Mitogenomic and Phylogenetic Analysis of the Entomopathogenic Fungus Ophiocordyceps lanpingensis and Comparative Analysis with Other Ophiocordyceps Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extraction
2.2. Genome Library, Sequencing, Assembly, and Annotation
2.3. Annotation of the Mitogenome
2.4. Mitogenomic Comparison of Six Ophiocordyceps Species
2.5. Phylogenetic Analysis
3. Results
3.1. Morphological Characteristics of O. lanpingensis
3.2. Mitogenomic Characteristics of O. lanpingensis
3.3. Codon Usage in the Mitogenome of O. lanpingensis
3.4. Transfer RNAs and Ribosomal RNAs
3.5. Mitogenomic Comparison of Six Ophiocordyceps Species
3.6. Codon Usage Analysis of the Mitogenomes from Six Ophiocordyceps Species
3.7. Gene Arrangement Analysis of Six Ophiocordyceps Species
3.8. Synteny Analysis among Six Ophiocordyceps Species
3.9. Phylogenetic Analysis of Six Ophiocordyceps Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamilton, G. The hidden risks for ‘three-person’ babies. Nat. News 2015, 525, 444. [Google Scholar]
- Chen, X.J.; Butow, R.A. The organization and inheritance of the mitochondrial genome. Nat. Rev. Genet. 2005, 6, 815–825. [Google Scholar]
- Chen, S.; Wang, Y.; Zhu, K.; Yu, H. Mitogenomics, phylogeny and morphology reveal Ophiocordyceps pingbianensis sp. nov., an entomopathogenic fungus from China. Life 2021, 11, 686. [Google Scholar]
- Abuduaini, A.; Wang, Y.-B.; Zhou, H.-Y.; Kang, R.-P.; Ding, M.-L.; Jiang, Y.; Suo, F.-Y.; Huang, L.-D. The complete mitochondrial genome of Ophiocordyceps gracilis and its comparison with related species. IMA Fungus 2021, 12, 1–14. [Google Scholar]
- Wang, L.; Zhang, S.; Li, J.-H.; Zhang, Y.-J. Mitochondrial genome, comparative analysis and evolutionary insights into the entomopathogenic fungus Hirsutella thompsonii. Environ. Microbiol. 2018, 20, 3393–3405. [Google Scholar]
- Bibi, S.; Wang, Y.-B.; Tang, D.-X.; Kamal, M.A.; Yu, H. Prospects for Discovering the Secondary Metabolites of Cordyceps Sensu Lato by the Integrated Strategy. Med. Chem. (Los Angeles) 2021, 17, 97–120. [Google Scholar]
- Bibi, S.; Hasan, M.M.; Wang, Y.-B.; Papadakos, S.P.; Yu, H. Cordycepin as a Promising Inhibitor of SARS-CoV-2 RNA Dependent RNA Polymerase (RdRp). Curr. Med. Chem. 2022, 29, 152–162. [Google Scholar] [CrossRef]
- Zhao, Y.-Y.; Li, H.-T.; Feng, Y.-L.; Bai, X.; Lin, R.-C. Urinary metabonomic study of the surface layer of Poria cocos as an effective treatment for chronic renal injury in rats. J. Ethnopharmacol. 2013, 148, 403–410. [Google Scholar]
- Sung, G.H.; Hywel Jones, N.L.; Sung, J.M.; Luangsaard, J.J.; Shrestha, B.; Spatafora, J.W. Phylogenetic classification of Cordyceps and the Clavicipitaceous fungi. Stud. Mycol. 2007, 57, 5–59. [Google Scholar]
- Zhu, J.-S.; Halpern, G.M.; Jones, K. The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis Part II. J. Altern. Complement. Med. 1998, 4, 429–457. [Google Scholar]
- Chiu, C.-H.; Chyau, C.-C.; Chen, C.-C.; Lin, C.-H.; Cheng, C.-H.; Mong, M.-C. Polysaccharide extract of Cordyceps sobolifera attenuates renal injury in endotoxemic rats. Food Chem. Toxicol. 2014, 69, 281–288. [Google Scholar]
- Zhang, Y.; Du, Y.; Yu, H.; Zhou, Y.; Ge, F. Protective effects of ophiocordyceps lanpingensis on glycerol-induced acute renal failure in mice. J. Immunol. Res. 2017, 2017, 2012585. [Google Scholar]
- Kaushik, V.; Singh, A.; Arya, A.; Sindhu, S.C.; Sindhu, A.; Singh, A. Enhanced production of cordycepin in Ophiocordyceps sinensis using growth supplements under submerged conditions. Biotechnol. Rep. 2020, 28, e00557. [Google Scholar]
- Chen, Z.-H.; Dai, Y.-D.; Yu, H.; Yang, K.; Yang, Z.-L.; Yuan, F.; Zeng, W.-B. Systematic analyses of Ophiocordyceps lanpingensis sp. nov., a new species of Ophiocordyceps in China. Microbiol. Res. 2013, 168, 525–532. [Google Scholar]
- Wang, Y.-B.; Wang, Y.; Fan, Q.; Duan, D.-E.; Zhang, G.-D.; Dai, R.-Q.; Dai, Y.-D.; Zeng, W.-B.; Chen, Z.-H.; Li, D.-D.; et al. Multigene phylogeny of the family Cordycipitaceae (Hypocreales): New taxa and the new systematic position of the Chinese cordycipitoid fungus Paecilomyces hepiali. Fungal Divers. 2020, 103, 1–46. [Google Scholar]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar]
- Hahn, C.; Bachmann, L.; Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—A baiting and iterative mapping approach. Nucleic Acids Res. 2013, 41, e129. [Google Scholar]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar]
- Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar]
- Chan, P.P.; Lowe, T.M. tRNAscan-SE: Searching for tRNA genes in genomic sequences. In Gene Prediction; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–14. [Google Scholar]
- Lohse, M.; Drechsel, O.; Kahlau, S.; Bock, R. OrganellarGenomeDRAW—A suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013, 41, W575–W581. [Google Scholar]
- Stothard, P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 2000, 28, 1102–1104. [Google Scholar]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar]
- Chen, Z.; Xu, L.; Yu, H.; Zeng, W.; Dai, Y.; Wang, Y. Phylogeny and active ingredients of artificial Ophiocordyceps lanpingensis ascomata. AIP Conf. Proc. 2018, 1956, 20011. [Google Scholar]
- Yuan, X.-L.; Cao, M.; Li, P.-P.; Cheng, S.; Liu, X.-M.; Du, Y.-M.; Zhang, Z.-F.; Shen, G.-M.; Zhang, P. The mitochondrial genome of Arthrinium arundinis and its phylogenetic position within Sordariomycetes. Int. J. Biol. Macromol. 2019, 121, 956–963. [Google Scholar]
- Chen, Z.; Nie, H.; Wang, Y.; Pei, H.; Li, S.; Zhang, L.; Hua, J. Rapid evolutionary divergence of diploid and allotetraploid Gossypium mitochondrial genomes. BMC Genom. 2017, 18, 1–15. [Google Scholar]
- Lant, J.T.; Berg, M.D.; Sze, D.H.W.; Hoffman, K.S.; Akinpelu, I.C.; Turk, M.A.; Heinemann, I.U.; Duennwald, M.L.; Brandl, C.J.; O’Donoghue, P. Visualizing tRNA-dependent mistranslation in human cells. RNA Biol. 2018, 15, 567–575. [Google Scholar]
- Wang, T.; Zhang, S.; Pei, T.; Yu, Z.; Liu, J. Tick mitochondrial genomes: Structural characteristics and phylogenetic implications. Parasites Vectors 2019, 12, 1–15. [Google Scholar]
- Li, Q.; Wang, Q.; Jin, X.; Chen, Z.; Xiong, C.; Li, P.; Zhao, J.; Huang, W. The first complete mitochondrial genome from the family Hygrophoraceae (Hygrophorus russula) by next-generation sequencing and phylogenetic implications. Int. J. Biol. Macromol. 2019, 122, 1313–1320. [Google Scholar]
- Chen, C.; Li, Q.; Fu, R.; Wang, J.; Xiong, C.; Fan, Z.; Hu, R.; Zhang, H.; Lu, D. Characterization of the mitochondrial genome of the pathogenic fungus Scytalidium auriculariicola (Leotiomycetes) and insights into its phylogenetics. Sci. Rep. 2019, 9, 1–12. [Google Scholar]
- Li, Y.; Hu, X.-D.; Yang, R.-H.; Hsiang, T.; Wang, K.; Liang, D.-Q.; Liang, F.; Cao, D.-M.; Zhou, F.; Wen, G.; et al. Complete mitochondrial genome of the medicinal fungus Ophiocordyceps sinensis. Sci. Rep. 2015, 5, 1–11. [Google Scholar]
- Saccone, C.; Gissi, C.; Reyes, A.; Larizza, A.; Sbisà, E.; Pesole, G. Mitochondrial DNA in metazoa: Degree of freedom in a frozen event. Gene 2002, 286, 3–12. [Google Scholar]
- Kang, X.; Hu, L.; Shen, P.; Li, R.; Liu, D. SMRT sequencing revealed mitogenome characteristics and mitogenome-wide DNA modification pattern in Ophiocordyceps sinensis. Front. Microbiol. 2017, 8, 1422. [Google Scholar]
Genome Characteristics | O. lanpingensis |
---|---|
Genome size (base pairs) | 117,565 |
G + C contents (%) | 31.1 |
Protein coding genes (PCGs) | 24 |
G + C contents of PCGs (%) | 23.9 |
Structural proteins coding exons (%) | 213 |
No rRNA/tRNAs (%) | 2/23 |
G + C content of RNA genes (%) | 35.66 |
rRNA + tRNA (%) | 21.45 |
Coding regions (%) | 82/47 |
Introns | 35 |
Names of Genes | Number of Identified Genes in O. lanpingensis |
---|---|
Complex I/NADH dehydrogenase | Four genes: nad1, nad4, nad5, and nad6 |
Complex III/ubiquinol cytochrome c reductase | One gene: cob |
Complex IV/cytochrome oxidase | Three genes: cox1, cox2, and cox3 |
ATP synthase | Three genes: atp6, atp8, and atp9 |
Ribosomal RNA (rRNA) | Two genes: rns and rnl |
Transfer RNA (tRNA) | Twenty-five genes: trnT(aca), trnE(gaa), trnM(atg), trnM(atg), trnL2(tta), trnF(ttc), trnK(aaa), trnA(gca), trnL1(cta), trnQ(caa), trnH(cac), trnM(atg), trnR(cgt), trnC(tgc), trnR(aga), trnY(tac), trnD(gac), trnS1(agc), trnN(aac), trnG(gga), trnV(gta), trnI(atc), trnS2(tca), trnW(tga), and trnP(cca). |
Gene | Start | Stop | Strand | Length (AA) |
---|---|---|---|---|
rrnL | 4464 | 5870 | + | 1407 |
rrnL | 7501 | 8872 | + | 1372 |
trnT(aca) | 9124 | 9195 | + | 72 |
trnE(gaa) | 9873 | 9945 | + | 73 |
trnM(atg) | 9949 | 10020 | + | 72 |
trnM(atg) | 10023 | 10095 | + | 73 |
trnL2(tta) | 10096 | 10178 | + | 83 |
trnF(ttc) | 13739 | 13811 | + | 73 |
trnK(aaa) | 14232 | 14304 | + | 73 |
trnA(gca) | 14799 | 14871 | + | 73 |
trnL1(cta) | 15315 | 15398 | + | 84 |
trnQ(caa) | 15666 | 15739 | + | 74 |
trnH(cac) | 15752 | 15826 | + | 75 |
trnM(atg) | 16265 | 16336 | + | 72 |
nad2-0 | 26126 | 26551 | + | 426 |
nad3 | 26921 | 27259 | + | 339 |
atp9 | 27494 | 27676 | + | 183 |
cox2-0 | 30643 | 31092 | + | 450 |
cox2-1 | 33143 | 33214 | + | 72 |
trnR(cgt) | 33266 | 33336 | + | 71 |
nad4l | 33443 | 33655 | + | 213 |
nad5-0_a | 36823 | 37263 | + | 441 |
nad6-1_b | 37459 | 37746 | − | 288 |
nad6-1_a | 37740 | 37871 | − | 132 |
nad5-0_b | 38378 | 38767 | + | 390 |
nad5-1 | 41566 | 41889 | − | 324 |
cob-0_a | 43042 | 43374 | + | 333 |
cob-1 | 46828 | 47022 | + | 195 |
cob-0_b | 54216 | 54545 | + | 330 |
cob-0_c | 56451 | 56741 | + | 291 |
trnC(tgc) | 57176 | 57245 | + | 70 |
cox1-0_a | 62859 | 63032 | + | 174 |
cox1-0_b | 64480 | 64848 | + | 369 |
cox1-1 | 70853 | 71023 | + | 171 |
cox1-0_c | 72504 | 72662 | + | 159 |
cox1-0_d | 81521 | 81787 | + | 267 |
trnR(aga) | 81988 | 82058 | + | 71 |
atp8-1 | 87591 | 87728 | + | 138 |
nad1_a | 87995 | 88450 | + | 456 |
nad1_b | 89767 | 90180 | + | 414 |
nad4 | 90966 | 92060 | + | 1095 |
atp8-0 | 93973 | 94182 | + | 210 |
atp6-1 | 94244 | 94585 | + | 342 |
atp6-0 | 95902 | 96354 | + | 453 |
rrnS | 98327 | 99196 | + | 870 |
trnY(tac) | 99649 | 99732 | + | 84 |
trnD(gac) | 99755 | 99827 | + | 73 |
trnS1(agc) | 100202 | 100282 | + | 81 |
trnN(aac) | 100807 | 100878 | + | 72 |
cox3-1 | 104995 | 105120 | + | 126 |
cox3-0_a | 106697 | 106903 | + | 207 |
cox3-0_b | 108531 | 108788 | + | 258 |
trnG(gga) | 110429 | 110499 | + | 71 |
nad6-0_a | 110651 | 110818 | + | 168 |
nad6-0_b | 112849 | 113208 | + | 360 |
trnV(gta) | 115891 | 115963 | + | 73 |
trnI(atc) | 116459 | 116530 | + | 72 |
trnS2(tca) | 116828 | 116913 | + | 86 |
trnW(tga) | 117024 | 117095 | + | 72 |
trnP(cca) | 117410 | 117482 | + | 73 |
Amino Acid | Codon | Number | Frequency of CodonUsage/1000 | Fraction (%) |
---|---|---|---|---|
Ala | GCG | 200 | 5.1 | 0.15 |
Ala | GCA | 385 | 9.82 | 0.28 |
Ala | GCU | 581 | 14.83 | 0.43 |
Ala | GCC | 189 | 4.82 | 0.14 |
Cys | UGU | 538 | 13.73 | 0.61 |
Cys | UGC | 347 | 8.86 | 0.39 |
Asp | GAU | 717 | 18.3 | 0.71 |
Asp | GAC | 286 | 7.3 | 0.29 |
Glu | GAG | 410 | 10.46 | 0.32 |
Glu | GAA | 889 | 22.69 | 0.68 |
Phe | UUU | 1689 | 43.1 | 0.76 |
Phe | UUC | 538 | 13.73 | 0.24 |
Gly | GGG | 294 | 7.5 | 0.22 |
Gly | GGA | 409 | 10.44 | 0.3 |
Gly | GGU | 487 | 12.43 | 0.36 |
Gly | GGC | 171 | 4.36 | 0.13 |
His | CAU | 474 | 12.1 | 0.66 |
His | CAC | 248 | 6.33 | 0.34 |
Ile | AUA | 1675 | 42.74 | 0.46 |
Ile | AUU | 1444 | 36.85 | 0.39 |
Ile | AUC | 543 | 13.86 | 0.15 |
Lys | AAG | 890 | 22.71 | 0.28 |
Lys | AAA | 2334 | 59.56 | 0.72 |
Leu | UUG | 593 | 15.13 | 0.14 |
Leu | UUA | 1635 | 41.72 | 0.39 |
Leu | CUG | 313 | 7.99 | 0.07 |
Leu | CUA | 738 | 18.83 | 0.18 |
Leu | CUU | 699 | 17.84 | 0.17 |
Leu | CUC | 239 | 6.1 | 0.06 |
Met | AUG | 676 | 17.25 | 1 |
Asn | AAU | 1620 | 41.34 | 0.72 |
Asn | AAC | 633 | 16.15 | 0.28 |
Pro | CCG | 120 | 3.06 | 0.12 |
Pro | CCA | 283 | 7.22 | 0.27 |
Pro | CCU | 430 | 10.97 | 0.42 |
Pro | CCC | 199 | 5.08 | 0.19 |
Gln | CAG | 312 | 7.96 | 0.32 |
Gln | CAA | 666 | 17 | 0.68 |
Arg | AGG | 518 | 13.22 | 0.23 |
Arg | AGA | 957 | 24.42 | 0.43 |
Arg | CGG | 147 | 3.75 | 0.07 |
Arg | CGA | 204 | 5.21 | 0.09 |
Arg | CGU | 216 | 5.51 | 0.1 |
Arg | CGC | 173 | 4.41 | 0.08 |
Ser | AGU | 717 | 18.3 | 0.24 |
Ser | AGC | 508 | 12.96 | 0.17 |
Ser | UCG | 197 | 5.03 | 0.07 |
Ser | UCA | 570 | 14.55 | 0.19 |
Ser | UCU | 661 | 16.87 | 0.23 |
Ser | UCC | 274 | 6.99 | 0.09 |
Thr | ACG | 200 | 5.1 | 0.11 |
Thr | ACA | 619 | 15.8 | 0.35 |
Thr | ACU | 650 | 16.59 | 0.37 |
Thr | ACC | 303 | 7.73 | 0.17 |
Val | GUG | 280 | 7.15 | 0.16 |
Val | GUA | 752 | 19.19 | 0.42 |
Val | GUU | 561 | 14.32 | 0.31 |
Val | GUC | 200 | 5.1 | 0.11 |
Trp | UGG | 353 | 9.01 | 0.35 |
Trp | UGA | 661 | 16.87 | 0.65 |
Tyr | UAU | 1699 | 43.36 | 0.74 |
Tyr | UAC | 609 | 15.54 | 0.26 |
End | UAG | 759 | 19.37 | 0.34 |
End | UAA | 1504 | 38.38 | 0.66 |
AA | Anticodon | Number |
---|---|---|
Thr | TGT | One |
Glu | TTC | One |
Met | CAT | Three |
Phe | GAA | One |
Lys | TTT | One |
Ala | TGC | One |
Leu | TAG | One |
His | GTG | One |
Arg | ACG | One |
Arg | TCT | One |
Asp | GTC | One |
Asn | GTT | One |
Gly | TCC | One |
Val | TAC | One |
Ile | GAT | One |
Ser | TGA | One |
Sec | TCA | One |
Pro | TGG | One |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bibi, S.; Wang, D.; Wang, Y.; Mustafa, G.; Yu, H. Mitogenomic and Phylogenetic Analysis of the Entomopathogenic Fungus Ophiocordyceps lanpingensis and Comparative Analysis with Other Ophiocordyceps Species. Genes 2023, 14, 710. https://doi.org/10.3390/genes14030710
Bibi S, Wang D, Wang Y, Mustafa G, Yu H. Mitogenomic and Phylogenetic Analysis of the Entomopathogenic Fungus Ophiocordyceps lanpingensis and Comparative Analysis with Other Ophiocordyceps Species. Genes. 2023; 14(3):710. https://doi.org/10.3390/genes14030710
Chicago/Turabian StyleBibi, Shabana, Dong Wang, Yuanbing Wang, Ghazala Mustafa, and Hong Yu. 2023. "Mitogenomic and Phylogenetic Analysis of the Entomopathogenic Fungus Ophiocordyceps lanpingensis and Comparative Analysis with Other Ophiocordyceps Species" Genes 14, no. 3: 710. https://doi.org/10.3390/genes14030710
APA StyleBibi, S., Wang, D., Wang, Y., Mustafa, G., & Yu, H. (2023). Mitogenomic and Phylogenetic Analysis of the Entomopathogenic Fungus Ophiocordyceps lanpingensis and Comparative Analysis with Other Ophiocordyceps Species. Genes, 14(3), 710. https://doi.org/10.3390/genes14030710