Google Scholar] [CrossRef]
- Nishi, A.; Hiroi, N. Genetic Mechanisms Emerging from Mouse Models of CNV-Associated Neuropsychiatric Disorders; Elsevier Inc.: Amsterdam, The Netherlands, 2016; ISBN 9780128018774. [Google Scholar]
- Bass, N.; Skuse, D. Genetic Testing in Children and Adolescents with Intellectual Disability. Curr. Opin. Psychiatry 2018, 31, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Huguet, G.; Schramm, C.; Douard, E.; Jiang, L.; Labbe, A.; Tihy, F.; Mathonnet, G.; Nizard, S.; Lemyre, E.; Mathieu, A.; et al. Measuring and Estimating the Effect Sizes of Copy Number Variants on General Intelligence in Community-Based Samples. JAMA Psychiatry 2018, 75, 447–457. [Google Scholar] [CrossRef]
- Liu, G.; Beggs, H.; Jürgensen, C.; Park, H.T.; Tang, H.; Gorski, J.; Jones, K.R.; Reichardt, L.F.; Wu, J.; Rao, Y. Netrin Requires Focal Adhesion Kinase and Src Family Kinases for Axon Outgrowth and Attraction. Nat. Neurosci. 2004, 7, 1222–1232. [Google Scholar] [CrossRef]
- Liu, T.J.; LaFortune, T.; Honda, T.; Ohmori, O.; Hatakeyama, S.; Meyer, T.; Jackson, D.; de Groot, J.; Yung, W.K.A. Inhibition of Both Focal Adhesion Kinase and Insulin-like Growth Factor-I Receptor Kinase Suppresses Glioma Proliferation in Vitro and in Vivo. Mol. Cancer Ther. 2007, 6, 1357–1367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.T.; Chen, X.L.; Lim, Y.; Hanson, D.A.; Vo, T.T.; Howerton, K.; Larocque, N.; Fisher, S.J.; Schlaepfer, D.D.; Ilic, D. Nuclear FAK Promotes Cell Proliferation and Survival through FERM-Enhanced P53 Degradation. Mol. Cell 2008, 29, 9–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaller, M.D. Cellular Functions of FAK Kinases: Insight into Molecular Mechanisms and Novel Functions. J. Cell Sci. 2010, 123, 1007–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Shen, W.; Guo, R.; Xue, Y.; Peng, W.; Sima, J.; Yang, J.; Sharov, A.; Srikantan, S.; Yang, J.; et al. Top3β Is an RNA Topoisomerase That Works with Fragile X Syndrome Protein to Promote Synapse Formation. Nat. Neurosci. 2013, 16, 1238–1247. [Google Scholar] [CrossRef] [Green Version]
- Goh, K.I.; Cusick, M.E.; Valle, D.; Childs, B.; Vidal, M.; Barabási, A.L. The Human Disease Network. Proc. Natl. Acad. Sci. USA 2007, 104, 8685–8690. [Google Scholar] [CrossRef] [Green Version]
- Zotenko, E.; Mestre, J.; O’Leary, D.P.; Przytycka, T.M. Why Do Hubs in the Yeast Protein Interaction Network Tend to Be Essential: Reexamining the Connection between the Network Topology and Essentiality. PLoS Comput. Biol. 2008, 4, e1000140. [Google Scholar] [CrossRef]
- Backx, L.; Marcelis, C.; Devriendt, K.; Vermeesch, J.; Van Esch, H.; Fryns, J.-P. Haploinsufficiency of the gene Quaking (QKI) is associated with the 6q terminal deletion syndrome. Am. J. Med. Genet. Part A 2010, 152A, 319–326. [Google Scholar] [CrossRef]
- Lugtenberg, D.; Reijnders, M.R.F.; Fenckova, M.; Bijlsma, E.K.; Bernier, R.; Van Bon, B.W.M.; Smeets, E.; Silfhout, A.T.V.-V.; Bosch, D.; Eichler, E.E.; et al. De novo loss-of-function mutations in WAC cause a recognizable intellectual disability syndrome and learning deficits in Drosophila. Eur. J. Hum. Genet. 2016, 24, 1145–1153. [Google Scholar] [CrossRef] [Green Version]
- Uehara, T.; Ishige, T.; Hattori, S.; Yoshihashi, H.; Funato, M.; Yamaguchi, Y.; Takenouchi, T.; Kosaki, K. Three patients with DeSanto-Shinawi syndrome: Further phenotypic delineation. Am. J. Med. Genet. Part A 2018, 176, 1335–1340. [Google Scholar] [CrossRef]
- Hughes, J.J.; Alkhunaizi, E.; Kruszka, P.; Pyle, L.C.; Grange, D.K.; Berger, S.I.; Payne, K.K.; Masser-Frye, D.; Hu, T.; Christie, M.R.; et al. Loss-of-Function Variants in PPP1R12A: From Isolated Sex Reversal to Holoprosencephaly Spectrum and Urogenital Malformations. Am. J. Hum. Genet. 2020, 106, 121–128. [Google Scholar] [CrossRef]
- Russell, S.A.; Bashaw, G.J. Axon guidance pathways and the control of gene expression. Dev. Dyn. 2017, 247, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Suter, T.A.C.S.; Jaworski, A. Cell migration and axon guidance at the border between central and peripheral nervous system. Science 2019, 365, eaaw8231. [Google Scholar] [CrossRef]
- Chédotal, A. Roles of axon guidance molecules in neuronal wiring in the developing spinal cord. Nat. Rev. Neurosci. 2019, 20, 380–396. [Google Scholar] [CrossRef]
- Engle, E.C. Human Genetic Disorders of Axon Guidance. Cold Spring Harb. Perspect. Biol. 2010, 2, a001784. [Google Scholar] [CrossRef]
- Stoeckli, E.T. Understanding axon guidance: Are we nearly there yet? Development 2018, 145, dev151415. [Google Scholar] [CrossRef] [Green Version]
- Takabatake, M.; Goshima, Y.; Sasaki, Y. Semaphorin-3A Promotes Degradation of Fragile X Mental Retardation Protein in Growth Cones via the Ubiquitin-Proteasome Pathway. Front. Neural Circuits 2020, 14, 1–9. [Google Scholar] [CrossRef]
- O’Donnell, M.; Chance, R.K.; Bashaw, G.J. Axon Growth and Guidance: Receptor Regulation and Signal Transduction. Annu. Rev. Neurosci. 2009, 32, 383–412. [Google Scholar] [CrossRef] [Green Version]
- Jourdy, Y.; Chatron, N.; Carage, M.L.; Fretigny, M.; Meunier, S.; Zawadzki, C.; Gay, V.; Negrier, C.; Sanlaville, D.; Vinciguerra, C. Study of six patients with completeF9deletion characterized by cytogenetic microarray: Role of theSOX3gene in intellectual disability. J. Thromb. Haemost. 2016, 14, 1988–1993. [Google Scholar] [CrossRef] [Green Version]
- Kreis, P.; Barnier, J.-V. PAK signalling in neuronal physiology. Cell. Signal. 2009, 21, 384–393. [Google Scholar] [CrossRef]
- Parker, N.H.; Donninger, H.; Birrer, M.J.; Leaner, V.D. p21-Activated Kinase 3 (PAK3) Is an AP-1 Regulated Gene Contributing to Actin Organisation and Migration of Transformed Fibroblasts. PLoS ONE 2013, 8, e66892. [Google Scholar] [CrossRef] [Green Version]
- Peippo, M.; Koivisto, A.M.; Särkämö, T.; Sipponen, M.; Von Koskull, H.; Ylisaukko-Oja, T.; Rehnström, K.; Froyen, G.; Ignatius, J.; Järvelä, I. PAK3 related mental disability: Further characterization of the phenotype. Am. J. Med. Genet. Part A 2007, 143A, 2406–2416. [Google Scholar] [CrossRef] [Green Version]
- Rejeb, I.; Saillour, Y.; Castelnau, L.; Julien, C.; Bienvenu, T.; Taga, P.; Chaabouni, H.; Chelly, J.; Jemaa, L.B.; Bahi-Buisson, N. A novel splice mutation in PAK3 gene underlying mental retardation with neuropsychiatric features. Eur. J. Hum. Genet. 2008, 16, 1358–1363. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Wu, B.; Lu, Y.; Zhou, W.; Wang, S.; Wang, H. Novel PAK3 gene missense variant associated with two Chinese siblings with intellectual disability: A case report. BMC Med. Genet. 2020, 21, 31. [Google Scholar] [CrossRef] [Green Version]
- Vicinanza, M.; Di Campli, A.; Polishchuk, E.; Santoro, M.; Di Tullio, G.; Godi, A.; Levtchenko, E.; De Leo, M.G.; Polishchuk, R.; Sandoval, L.; et al. OCRL Controls Trafficking through Early Endosomes via PtdIns4,5P 2-Dependent Regulation of Endosomal Actin. EMBO J. 2011, 30, 4970–4985. [Google Scholar] [CrossRef] [PubMed]
- Hoopes, R.R.; Shrimpton, A.E.; Knohl, S.J.; Hueber, P.; Hoppe, B.; Matyus, J.; Simckes, A.; Tasic, V.; Toenshoff, B.; Suchy, S.F.; et al. Dent Disease with Mutations in OCRL1. Am. J. Hum. Genet. 2005, 76, 260–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böckenhauer, D.; Bökenkamp, A.; Nuutinen, M.; Unwin, R.; Van’t Hoff, W.; Sirimanna, T.; Vrljicak, K.; Ludwig, M. Novel OCRL Mutations in Patients with Dent-2 Disease. J. Pediatr. Genet. 2012, 1, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Blackmore, M.G.; Moore, D.L.; Smith, R.P.; Goldberg, J.L.; Bixby, J.L.; Lemmon, V.P. High Content Screening of Cortical Neurons Identifies Novel Regulators of Axon Growth. Mol. Cell. Neurosci. 2010, 44, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Shahsavani, M.; Pronk, R.J.; Falk, R.; Lam, M.; Moslem, M.; Linker, S.B.; Salma, J.; Day, K.; Schuster, J.; Anderlid, B.M.; et al. An in Vitro Model of Lissencephaly: Expanding the Role of DCX during Neurogenesis. Mol. Psychiatry 2018, 23, 1674–1684. [Google Scholar] [CrossRef]
- Robbins, J. KCNQ Potassium Channels: Physiology, Pathophysiology, and Pharmacology. Pharmacol. Ther. 2001, 90, 1–19. [Google Scholar] [CrossRef]
- Surti, T.S.; Huang, L.; Jan, Y.N.; Jan, L.Y.; Cooper, E.C. Identification by Mass Spectrometry and Functional Characterization of Two Phosphorylation Sites of KCNQ2/KCNQ3 Channels. Proc. Natl. Acad. Sci. USA 2005, 102, 17828–17833. [Google Scholar] [CrossRef] [Green Version]
- Miceli, F.; Striano, P.; Soldovieri, M.V.; Fontana, A.; Nardello, R.; Robbiano, A.; Bellini, G.; Elia, M.; Zara, F.; Taglialatela, M.; et al. A Novel KCNQ3 Mutation in Familial Epilepsy with Focal Seizures and Intellectual Disability. Epilepsia 2015, 56, e15–e20. [Google Scholar] [CrossRef]
- Sands, T.T.; Miceli, F.; Lesca, G.; Beck, A.E.; Sadleir, L.G.; Arrington, D.K.; Schönewolf-Greulich, B.; Moutton, S.; Lauritano, A.; Nappi, P.; et al. Autism and Developmental Disability Caused by KCNQ3 Gain-of-Function Variants. Ann. Neurol. 2019, 86, 181–192. [Google Scholar] [CrossRef]
- Gu, Y.C.; Kortesmaa, J.; Tryggvason, K.; Persson, J.; Ekblom, P.; Jacobsen, S.E.; Ekblom, M. Laminin Isoform-Specific Promotion of Adhesion and Migration of Human Bone Marrow Progenitor Cells. Blood 2003, 101, 877–885. [Google Scholar] [CrossRef]
- Najmabadi, H.; Hu, H.; Garshasbi, M.; Zemojtel, T.; Abedini, S.S.; Chen, W.; Hosseini, M.; Behjati, F.; Haas, S.; Jamali, P.; et al. Deep Sequencing Reveals 50 Novel Genes for Recessive Cognitive Disorders. Nature 2011, 478, 57–63. [Google Scholar] [CrossRef]
- Aldinger, K.A.; Mosca, S.J.; Tétreault, M.; Dempsey, J.C.; Ishak, G.E.; Hartley, T.; Phelps, I.G.; Lamont, R.E.; O’Day, D.R.; Basel, D.; et al. Mutations in LAMA1 Cause Cerebellar Dysplasia and Cysts with and without Retinal Dystrophy. Am. J. Hum. Genet. 2014, 95, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Micalizzi, A.; Poretti, A.; Romani, M.; Ginevrino, M.; Mazza, T.; Aiello, C.; Zanni, G.; Baumgartner, B.; Borgatti, R.; Brockmann, K.; et al. Clinical, Neuroradiological and Molecular Characterization of Cerebellar Dysplasia with Cysts (Poretti-Boltshauser Syndrome). Eur. J. Hum. Genet. 2016, 24, 1262–1267. [Google Scholar] [CrossRef]
- Corrêa, T.; Poswar, F.; Feltes, B.C.; Riegel, M. Candidate Genes Associated With Neurological Findings in a Patient With Trisomy 4p16.3 and Monosomy 5p15.2. Front. Genet. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Corrêa, T.; Feltes, B.C.; Schinzel, A.; Riegel, M. Network-Based Analysis Using Chromosomal Microdeletion Syndromes as a Model. Am. J. Med. Genet. Part C Semin. Med. Genet. 2021, 1–12. [Google Scholar] [CrossRef]
Patient | 1 | 2 | 3 |
---|---|---|---|
Sex | F | M | F |
Age (years) * | 8 | 12 | 7 |
Band location (duplicated) | Chr8 (q24.21-q24.3) | Chr18 (p11.32-p11.21) | ChrX (q22.3-q27.1) |
CMA Deletion size (pb) | 17,180,656 | 14,759,260 | 34,057,550 |
Genomic position (GRCh38/hg38) | Chr8:126,397,316–143,577,971 | Chr18:14,316–14,773,575 | Chrx:106,283,188–140,340,737 |
Clinical findings | ID; microcephaly; seizures; speech delay; global developmental delay | ID; speech delay; anxiety; learning difficulty; psychomotor agitation | ID; NPMDD; short stature; clinodactyly; blepharophimosis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrêa, T.; Santos-Rebouças, C.B.; Mayndra, M.; Schinzel, A.; Riegel, M. Shared Neurodevelopmental Perturbations Can Lead to Intellectual Disability in Individuals with Distinct Rare Chromosome Duplications. Genes 2021, 12, 632. https://doi.org/10.3390/genes12050632
Corrêa T, Santos-Rebouças CB, Mayndra M, Schinzel A, Riegel M. Shared Neurodevelopmental Perturbations Can Lead to Intellectual Disability in Individuals with Distinct Rare Chromosome Duplications. Genes. 2021; 12(5):632. https://doi.org/10.3390/genes12050632
Chicago/Turabian StyleCorrêa, Thiago, Cíntia B. Santos-Rebouças, Maytza Mayndra, Albert Schinzel, and Mariluce Riegel. 2021. "Shared Neurodevelopmental Perturbations Can Lead to Intellectual Disability in Individuals with Distinct Rare Chromosome Duplications" Genes 12, no. 5: 632. https://doi.org/10.3390/genes12050632
APA StyleCorrêa, T., Santos-Rebouças, C. B., Mayndra, M., Schinzel, A., & Riegel, M. (2021). Shared Neurodevelopmental Perturbations Can Lead to Intellectual Disability in Individuals with Distinct Rare Chromosome Duplications. Genes, 12(5), 632. https://doi.org/10.3390/genes12050632