Division of Labor by the HELQ, BLM, and FANCM Helicases during Homologous Recombination Repair in Drosophila melanogaster
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. HELQ Is Required for Homologous Recombination Repair of Double-Strand Breaks
3.2. HELQ Plays a Role in SDSA Distinct from That of the BLM Helicase
3.3. FANCM Helicase Has a Minor Role in SDSA
3.4. Loss of Both HELQ and FANCM Has Additive Effects on Repair Synthesis during SDSA
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, M.; Zhang, S.; Wang, X.; Chao, H.H.; Zhao, H.; Darzynkiewicz, Z.; Zhang, Z.; Lee, E.Y.C. Two forms of human DNA polymerase delta: Who does what and why? DNA Repair (Amst) 2019, 81, 102656. [Google Scholar] [CrossRef]
- Sebesta, M.; Burkovics, P.; Haracska, L.; Krejci, L. Reconstitution of DNA repair synthesis in vitro and the role of polymerase and helicase activities. DNA Repair (Amst) 2011, 10, 567–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Hicks, J.K.; Chute, C.L.; Brennan, J.R.; Ahn, J.Y.; Glover, T.W.; Canman, C.E. REV1 and polymerase zeta facilitate homologous recombination repair. Nucleic Acids Res. 2012, 40, 682–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kane, D.P.; Shusterman, M.; Rong, Y.; McVey, M. Competition between replicative and translesion polymerases during homologous recombination repair in Drosophila. PLoS Genet. 2012, 8, e1002659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Stith, C.M.; Burgers, P.M.; Heyer, W.D. PCNA is required for initiation of recombination-associated DNA synthesis by DNA polymerase delta. Mol. Cell 2009, 36, 704–713. [Google Scholar] [CrossRef] [Green Version]
- Sneeden, J.L.; Grossi, S.M.; Tappin, I.; Hurwitz, J.; Heyer, W.D. Reconstitution of recombination-associated DNA synthesis with human proteins. Nucleic Acids Res. 2013, 41, 4913–4925. [Google Scholar] [CrossRef] [Green Version]
- McVey, M.; Khodaverdian, V.Y.; Meyer, D.; Cerqueira, P.G.; Heyer, W.D. Eukaryotic DNA Polymerases in Homologous Recombination. Annu. Rev. Genet. 2016, 50, 393–421. [Google Scholar] [CrossRef] [Green Version]
- Nassif, N.; Penney, J.; Pal, S.; Engels, W.R.; Gloor, G.B. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol. Cell Biol. 1994, 14, 1613–1625. [Google Scholar] [CrossRef]
- Ranjha, L.; Howard, S.M.; Cejka, P. Main steps in DNA double-strand break repair: An introduction to homologous recombination and related processes. Chromosoma 2018, 127, 187–214. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Sun, H.; Huang, Y.; Wang, Y.; Liu, Y.; Chen, X. Pathways and assays for DNA double-strand break repair by homologous recombination. Acta Biochim. Biophys. Sin. (Shanghai) 2019, 51, 879–889. [Google Scholar] [CrossRef] [Green Version]
- Kowalczykowski, S.C. An Overview of the Molecular Mechanisms of Recombinational DNA Repair. Cold Spring Harb. Perspect. Biol. 2015, 7, a016410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prakash, R.; Satory, D.; Dray, E.; Papusha, A.; Scheller, J.; Kramer, W.; Krejci, L.; Klein, H.; Haber, J.E.; Sung, P.; et al. Yeast Mph1 helicase dissociates Rad51-made D-loops: Implications for crossover control in mitotic recombination. Genes Dev. 2009, 23, 67–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.F.; Prakash, R.; Saro, D.; Longerich, S.; Niu, H.; Sung, P. Processing of DNA structures via DNA unwinding and branch migration by the S. cerevisiae Mph1 protein. DNA Repair (Amst) 2011, 10, 1034–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.; Nandi, S.; Osman, F.; Ahn, J.S.; Jakovleska, J.; Lorenz, A.; Whitby, M.C. The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair. Mol. Cell 2008, 32, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ede, C.; Wright, W.D.; Gore, S.K.; Jenkins, S.S.; Freudenthal, B.D.; Todd Washington, M.; Veaute, X.; Heyer, W.D. Srs2 promotes synthesis-dependent strand annealing by disrupting DNA polymerase delta-extending D-loops. Elife 2017, 6. [Google Scholar] [CrossRef]
- Fasching, C.L.; Cejka, P.; Kowalczykowski, S.C.; Heyer, W.D. Top3-Rmi1 dissolve Rad51-mediated D loops by a topoisomerase-based mechanism. Mol. Cell 2015, 57, 595–606. [Google Scholar] [CrossRef] [Green Version]
- Mitchel, K.; Lehner, K.; Jinks-Robertson, S. Heteroduplex DNA position defines the roles of the Sgs1, Srs2, and Mph1 helicases in promoting distinct recombination outcomes. PLoS Genet. 2013, 9, e1003340. [Google Scholar] [CrossRef] [Green Version]
- Piazza, A.; Shah, S.S.; Wright, W.D.; Gore, S.K.; Koszul, R.; Heyer, W.D. Dynamic Processing of Displacement Loops during Recombinational DNA Repair. Mol. Cell 2019, 73, 1255–1266. [Google Scholar] [CrossRef] [Green Version]
- Bachrati, C.Z.; Borts, R.H.; Hickson, I.D. Mobile D-loops are a preferred substrate for the Bloom’s syndrome helicase. Nucleic Acids Res. 2006, 34, 2269–2279. [Google Scholar] [CrossRef]
- Barber, L.J.; Youds, J.L.; Ward, J.D.; McIlwraith, M.J.; O’Neil, N.J.; Petalcorin, M.I.; Martin, J.S.; Collis, S.J.; Cantor, S.B.; Auclair, M.; et al. RTEL1 maintains genomic stability by suppressing homologous recombination. Cell 2008, 135, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Van Brabant, A.J.; Ye, T.; Sanz, M.; German, I.J.; Ellis, N.A.; Holloman, W.K. Binding and melting of D-loops by the Bloom syndrome helicase. Biochemistry 2000, 39, 14617–14625. [Google Scholar] [CrossRef] [PubMed]
- Gari, K.; Decaillet, C.; Stasiak, A.Z.; Stasiak, A.; Constantinou, A. The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks. Mol. Cell 2008, 29, 141–148. [Google Scholar] [CrossRef] [PubMed]
- McVey, M.; Andersen, S.L.; Broze, Y.; Sekelsky, J. Multiple functions of Drosophila BLM helicase in maintenance of genome stability. Genetics 2007, 176, 1979–1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, M.D.; McVey, M.; Sekelsky, J.J. Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science 2003, 299, 265–267. [Google Scholar] [CrossRef]
- McVey, M.; Larocque, J.R.; Adams, M.D.; Sekelsky, J.J. Formation of deletions during double-strand break repair in Drosophila DmBlm mutants occurs after strand invasion. Proc. Natl. Acad. Sci. USA 2004, 101, 15694–15699. [Google Scholar] [CrossRef] [Green Version]
- Weinert, B.T.; Rio, D.C. DNA strand displacement, strand annealing and strand swapping by the Drosophila Bloom’s syndrome helicase. Nucleic Acids Res. 2007, 35, 1367–1376. [Google Scholar] [CrossRef] [Green Version]
- Kuo, H.K.; McMahan, S.; Rota, C.M.; Kohl, K.P.; Sekelsky, J. Drosophila FANCM helicase prevents spontaneous mitotic crossovers generated by the MUS81 and SLX1 nucleases. Genetics 2014, 198, 935–945. [Google Scholar] [CrossRef] [Green Version]
- Romero, N.E.; Matson, S.W.; Sekelsky, J. Biochemical Activities and Genetic Functions of the Drosophila melanogaster Fancm Helicase in DNA Repair. Genetics 2016, 204, 531–541. [Google Scholar] [CrossRef]
- Adelman, C.A.; Boulton, S.J. Metabolism of postsynaptic recombination intermediates. FEBS Lett. 2010, 584, 3709–3716. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.D.; Muzzini, D.M.; Petalcorin, M.I.; Martinez-Perez, E.; Martin, J.S.; Plevani, P.; Cassata, G.; Marini, F.; Boulton, S.J. Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair. Mol. Cell 2010, 37, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Hustedt, N.; Saito, Y.; Zimmermann, M.; Alvarez-Quilon, A.; Setiaputra, D.; Adam, S.; McEwan, A.; Yuan, J.Y.; Olivieri, M.; Zhao, Y.; et al. Control of homologous recombination by the HROB-MCM8-MCM9 pathway. Genes Dev. 2019, 33, 1397–1415. [Google Scholar] [CrossRef] [PubMed]
- Adelman, C.A.; Lolo, R.L.; Birkbak, N.J.; Murina, O.; Matsuzaki, K.; Horejsi, Z.; Parmar, K.; Borel, V.; Skehel, J.M.; Stamp, G.; et al. HELQ promotes RAD51 paralogue-dependent repair to avert germ cell loss and tumorigenesis. Nature 2013, 502, 381–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takata, K.; Reh, S.; Tomida, J.; Person, M.D.; Wood, R.D. Human DNA helicase HELQ participates in DNA interstrand crosslink tolerance with ATR and RAD51 paralogs. Nat. Commun. 2013, 4, 2338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCaffrey, R.; St Johnston, D.; Gonzalez-Reyes, A. Drosophila mus301/spindle-C encodes a helicase with an essential role in double-strand DNA break repair and meiotic progression. Genetics 2006, 174, 1273–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghabrial, A.; Schupbach, T. Activation of a meiotic checkpoint regulates translation of Gurken during Drosophila oogenesis. Nat. Cell Biol. 1999, 1, 354–357. [Google Scholar] [CrossRef]
- Kusano, K.; Johnson-Schlitz, D.M.; Engels, W.R. Sterility of Drosophila with mutations in the Bloom syndrome gene--complementation by Ku70. Science 2001, 291, 2600–2602. [Google Scholar] [CrossRef]
- Staeva-Vieira, E.; Yoo, S.; Lehmann, R. An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control. EMBO J. 2003, 22, 5863–5874. [Google Scholar] [CrossRef] [Green Version]
- Kurkulos, M.; Weinberg, J.M.; Roy, D.; Mount, S.M. P element-mediated in vivo deletion analysis of white-apricot: Deletions between direct repeats are strongly favored. Genetics 1994, 136, 1001–1011. [Google Scholar] [CrossRef]
- Laurencon, A.; Orme, C.M.; Peters, H.K.; Boulton, C.L.; Vladar, E.K.; Langley, S.A.; Bakis, E.P.; Harris, D.T.; Harris, N.J.; Wayson, S.M.; et al. A large-scale screen for mutagen-sensitive loci in Drosophila. Genetics 2004, 167, 217–231. [Google Scholar] [CrossRef] [Green Version]
- McVey, M. In vivo analysis of Drosophila BLM helicase function during DNA double-strand gap repair. Methods Mol. Biol. 2010, 587, 185–194. [Google Scholar] [CrossRef]
- McVey, M.; Radut, D.; Sekelsky, J.J. End-joining repair of double-strand breaks in Drosophila melanogaster is largely DNA ligase IV independent. Genetics 2004, 168, 2067–2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tearle, R.; Nüsslein-Volhard, C. Tübingen mutants stocklist. Dros. Inf. Serv. 1987, 66, 209–226. [Google Scholar]
- Anand, R.; Buechelmaier, E.; Belan, O.; Newton, M.; Vancevska, A.; Kaczmarczyk, A.; Takaki, T.; Rueda, D.S.; Powell, S.N.; Boulton, S.J. HELQ is a dual-function DSB repair enzyme modulated by RPA and RAD51. Nature 2021, 601, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Kamp, J.A.; Lemmens, B.; Romeijn, R.J.; Changoer, S.C.; van Schendel, R.; Tijsterman, M. Helicase Q promotes homology-driven DNA double-strand break repair and prevents tandem duplications. Nat. Commun. 2021, 12, 7126. [Google Scholar] [CrossRef]
- Johnson-Schlitz, D.M.; Flores, C.; Engels, W.R. Multiple-pathway analysis of double-strand break repair mutations in Drosophila. PLoS Genet. 2007, 3, e50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saini, N.; Ramakrishnan, S.; Elango, R.; Ayyar, S.; Zhang, Y.; Deem, A.; Ira, G.; Haber, J.E.; Lobachev, K.S.; Malkova, A. Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature 2013, 502, 389–392. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.A.; Kwon, Y.; Xu, Y.; Chung, W.H.; Chi, P.; Niu, H.; Mayle, R.; Chen, X.; Malkova, A.; Sung, P.; et al. Pif1 helicase and Poldelta promote recombination-coupled DNA synthesis via bubble migration. Nature 2013, 502, 393–396. [Google Scholar] [CrossRef]
- Bhandari, J.; Karg, T.; Golic, K.G. Homolog-Dependent Repair Following Dicentric Chromosome Breakage in Drosophila melanogaster. Genetics 2019, 212, 615–630. [Google Scholar] [CrossRef]
- Kocak, E.; Dykstra, S.; Nemeth, A.; Coughlin, C.G.; Rodgers, K.; McVey, M. The Drosophila melanogaster PIF1 Helicase Promotes Survival During Replication Stress and Processive DNA Synthesis During Double-Strand Gap Repair. Genetics 2019, 213, 835–847. [Google Scholar] [CrossRef]
Genotype | % Scalloped-Winged Females (F1) | % Male-Lethal Deletions (F2) |
---|---|---|
Wild type | 0.0% (84) | 0.0% (44) |
helq288A | 0.2% (1061) | 2.0% (246) |
blmN1 | 17.3% (623) a | 55.3% (159) a |
helq288A, blmN1 | 3.9% (332) b | 25.2% (127) a,b |
Genotype | Left Deletion > 100 bp | Right Deletion > 100 bp | Right Deletion > 400 bp | Right Deletion > 1200 bp |
---|---|---|---|---|
helq288A | 14.3% (14) | 0% (10) | 0% (10) | 0% (10) |
blmN1 | 84.8% (33) a | 52.4% (21) a | 38.1% (21) a | 23.8% (21) |
helq288AblmN1 | 48.8% (43) a,b | 23.8% (42) b | 21.4% (42) | 4.8% (42) b |
Genotype | % Scalloped-Winged Females (F1) | % Male-Lethal Deletions (F2) |
---|---|---|
Wild type | 0.0% (84) | 0.0% (44) |
fancm0693/Df(3R)ED6058 | 1.1% (91) | 0.0% (46) |
blmD2/blmN2 | No data | 46% (69) a |
fancm0693blmN2/Df(3R)ED6058 blmN1 | 0.0% (52) | 20.0% (25) b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, A.; Cox, J.; Wolfe, K.B.; Mingalone, C.H.; Yaspan, H.R.; McVey, M. Division of Labor by the HELQ, BLM, and FANCM Helicases during Homologous Recombination Repair in Drosophila melanogaster. Genes 2022, 13, 474. https://doi.org/10.3390/genes13030474
Thomas A, Cox J, Wolfe KB, Mingalone CH, Yaspan HR, McVey M. Division of Labor by the HELQ, BLM, and FANCM Helicases during Homologous Recombination Repair in Drosophila melanogaster. Genes. 2022; 13(3):474. https://doi.org/10.3390/genes13030474
Chicago/Turabian StyleThomas, Adam, Julie Cox, Kelly B. Wolfe, Carrie Hui Mingalone, Haleigh R. Yaspan, and Mitch McVey. 2022. "Division of Labor by the HELQ, BLM, and FANCM Helicases during Homologous Recombination Repair in Drosophila melanogaster" Genes 13, no. 3: 474. https://doi.org/10.3390/genes13030474
APA StyleThomas, A., Cox, J., Wolfe, K. B., Mingalone, C. H., Yaspan, H. R., & McVey, M. (2022). Division of Labor by the HELQ, BLM, and FANCM Helicases during Homologous Recombination Repair in Drosophila melanogaster. Genes, 13(3), 474. https://doi.org/10.3390/genes13030474