Circulating miRNAs Are Associated with Inflammation Biomarkers in Children with Overweight and Obesity: Results of the I.Family Study
Highlights
- The chronic low-grade increase in C-reactive protein in childhood obesity shows a significant association with specific miRNAs.
- Sex-related associations of candidate circulating miRNAs with selected cytokines have been found in low-grade inflammation in childhood obesity.
- Differences in the association between circulating miRNAs and inflammatory response biomarkers suggest a role for miRNAs among the epigenetic mechanisms related to the low-grade inflammatory process in childhood obesity.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Biochemical Analysis
2.3. miRNA Profiling
2.4. Statistical Analysis
3. Results
3.1. Anthropometric Characteristics and Biochemical Markers of the Study Sample
3.2. RT-qPCR Validation in Individual Plasma Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Library Cataloguing in Publication Data Report of the Commission on Ending Childhood Obesity; World Health Organization: Geneva, Switzerland, 2016.
- Gómez, L.A.; Abden, Z.A.; Hamid, Z.A.; Rmeileh, N.M.A.; Cazares, B.A.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Salinas, C.A.A.; et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- Hruby, A.; Hu, F.B. The epidemiology of obesity: A big picture. Pharmacoeconomics 2015, 33, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Iacomino, G.; Lauria, F.; Venezia, A.; Iannaccone, N.; Russo, P.; Siani, A. microRNAs in Obesity and metabolic diseases. In Obesity and Diabetes: Scientific Advances and Best Practice; Faintuch, J., Faintuch, S., Eds.; Springer Nature: Cham, Switzerland, 2020; Chapter 6; pp. 71–95. [Google Scholar] [CrossRef]
- Farag, Y.M.; Gaballa, M.R. Diabesity: An overview of a rising epidemic. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc. 2011, 26, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huls, A.; Wright, M.N.; Bogl, L.H.; Kaprio, J.; Lissner, L.; Molnar, D.; Moreno, L.A.; De Henauw, S.; Siani, A.; Veidebaum, T.; et al. Polygenic risk for obesity and its interaction with lifestyle and sociodemographic factors in European children and adolescents. Int. J. Obes. 2021, 45, 1321–1330. [Google Scholar] [CrossRef]
- Li, Y.; Pollock, C.A.; Saad, S. Aberrant DNA methylation mediates the transgenerational risk of metabolic and chronic disease due to maternal obesity and overnutrition. Genes 2021, 12, 1653. [Google Scholar] [CrossRef] [PubMed]
- Kammoun, H.L.; Kraakman, M.J.; Febbraio, M.A. Adipose tissue inflammation in glucose metabolism. Rev. Endocr. Metab. Disord. 2014, 15, 31–44. [Google Scholar] [CrossRef]
- Christ, A.; Günther, P.; Lauterbach, M.A.R.; Duewell, P.; Biswas, D.; Pelka, K.; Scholz, C.J.; Oosting, M.; Haendler, K.; Baßler, K.; et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 2018, 172, 162–175.e14. [Google Scholar] [CrossRef] [Green Version]
- Thorburn, A.N.; Macia, L.; Mackay, C.R. Diet, Metabolites, and “Western-Lifestyle” Inflammatory Diseases. Immunity 2014, 40, 833–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, L.; Heuser-Baker, J.; Barlic-Dicen, J. Chemokine receptors on the defensive—The surprising role of CXCR4 in brown adipose tissue. Recept. Clin. Investig. 2015, 2, e397. [Google Scholar] [CrossRef] [Green Version]
- Kraakman, M.J.; Murphy, A.J.; Jandeleit-Dahm, K.; Kammoun, H.L. Macrophage polarization in obesity and type 2 diabetes: Weighing down our understanding of macrophage function? Front. Immunol. 2014, 5, 470. [Google Scholar] [CrossRef] [PubMed]
- Schaffler, A.; Muller-Ladner, U.; Scholmerich, J.; Buchler, C. Role of adipose tissue as an inflammatory organ in human diseases. Endocr. Rev. 2006, 27, 449–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saltiel, A.R.; Olefsky, J.M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Investig. 2017, 121, 2111–2117. [Google Scholar] [CrossRef]
- Timpson, N.J.; Nordestgaard, B.G.; Harbord, R.M.; Zacho, J.; Frayling, T.M.; Tybjærg-Hansen, A.; Davey Smith, G. C-reactive protein levels and body mass index: Elucidating direction of causation through reciprocal Mendelian randomization. Int. J. Obes. 2011, 35, 300–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nappo, A.; Iacoviello, L.; Fraterman, A.; Gonzalez-Gil, E.M.; Hadjigeorgiou, C.; Marild, S.; Molnar, D.; Moreno, L.A.; Peplies, J.; Sioen, I.; et al. High-sensitivity C-reactive protein is a predictive factor of adiposity in children: Results of the identification and prevention of dietary- and lifestyle-induced health effects in children and infants (IDEFICS) study. J. Am. Heart Assoc. 2013, 2, e000101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalieri, V. The expanding constellation of histone post-translational modifications in the epigenetic landscape. Genes 2021, 12, 1596. [Google Scholar] [CrossRef]
- Huang, H.Y.; Lin, Y.C.; Li, J.; Huang, K.Y.; Shrestha, S.; Hong, H.C.; Tang, Y.; Chen, Y.G.; Jin, C.N.; Yu, Y.; et al. miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 2020, 48, D148–D154. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.K. Extracellular microRNAs as biomarkers in human disease. Chonnam Med. J. 2015, 51, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Lauria, F.; Iacomino, G. The landscape of circulating miRNAs in the post-genomic era. Genes 2022, 13, 94. [Google Scholar] [CrossRef]
- Dumortier, O.; Hinault, C.; Van Obberghen, E. MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab. 2013, 18, 312–324. [Google Scholar] [CrossRef] [Green Version]
- Iacomino, G.; Siani, A. Role of microRNAs in obesity and obesity-related diseases. Genes Nutr. 2017, 12, 23. [Google Scholar] [CrossRef]
- Kunej, T.; Jevsinek Skok, D.; Zorc, M.; Ogrinc, A.; Michal, J.J.; Kovac, M.; Jiang, Z. Obesity gene atlas in mammals. J. Genom. 2013, 1, 45–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartig, S.M.; Hamilton, M.P.; Bader, D.A.; McGuire, S.E. The miRNA interactome in metabolic homeostasis. Endocrinol. Metab. 2015, 26, 733–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghuraman, S.; Donkin, I.; Versteyhe, S.; Barres, R.; Simar, D. The emerging role of epigenetics in inflammation and immunometabolism. Trends Endocrinol. Metab. 2016, 27, 782–795. [Google Scholar] [CrossRef] [PubMed]
- Kroesen, B.J.; Teteloshvili, N.; Smigielska-Czepiel, K.; Brouwer, E.; Boots, A.M.; van den Berg, A.; Kluiver, J. Immuno-miRs: Critical regulators of T-cell development, function and ageing. Immunology 2015, 144, 1–10. [Google Scholar] [CrossRef]
- Iacomino, G.; Russo, P.; Stillitano, I.; Lauria, F.; Marena, P.; Ahrens, W.; De Luca, P.; Siani, A. Circulating microRNAs are deregulated in overweight/obese children: Preliminary results of the I.Family study. Genes Nutr. 2016, 11, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahrens, W.; Siani, A.; Adan, R.; De Henauw, S.; Eiben, G.; Gwozdz, W.; Hebestreit, A.; Hunsberger, M.; Kaprio, J.; Krogh, V.; et al. Cohort profile: The transition from childhood to adolescence in European children-how I.Family extends the IDEFICS cohort. Int. J. Epidemiol. 2017, 46, 1394j–1395j. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacomino, G.; Russo, P.; Marena, P.; Lauria, F.; Venezia, A.; Ahrens, W.; De Henauw, S.; De Luca, P.; Foraita, R.; Gunther, K.; et al. Circulating microRNAs are associated with early childhood obesity: Results of the I.Family study. Genes Nutr. 2019, 14, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bammann, K.; Lissner, L.; Pigeot, I.; Ahrens, W. (Eds.) Instruments for Health Surveys in Children and Adolescents; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Iacomino, G.; Lauria, F.; Russo, P.; Marena, P.; Venezia, A.; Iannaccone, N.; De Henauw, S.; Foraita, R.; Heidinger-Felso, R.; Hunsberger, M.; et al. Circulating miRNAs are associated with sleep duration in children/adolescents: Results of the I.Family study. Exp. Physiol. 2020, 105, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- Peplies, J.; Fraterman, A.; Scott, R.; Russo, P.; Bammann, K. Quality management for the collection of biological samples in multicentre studies. Eur. J. Epidemiol. 2010, 25, 607–617. [Google Scholar] [CrossRef]
- Shanahan, L.; Copeland, W.E.; Worthman, C.M.; Erkanli, A.; Angold, A.; Costello, E.J. Sex-differentiated changes in C-reactive protein from ages 9 to 21: The contributions of BMI and physical/sexual maturation. Psychoneuroendocrinology 2013, 38, 2209–2217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, M.A. microRNAs and the immune response. Trends. Immunol. 2008, 29, 343–351. [Google Scholar] [CrossRef]
- Nejad, C.; Stunden, H.J.; Gantier, M.P. A guide to miRNAs in inflammation and innate immune responses. FEBS J. 2018, 285, 3695–3716. [Google Scholar] [CrossRef]
- Piening, B.D.; Zhou, W.; Contrepois, K.; Rost, H.; Gu Urban, G.J.; Mishra, T.; Hanson, B.M.; Bautista, E.J.; Leopold, S.; Yeh, C.Y.; et al. Integrative personal omics profiles during periods of weight gain and loss. Cell Syst. 2018, 6, 157–170.e8. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Q.; Xu, W.; Ma, Y.; Wang, Q.; Eatman, D.; You, S.; Zou, J.; Champion, J.; Zhao, L.; et al. C-reactive protein causes adult-onset obesity through chronic inflammatory mechanism. Front. Cell Dev. Biol. 2020, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Al-Mossawi, M.H.; Ridley, A.; Sekine, T.; Hammitzsch, A.; de Wit, J.; Simone, D.; Shi, H.; Penkava, F.; Kurowska-Stolarska, M.; et al. miR-10b-5p is a novel Th17 regulator present in Th17 cells from ankylosing spondylitis. Ann. Rheum. Dis. 2017, 76, 620–625. [Google Scholar] [CrossRef]
- Tu, J.; Han, D.; Fang, Y.; Jiang, H.; Tan, X.; Xu, Z.; Wang, X.; Hong, W.; Li, T.; Wei, W. MicroRNA-10b promotes arthritis development by disrupting CD4+ T cell subtypes. Mol. Ther.-Nucleic Acids 2022, 27, 733–750. [Google Scholar] [CrossRef]
- Sun, J.; Yan, P.; Chen, Y.; Chen, Y.; Yang, J.; Xu, G.; Mao, H.; Qiu, Y. MicroRNA-26b inhibits cell proliferation and cytokine secretion in human RASF cells via the Wnt/GSK-3β/β-catenin pathway. Diagn. Pathol. 2015, 10, 72. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; He, Y.; Liu, L.; Zhong, X. MiRNA-26b regulates the expression of cyclooxygenase-2 in desferrioxamine-treated CNE cells. FEBS Lett. 2010, 584, 961–967. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Ma, P.; Wu, D.; Shu, Y.; Gao, W. Functions and mechanisms of microRNA-31 in human cancers. Biomed. Pharmacother. 2018, 108, 1162–1169. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Xu, J.; Li, Y.; Zhao, R.; Du, S.; Lv, C.; Wu, W.; Liu, R.; Sheng, X.; Song, Y.; et al. MicroRNA-31 reduces inflammatory signaling and promotes regeneration in colon epithelium, and delivery of mimics in microspheres reduces colitis in mice. Gastroenterology 2019, 156, 2281–2296.e6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, J.; Wang, L.; Chen, L.; Du, Z.; Zhu, L.; Cui, M.; Zhang, M.; Song, L. Linc-PINT acted as a tumor suppressor by sponging miR-543 and miR-576-5p in esophageal cancer. J. Cell Biochem. 2019, 120, 19345–19357. [Google Scholar] [CrossRef] [PubMed]
- Lefèvre, N.; Corazza, F.; Duchateau, J.; Desir, J.; Casimir, G. Sex differences in inflammatory cytokines and CD99 expression following in vitro lipopolysaccharide stimulation. Shock 2012, 38, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Wegner, A.; Benson, S.; Rebernik, L.; Spreitzer, I.; Jäger, M.; Schedlowski, M.; Elsenbruch, S.; Engler, H. Sex differences in the pro-inflammatory cytokine response to endotoxin unfold in vivo but not ex vivo in healthy humans. Innate Immun. 2017, 23, 432–439. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Sharma, S.; Eghbali, M. Influence of sex differences on microRNA gene regulation in disease. Biol. Sex Differ. 2014, 5, 3. [Google Scholar] [CrossRef] [Green Version]
Ow/Ob | Boys (25/11) | Girls (31/12) |
---|---|---|
Age (years) | 12.1 (11.5–12.8) | 12.4 (11.9–12.9) |
Puberty (% yes) | 47.8 | 52.2 |
BMI z-score | 1.8 (1.6–2.0) | 1.7 (1.5–1.9) |
CRP (mg/dL) | 0.36 (0.08–0.63) | 0.45 (0.14–0.77) |
TNF-α (pg/mL) | 4.3 (2.7–6.0) | 3.9 (2.4–5.4) |
IL-1Ra (pg/mL) | 422.9 (339.7–506.2) | 527.8 (398.0–657.6) |
IL-6 (pg/mL) | 1.2 (−0.1–2.5) | 0.8 (0.5–1.0) |
IL-8 (pg/mL) | 38.5 (−23.1–100.0) | 17.6 (1.7–33.6) |
IL-15 (pg/mL) | 2.6 (2.2–3.0) | 3.0 (2.5–3.4) |
hsa-miR-10b-5p | 2.9 (2.1–3.6) | 3.3 (2.7–3.9) |
hsa-miR-26b-3p | 2.4 (1.6–3.3) | 2.7 (0.7–4.6) |
hsa-miR-31-5p | 1.1 (0.3–1.8) | 1.5 (0.8–2.3) |
hsa-miR-576-5p | 7.3 (5.4–9.1) | 6.4 (5.0–7.8) |
Boys (36) | q-Value | Girls (43) | q-Value | |
---|---|---|---|---|
hsa-miR-10b-5p | 2.7 (1.7–3.7) | 0.399 | 3.6 (3.0–4.2) | 0.008 |
hsa-miR-26b-3p | 3.2 (3.0–3.4) | 0.004 | 2.1 (−0.9–5.0) | 0.553 |
hsa-miR-31-5p | 1.1 (−0.3–2.1) | 0.914 | 1.3 (0.9–1.8) | 0.02 |
hsa-miR-576-5p | 8.3 (6.8–9.8) | 0.006 | 6.8 (5.7–8.0) | 0.187 |
Cytokine | Sex | miR-10b-5p | q-Value | miR-26b-3p | q-Value | miR-31-5p | q-Value | miR-576-5p | q-Value |
---|---|---|---|---|---|---|---|---|---|
TNF-α | Boys | 2.5 (2.0–3.0) | 1.000 | 3.0 (2.6–3.4) | 0.006 | 1.3 (0.3–2.2) | 0.963 | 7.7 (6.4–9.0) | 0.005 |
Girls | 3.2 (2.4–4.0) | 0.635 | 2.4 (−0.4–5.2) | 1.000 | 1.5 (1.0–2.1) | 0.485 | 7.2 (6.1–8.2) | 0.730 | |
IL1-Ra | Boys | 2.6 (2.1–3.1) | 0.810 | 3.0 (2.6–3.4) | 0.005 | 1.1 (−0.03–2.2) | 0.393 | 7.9 (6.4–9.4) | 0.023 |
Girls | 3.3 (2.5–4.1) | 0.558 | 2.3 (−0.8–5.5) | 1.000 | 1.6 (0.9–2.2) | 1.000 | 6.6 (5.3–7.8) | 0.735 | |
IL-6 | Boys | 2.6 (2.0–3.2) | 0.743 | 3.0 (2.1–4.0) | 0.461 | 0.8 (−0.5–2.0) | 0.963 | 7.1 (4.2–10.0) | 0.932 |
Girls | 3.3 (2.5–4.1) | 0.949 | 2.2 (−0.9–5.3) | 0.732 | 1.6 (0.9–2.2) | 0.692 | 6.8 (5.7–8.0) | 0.625 | |
IL-8 | Boys | 2.4 (1.8–3.0) | 0.927 | 2.9 (2.5–3.3) | 0.005 | 1.2 (0.2–2.2) | 0.410 | 7.2 (5.6–8.9) | 0.021 |
Girls | 3.3 (2.4–4.1) | 0.649 | 2.5 (−0.5–5.4) | 1.000 | 1.6 (1.1–2.1) | 1.000 | 7.3 (6.2–8.4) | 0.856 | |
IL-15 | Boys | 2.6 (2.1–3.1) | 0.588 | 2.9 (2.5–3.3) | 0.005 | 1.2 (0.1–2.3) | 0.890 | 7.5 (5.9–9.1) | 0.015 |
Girls | 3.3 (2.6–4.0) | 0.512 | 2.3 (0.9–2.3) | 0.912 | 1.6 (0.9–2.2) | 0.856 | 6.8 (5.7–8.0) | 0.908 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauria, F.; Iacomino, G.; Russo, P.; Venezia, A.; Marena, P.; Ahrens, W.; De Henauw, S.; Eiben, G.; Foraita, R.; Hebestreit, A.; et al. Circulating miRNAs Are Associated with Inflammation Biomarkers in Children with Overweight and Obesity: Results of the I.Family Study. Genes 2022, 13, 632. https://doi.org/10.3390/genes13040632
Lauria F, Iacomino G, Russo P, Venezia A, Marena P, Ahrens W, De Henauw S, Eiben G, Foraita R, Hebestreit A, et al. Circulating miRNAs Are Associated with Inflammation Biomarkers in Children with Overweight and Obesity: Results of the I.Family Study. Genes. 2022; 13(4):632. https://doi.org/10.3390/genes13040632
Chicago/Turabian StyleLauria, Fabio, Giuseppe Iacomino, Paola Russo, Antonella Venezia, Pasquale Marena, Wolfgang Ahrens, Stefaan De Henauw, Gabriele Eiben, Ronja Foraita, Antje Hebestreit, and et al. 2022. "Circulating miRNAs Are Associated with Inflammation Biomarkers in Children with Overweight and Obesity: Results of the I.Family Study" Genes 13, no. 4: 632. https://doi.org/10.3390/genes13040632
APA StyleLauria, F., Iacomino, G., Russo, P., Venezia, A., Marena, P., Ahrens, W., De Henauw, S., Eiben, G., Foraita, R., Hebestreit, A., Kourides, Y., Molnár, D., Moreno, L. A., Veidebaum, T., & Siani, A., on behalf of the I.Family Consortium. (2022). Circulating miRNAs Are Associated with Inflammation Biomarkers in Children with Overweight and Obesity: Results of the I.Family Study. Genes, 13(4), 632. https://doi.org/10.3390/genes13040632