On the Future Perspectives of Some Medicinal Plants within Lamiaceae Botanic Family Regarding Their Comprehensive Properties and Resistance against Biotic and Abiotic Stresses
Abstract
:1. Introduction
2. Methods
3. Discussion
3.1. Aromatic Plant Composition and Accessions Availability
3.2. O. basilicum L. Row Plant and Essential Oil Composition and Accession Availability
3.3. T. vulgaris L. Composition and Accession Availability
3.4. S. hortensis L. Composition and Accession Availability
3.5. Aromatic Plant Biological Activities and Stress Resistance
3.6. O. basilicum L.—Biological Activities and Stress Resistance
3.7. T. vulgaris L.—Biological Activities and Stress Resistance
3.8. S. hortensis L.—Biological Activities and Stress Resistance
3.9. Basil, Thyme, and Summer Savory Morphological Response to Different Biotic and Abiotic Stressors
3.10. Breeding Perspectives Regarding the Adaptability to the Main Abiotic Stressors
3.11. Breeding Perspectives Regarding the Adaptability to the Main Biotic Stressors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dragland, S.; Senoo, H.; Wake, K.; Holte, K.; Blomhoff, R. Several Culinary and Medicinal Herbs Are Important Sources of Dietary Antioxidants. J. Nutr. 2003, 133, 1286–1290. [Google Scholar] [CrossRef]
- Danesi, F.; Elementi, S.; Neri, R.; Maranesi, M.; D’antuono, L.F.; Bordoni, A. Effect of Cultivar on the Protection of Cardiomyocytes from Oxidative Stress by Essential Oils and Aqueous Extracts of Basil (Ocimum basilicum L.). J. Agric. Food Chem. 2008, 56, 9911–9917. [Google Scholar] [CrossRef]
- Ahmad, P.; Prasad, M.N.V. (Eds.) Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Farsaraei, S.; Moghaddam, M.; Pirbalouti, A.G. Changes in growth and essential oil composition of sweet basil in response of salinity stress and superabsorbents application. Sci. Hortic. 2020, 271, 109465. [Google Scholar] [CrossRef]
- Wang, W.-X.; Vinocur, B.; Altman, A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 2003, 218, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.F.M.; Bondok, A.M.; Al-Senosy, N.K.; Younis, R.A.A. Stimulation Some of Defense Mechanisms in Tomato Plants under Water Deficit and Tobacco mosaic virus (TMV). World J. Agric. Sci. 2015, 11, 289–302. [Google Scholar]
- Farag, R.E.; Abdelbar, O.H.; Shehata, S.A. Impact of Drought Stress on Some Growth, Biochemical and Anatomical Parameters of Thymus vulgaris L. Arab. Univ. J. Agric. Sci. 2019, 27, 37–50. [Google Scholar] [CrossRef]
- Kiczorowska, B.; Klebaniuk, R.; Bakowski, M.; Al-Yasiry, M.H. Culinary Herbs-the Nutritive Value and Content of Minerals. J. Elem. 2015, 20, 599–608. [Google Scholar] [CrossRef]
- Gebrehiwot, H.; Bachetti, R.; Dekebo, A. Chemical composition and antimicrobial activities of leaves of sweet basil (Ocimum basilicum L.). Herb. Int. J. Basic Clin. Pharmacol. 2015, 4, 869–875. [Google Scholar] [CrossRef]
- Politeo, O.; Jukic, M.; Milos, M. Chemical composition and antioxidant capacity of free volatile aglycones from basil (Ocimum basilicum L.) compared with its essential oil. Food Chem. 2007, 101, 379–385. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Sherazi, S.T.H.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef]
- Guillén, M.; Manzanos, M. Study of the composition of the different parts of a Spanish Thymus vulgaris L. plant. Food Chem. 1998, 63, 373–383. [Google Scholar] [CrossRef]
- Borugă, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.T.; Horhat, F.G. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life 2014, 7, 56–60. [Google Scholar] [PubMed]
- Ravindran, P.N.; Pillai, G.S.; Divakaran, M. Other Herbs and Spices: Mango Ginger to Wasabi. In Handbook of Herbs and Spices; Peter, K.V., Ed.; Woodhead Publishing: Cambridge, UK, 2012; Volume 2, pp. 557–582. [Google Scholar]
- Fierascu, I.; Dinu-Pirvu, C.E.; Fierascu, R.C.; Velescu, B.S.; Anuta, V.; Ortan, A.; Jinga, V. Phytochemical Profile and Biological Activities of Satureja hortensis L.: A Review of the Last Decade. Molecules 2018, 23, 2458. [Google Scholar] [CrossRef] [PubMed]
- Skubij, N.; Dzida, K.; Jarosz, Z.; Pitura, K.; Jaroszuk-Sierocińska, M. Nutritional value of savory herb (Satureja hortensis L.) and plant response to variable mineral nutrition conditions in various phases of development. Plants 2020, 9, 706. [Google Scholar] [CrossRef] [PubMed]
- Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Shahlari, M.; Sohraby, M. Summer Savory: From the Selection of Traditional Applications to the Novel Effect in Relief, Prevention, and Treatment of a Number of Serious Illnesses Such as Diabetes, Cardiovascular Disease, Alzheimer’s Disease, and Cancer. J. Tradit. Complement. Med. 2014, 4, 140–144. [Google Scholar] [CrossRef]
- Tepe, B.; Cilkiz, M. A Pharmacological and Phytochemical Overview onSatureja. Pharm. Biol. 2015, 54, 375–412. [Google Scholar] [CrossRef]
- Mihajilov-Krstev, T.; Radnović, D.; Kitić, D.; Zlatković, B.; Ristić, M.; Branković, S. Chemical Composition and Antimicrobial Activity of Satureja hortensis L. Essential Oil. Open Life Sci. 2009, 4, 411–416. [Google Scholar] [CrossRef]
- Mahboubi, M.; Kazempour, N. Chemical composition and antimicrobial activity of Satureja hortensis and Trachyspermum copticum essential oil. Iran. J. Microbiol. 2011, 3, 194–200. [Google Scholar]
- Farzaneh, M.; Kiani, H.; Sharifi, R.; Reisi, M.; Hadian, J. Chemical Composition and Antifungal Effects of Three Species of Satureja (S. Hortensis, S. Spicigera, and S. Khuzistanica) Essential Oils on the Main Pathogens of Strawberry Fruit. Postharvest Biol. Technol. 2015, 109, 145–151. [Google Scholar] [CrossRef]
- Saeidnia, S.; Gohari, A.R.; Manayi, A.; Kourepaz-Mahmoodabadi, M. Satureja: Ethnomedicine, Phytochemical Diversity and Pharmacological Activities; Springer: Berlin/Heidelberg, Germany, 2016; pp. 31–40. [Google Scholar]
- Makri, O.; Kintzios, S. Ocimum sp. (Basil): Botany, Cultivation, Pharmaceutical Properties, and Biotechnology. J. Herbs Spices Med. Plants 2008, 13, 123–150. [Google Scholar] [CrossRef]
- Adham, A.N. Comparative extraction methods, phytochemical constituents, fluorescence analysis and HPLC validation of rosmarinic acid content in Mentha piperita, Mentha longifolia and Ocimum basilicum. J. Pharmacogn. Phytochem. 2015, 3, 130–139. [Google Scholar]
- Shirazi, M.T.; Gholami, H.; Kavoosi, G.; Rowshan, V.; Tafsiry, A. Chemical composition, antioxidant, antimicrobial and cytotoxic activities of T agetes minuta and O cimum basilicum essential oils. Food Sci. Nutr. 2014, 2, 146–155. [Google Scholar] [CrossRef]
- Koseki, P.M.; Villavicencio, A.L.C.H.; Brito, M.S.; Nahme, L.C.; Sebastião, K.I.; Rela, P.R.; de Almeida-Muradian, L.B.; Mancini-Filho, J.; Freitas, P.C. Effects of irradiation in medicinal and eatable herbs. Radiat. Phys. Chem. 2002, 63, 681–684. [Google Scholar] [CrossRef]
- Hakkim, F.L.; Shankar, C.G.; Girija, S. Chemical Composition and Antioxidant Property of Holy Basil (Ocimum sanctum L.) Leaves, Stems, and Inflorescence and Their in Vitro Callus Cultures. J. Agric. Food Chem. 2007, 55, 9109–9117. [Google Scholar] [CrossRef]
- McClatchey, W. The ethnopharmacopoeia of Rotuma. J. Ethnopharmacol. 1996, 50, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Stahl-Biskup, E.; Venskutonis, R.P. Thyme. In Handbook of Herbs and Spices; Woodhead Publishing: Sawston, UK, 2012; pp. 499–525. [Google Scholar]
- Thompson, J.; Charpentier, A.; Bouguet, G.; Charmasson, F.; Roset, S.; Buatois, B.; Vernet, P.; Gouyon, P.-H. Evolution of a Genetic Polymorphism with Climate Change in a Mediterranean Landscape. Proc. Natl. Acad. Sci. USA 2013, 110, 2893–2897. [Google Scholar] [CrossRef]
- Stahl-Biskup, E.; Sáez, F. Thyme: The Genus Thymus; Taylor & Francis: London, UK, 2002; ISBN 0-415-28488-0. [Google Scholar]
- Rowland, L.S.; Smith, H.K.; Taylor, G. The potential to improve culinary herb crop quality with deficit irrigation. Sci. Hortic. 2018, 242, 44–50. [Google Scholar] [CrossRef]
- Komaki, A.; Hoseini, F.; Shahidi, S.; Baharlouei, N. Study of the effect of extract of Thymus Vulgaris on anxiety in male rats. J. Tradit. Complement. Med. 2016, 6, 257–261. [Google Scholar] [CrossRef]
- Dauqan, E.M.A.; Abdullah, A. Medicinal and Functional Values of Thyme (Thymus vulgaris L.) Herb. J. Appl. Biol. Biotechnol. 2017, 5, 17–22. [Google Scholar] [CrossRef]
- Fachini-Queiroz, F.C.; Kummer, R.; Estevão-Silva, C.F.; Carvalho, M.D.D.B.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K.N. Effects of Thymol and Carvacrol, Constituents of Thymus vulgaris L. Essential Oil, on the Inflammatory Response. Evid. Based Complement. Altern. Med. 2012, 2012, 657026. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, M.; Glamočlija, J.; Ferreira, I.C.F.R.; Calhelha, R.C.; Fernandes, Â.; Marković, T.; Marković, D.; Giweli, A.; Soković, M. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. Essential Oils. Ind. Crops Prod. 2014, 52, 183–190. [Google Scholar] [CrossRef]
- Gontaru, L.; Plander, S.; Simándi, B. Investigation of Satureja hortensis L. as a possible source of natural antioxidants. Hung. J. Ind. Chem. 2008, 1-2, 36. [Google Scholar] [CrossRef]
- Jadczak, D. Effect of sowing date on the quantity and quality of the yield of summer savory (Satureja hortensis L.) grown for a bunch harvest. Herba Pol. 2007, 53, 22–27. [Google Scholar]
- Hadian, J.; Ebrahimi, S.N.; Salehi, P. Variability of morphological and phytochemical characteristics among Satureja hortensis L. Accessions of Iran. Ind. Crops Prod. 2010, 32, 62–69. [Google Scholar] [CrossRef]
- Hajhashemi, V.; Zolfaghari, B.; Yousefi, A. Antinociceptive and Anti-Inflammatory Activities of Satureja hortensis Seed Essential Oil, Hydroalcoholic and Polyphenolic Extracts in Animal Models. Med. Princ. Pract. 2011, 21, 178–182. [Google Scholar] [CrossRef]
- Güllüce, M.; Sökmen, M.; Daferera, D.; Aǧar, G.; Özkan, H.; Kartal, N.; Polissiou, M.; Sökmen, A.; Şahin, F. In Vitro Antibacterial, Antifungal, and Antioxidant Activities of the Essential Oil and Methanol Extracts of Herbal Parts and Callus Cultures of Satureja hortensis L. J. Agric. Food Chem. 2003, 51, 3958–3965. [Google Scholar] [CrossRef]
- Svoboda, K. Investigation of volatile oil glands of Satureja hortensis L. (summer savory) and phytochemical comparison of different varieties. Int. J. Aromather. 2003, 13, 196–202. [Google Scholar] [CrossRef]
- Mohammadi, H.; Dashi, R.; Farzaneh, M.; Parviz, L.; Hashempour, H. Effects of beneficial root pseudomonas on morphological, physiological, and phytochemical characteristics of Satureja hortensis (Lamiaceae) under water stress. Braz. J. Bot. 2016, 40, 41–48. [Google Scholar] [CrossRef]
- Cappellari, L.D.R.; Santoro, M.V.; Nievas, F.; Giordano, W.; Banchio, E. Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Appl. Soil Ecol. 2013, 70, 16–22. [Google Scholar] [CrossRef]
- Farzaneh, V.; Carvalho, I.S. A review of the health benefit potentials of herbal plant infusions and their mechanism of actions. Ind. Crop. Prod. 2015, 65, 247–258. [Google Scholar] [CrossRef]
- Heywood, V.H. The Conservation of Genetic and Chemical Diversity in Medicinal and Aromatic Plants. Biodiversity 2002, 13–22. [Google Scholar] [CrossRef]
- Saito, K.; Matsuda, F. Metabolomics for Functional Genomics, Systems Biology, and Biotechnology. Annu. Rev. Plant Biol. 2010, 61, 463–489. [Google Scholar] [CrossRef]
- Flowers, T.J.; Muscolo, A. Introduction to the Special Issue: Halophytes in a changing world. AoB Plants 2015, 7, plv020. [Google Scholar] [CrossRef]
- Estaji, A.; Roosta, H.R.; Rezaei, S.A.; Hosseini, S.S.; Niknam, F. Morphological, physiological and phytochemical response of different Satureja hortensis L. accessions to salinity in a greenhouse experiment. J. Appl. Res. Med. Aromat. Plants 2018, 10, 25–33. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Kokoska, L.; Kloucek, P.; Leuner, O.; Novy, P. Plant-Derived Products as Antibacterial and Antifungal Agents in Human Health Care. Curr. Med. Chem. 2019, 26, 5501–5541. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential Oils: Sources of Antimicrobials and Food Preservatives. Front. Microbiol. 2017, 7, 2161. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Moghaddam, M.; Pirbalouti, A.G.; Mehdizadeh, L.; Pirmoradi, M.R. Changes in composition and essential oil yield of Ocimum ciliatum at different phenological stages. Eur. Food Res. Technol. 2014, 240, 199–204. [Google Scholar] [CrossRef]
- Pirbalouti, A.G.; Malekpoor, F.; Salimi, A.; Golparvar, A. Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Sci. Hortic. 2017, 217, 114–122. [Google Scholar] [CrossRef]
- Riaz, U.; Kharal, M.A.; Murtaza, G.; Zaman, Q.U.; Javaid, S.; Malik, H.A.; Aziz, H.; Abbas, Z. Prospective Roles and Mechanisms of Caffeic Acid in Counter Plant Stress: A Mini Review. Pak. J. Agric. Res. 2018, 32, 8–19. [Google Scholar] [CrossRef]
- Zare, M.; Ganjeali, A.; Lahouti, M. Rosmarinic and caffeic acids contents in Basil (Ocimum basilicum L.) are altered by different levels of phosphorus and mycorrhiza inoculation under drought stress. Acta Physiol. Plant. 2021, 43, 26. [Google Scholar] [CrossRef]
- Meot-Duros, L.; Magné, C. Antioxidant activity and phenol content of Crithmum maritimum L. Leaves. Plant Physiol. Biochem. 2009, 47, 37–41. [Google Scholar] [CrossRef]
- Scagel, C.F.; Lee, J. Phenolic Composition of Basil Plants Is Differentially Altered by Plant Nutrient Status and Inoculation with Mycorrhizal Fungi. Hortscience 2012, 47, 660–671. [Google Scholar] [CrossRef]
- Kwee, E.M.; Niemeyer, E.D. Variations in phenolic composition and antioxidant properties among 15 basil (Ocimum basilicum L.) cultivars. Food Chem. 2011, 128, 1044–1050. [Google Scholar] [CrossRef]
- Srivastava, S.; Conlan, X.A.; Adholeya, A.; Cahill, D.M. Elite hairy roots of Ocimum basilicum as a new source of rosmarinic acid and antioxidants. Plant Cell Tissue Organ Cult. (PCTOC) 2016, 126, 19–32. [Google Scholar] [CrossRef]
- Kim, Y.B.; Kim, J.K.; Uddin, M.R.; Xu, H.; Park, W.T.; Tuan, P.A.; Li, X.; Chung, E.; Lee, J.-H.; Park, S.U. Metabolomics Analysis and Biosynthesis of Rosmarinic Acid in Agastache rugosa Kuntze Treated with Methyl Jasmonate. PLoS ONE 2013, 8, e64199. [Google Scholar] [CrossRef]
- Hazzoumi, Z.; Moustakime, Y.; Elharchli, E.H.; Joutei, K.A. Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L.). Chem. Biol. Technol. Agric. 2015, 2, 10. [Google Scholar] [CrossRef]
- Delavari, P.M.; Baghizadeh, A.; Enteshari, S.H.; Kalantari, K.M.; Yazdanpanah, A.; Mousavi, E.A. The effects of salicylic acid on some of biochemical and morphological characteristic of Ocimum basilicucm under salinity stress. Aust. J. Basic Appl. Sci. 2010, 4, 4832–4845. [Google Scholar]
- Heidari, M. Effects of salinity stress on growth, chlorophyll content and osmotic components of two basil (Ocimum basilicum L.) genotypes. Afr. J. Biotechnol. 2011, 11, 379–384. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef]
- Tardieu, F.; Reymond, M.; Hamard, P.; Granier, C.; Muller, B. Spatial distributions of expansion rate, cell division rate and cell size in maize leaves: A synthesis of the effects of soil water status, evaporative demand and temperature. J. Exp. Bot. 2000, 51, 1505–1514. [Google Scholar] [CrossRef]
- Dos Santos, M.S.; Costa, C.A.S.; Gomes, F.P.; do Bomfim Costa, L.C.; de Oliveira, R.A.; da Costa Silva, D. Effects of water deficit on morphophysiology, productivity and chemical composition of Ocimum africanum Lour (Lamiaceae). Afr. J. Agric. Res. 2016, 11, 1924–1934. [Google Scholar] [CrossRef]
- Damalas, C.A. Improving drought tolerance in sweet basil (Ocimum basilicum) with salicylic acid. Sci. Hortic. 2018, 246, 360–365. [Google Scholar] [CrossRef]
- Santos, C.V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic. 2004, 103, 93–99. [Google Scholar] [CrossRef]
- Yang, C.W.; Wang, P.; Li, C.Y.; Shi, D.C.; Wang, D.L. Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. Photosynthetica 2008, 46, 107–114. [Google Scholar] [CrossRef]
- Cornic, G. Drought stress inhibits photosynthesis by decreasing stomatal aperture–not by affecting ATP synthesis. Trends Plant Sci. 2000, 5, 187–188. [Google Scholar] [CrossRef]
- Maroco, J.P.; Rodrigues, M.L.; Lopes, C.; Chaves, M.M. Limitations to leaf photosynthesis in field-grown grapevine under drought—metabolic and modelling approaches. Funct. Plant Biol. 2002, 29, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.A.; Setter, T.L. Abscisic acid accumulation and osmotic adjustment in cassava under water deficit. Environ. Exp. Bot. 2004, 51, 259–271. [Google Scholar] [CrossRef]
- Golan, K.; Kot, I.; Górska-Drabik, E.; Jurado, I.G.; Kmieć, K.; Łagowska, B. Physiological Response of Basil Plants to Twospotted Spider Mite (Acari: Tetranychidae) Infestation. J. Econ. Èntomol. 2019, 112, 948–956. [Google Scholar] [CrossRef]
- Gomez, K.S.; Oosterhuis, D.M.; Rajguru, S.N. and Johnson, D.R. Molecular biology and physiology. Foliar antioxidant enzyme responses in cotton after aphid herbivory. J. Cotton Sci. 2004, 8, 99–104. [Google Scholar]
- Attia, H.; Arnaud, N.; Karray, N.; Lachaâl, M. Long-term effects of mild salt stress on growth, ion accumulation and superoxide dismutase expression of Arabidopsis rosette leaves. Physiol. Plant. 2008, 132, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Ben Taarit, M.; Msaada, K.; Hosni, K.; Hammami, M.; Kchouk, M.E.; Marzouk, B. Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Ind. Crop. Prod. 2009, 30, 333–337. [Google Scholar] [CrossRef]
- Estrada, B.; Aroca, R.; Maathuis, F.J.M.; Barea, J.M.; Ruiz-Lozano, J.M. Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ. 2013, 36, 1771–1782. [Google Scholar] [CrossRef]
- Trovato, M.; Mattioli, R.; Costantino, P. Multiple roles of proline in plant stress tolerance and development. Rend. Lincei 2008, 19, 325–346. [Google Scholar] [CrossRef]
- Seki, M.; Umezawa, T.; Urano, K.; Shinozaki, K. Regulatory metabolic networks in drought stress responses. Curr. Opin. Plant Biol. 2007, 10, 296–302. [Google Scholar] [CrossRef]
- Zhang, X.; Ervin, E.; Evanylo, G.; Haering, K. Impact of Biosolids on Hormone Metabolism in Drought-Stressed Tall Fescue. Crop. Sci. 2009, 49, 1893–1901. [Google Scholar] [CrossRef]
- Ekren, S.; Sönmez, Ç.; Özçakal, E.; Kurttaş, Y.S.K.; Bayram, E.; Gürgülü, H. The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimum basilicum L.). Agric. Water Manag. 2012, 109, 155–161. [Google Scholar] [CrossRef]
- Schütz, M.; Fangmeier, A. Growth and yield responses of spring wheat (Triticum aestivum L. cv. Minaret) to elevated CO2 and water limitation. Environ. Pollut. 2001, 114, 187–194. [Google Scholar] [CrossRef]
- Verslues, P.E.; Agarwal, M.; Katiyar-Agarwal, S.; Zhu, J.; Zhu, J.-K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006, 45, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.G. Monitoring plant and soil water status: Established and novel methods revisited and their relevance to studies of drought tolerance. J. Exp. Bot. 2006, 58, 119–130. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.; Cervilla, L.M.; Blasco, B.; Rios, J.J.; Rosales, M.A.; Romero, L.; Ruiz, J.M. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci. 2010, 178, 30–40. [Google Scholar] [CrossRef]
- Aroca, R.; Porcel, R.; Lozano, J.M.R. Regulation of root water uptake under abiotic stress conditions. J. Exp. Bot. 2011, 63, 43–57. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Wang, D.; Zou, Z.; Liang, Z. Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Ind. Crop. Prod. 2011, 33, 84–88. [Google Scholar] [CrossRef]
- Joseph, B.; Jini, D.; Sujatha, S. Insight into the Role of Exogenous Salicylic Acid on Plants Grown under Salt Environment. Asian J. Crop. Sci. 2010, 2, 226–235. [Google Scholar] [CrossRef]
- Chen, Z.; Silva, H.; Klessig, D.F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 1993, 262, 1883–1886. [Google Scholar] [CrossRef]
- Maggio, A.; Zhu, J.-K.; Hasegawa, P.M.; Bressan, R.A. Osmogenetics: Aristotle to Arabidopsis. Plant Cell 2006, 18, 1542–1557. [Google Scholar] [CrossRef]
- Agut, B.; Pastor, V.; Jaques, J.A.; Flors, V. Can Plant Defence Mechanisms Provide New Approaches for the Sustainable Control of the Two-Spotted Spider Mite Tetranychus urticae? Int. J. Mol. Sci. 2018, 19, 614. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef]
- Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; del Mar Contreras, M.; Segura-Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, thyme, and other plant sources: Health and potential uses. Phytother. Res. 2018, 32, 1688–1706. [Google Scholar] [CrossRef]
- Mandal, S.; DebMandal, M. Thyme (Thymus vulgaris L.) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Chapter 94; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 825–834. [Google Scholar] [CrossRef]
- Trindade, H.; Pedro, L.G.; Figueiredo, A.C.; Barroso, J.G. Chemotypes and terpene synthase genes in Thymus genus: State of the art. Ind. Crop. Prod. 2018, 124, 530–547. [Google Scholar] [CrossRef]
- Askary, M.; Behdani, M.A.; Parsa, S.; Mahmoodi, S.; Jamialahmadi, M. Water stress and manure application affect the quantity and quality of essential oil of Thymus daenensis and Thymus vulgaris. Ind. Crop. Prod. 2018, 111, 336–344. [Google Scholar] [CrossRef]
- Pavela, R.; Žabka, M.; Vrchotová, N.; Tříska, J. Effect of foliar nutrition on the essential oil yield of Thyme (Thymus vulgaris L.). Ind. Crop. Prod. 2018, 112, 762–765. [Google Scholar] [CrossRef]
- Galovičová, L.; Borotová, P.; Valková, V.; Vukovic, N.L.; Vukic, M.; Štefániková, J.; Ďúranová, H.; Kowalczewski, P.; Čmiková, N.; Kačániová, M. Thymus vulgaris Essential Oil and Its Biological Activity. Plants 2021, 10, 1959. [Google Scholar] [CrossRef]
- Punya, H.N.; Mehta, N.; Chatli, M.K.; Wagh, R.; Panwar, H. In-vitro Evaluation of Antimicrobial and Antioxidant Efficacy of Thyme (Thymus vulgaris L.) Essential Oil. J. Anim. Res. 2019, 9, 443–449. [Google Scholar] [CrossRef]
- Kulisic, T.; Radonić, A.; Milos, M. Antioxidant Properties of Thyme (Thymus vulgaris L.) and Wild Thyme (Thymus serpyllum L.) Essential Oils. Ital. J. Food Saf. 2005, 17, 315–324. [Google Scholar]
- Bistgani, Z.E.; Hashemi, M.; DaCosta, M.; Craker, L.; Maggi, F.; Morshedloo, M.R. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind. Crop. Prod. 2019, 135, 311–320. [Google Scholar] [CrossRef]
- Al Maqtari, M. Chemical Composition and Antimicrobial Activity of Essential Oil of Thymus Vulgaris from Yemen. Turk. J. Biochem. 2011, 36, 342–349. [Google Scholar]
- Rota, M.C.; Herrera, A.; Martínez, R.M.; Sotomayor, J.A.; Jordán, M.J. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 2008, 19, 681–687. [Google Scholar] [CrossRef]
- Imelouane, B.; Amhamdi, H.; Wathelet, J.P.; Ankit, M.; Khedid, K.; El Bachiri, A. Chemical Composition and Antimicrobial Activity of Essential Oil of Thyme (Thymus vulgaris) from Eastern Morocco. Int. J. Agric. Biol. 2009, 11, 205–208. [Google Scholar]
- Gallucci, M.N.; Oliva, M.; Casero, C.; Dambolena, J.; Luna, A.; Zygadlo, J.; Demo, M. Antimicrobial Combined Action of Terpenes against the Food-Borne Microorganisms Escherichia Coli, Staphylococcus Aureus and Bacillus Cereus. Flavour Fragr. J. 2009, 24, 348–354. [Google Scholar] [CrossRef]
- Gill, A.O.; Delaquis, P.; Russo, P.; Holley, R.A. Evaluation of Antilisterial Action of Cilantro Oil on Vacuum Packed Ham. Int. J. Food Microbiol. 2002, 73, 83–92. [Google Scholar] [CrossRef]
- Mourey, A.; Canillac, N. Anti-Listeria Monocytogenes Activity of Essential Oils Components of Conifers. Food Control 2002, 13, 289–292. [Google Scholar] [CrossRef]
- Al-Shuneigat, J.; Al-Sarayreh, S.; Al-Saraireh, Y.; Al-Qudah, M.; Al-Tarawneh, I.; Albataineh, E. Effects of Wild Thymus Vulgaris Essential Oil on Clinical Isolates Biofilm-Forming Bacteria. IOSR J. Dent. Med. Sci. 2014, 13, 62–66. [Google Scholar] [CrossRef]
- Jafri, H.; Ahmad, I. Thymus Vulgaris Essential Oil and Thymol Inhibit Biofilms and Interact Synergistically with Antifungal Drugs against Drug Resistant Strains of Candida Albicans and Candida Tropicalis. J. De Mycol. Médicale 2020, 30, 100911. [Google Scholar] [CrossRef]
- Reyes-Jurado, F.; Cervantes-Rincón, T.; Bach, H.; López-Malo, A.; Palou, E. Antimicrobial Activity of Mexican Oregano (Lippia Berlandieri), Thyme (Thymus Vulgaris), and Mustard (Brassica Nigra) Essential Oils in Gaseous Phase. Ind. Crops Prod. 2019, 131, 90–95. [Google Scholar] [CrossRef]
- Aljabeili, H.S.; Barakat, H.; Abdel-Rahman, H.A. Chemical Composition, Antibacterial and Antioxidant Activities of Thyme Essential Oil (Thymus Vulgaris). Food Nutr. Sci. 2018, 9, 433–446. [Google Scholar] [CrossRef]
- Shin, J.; Na, K.; Shin, S.; Seo, S.-M.; Youn, H.J.; Park, I.-K.; Hyun, J. Biological Activity of Thyme White Essential Oil Stabilized by Cellulose Nanocrystals. Biomolecules 2019, 9, 799. [Google Scholar] [CrossRef]
- Chaparro, J.M.; Badri, D.V.; Vivanco, J.M. Rhizosphere Microbiome Assemblage Is Affected by Plant Development. ISME J. 2013, 8, 790–803. [Google Scholar] [CrossRef]
- Abdelshafy Mohamad, O.A.; Ma, J.-B.; Liu, Y.-H.; Zhang, D.; Hua, S.; Bhute, S.; Hedlund, B.P.; Li, W.-J.; Li, L. Beneficial Endophytic Bacterial Populations Associated with Medicinal Plant Thymus Vulgaris Alleviate Salt Stress and Confer Resistance to Fusarium Oxysporum. Front. Plant Sci. 2020, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Saraswathi, S.G.; Paliwal, K. Drought induced changes in growth, leaf gas exchange and biomass production in Albizia lebbeck and Cassia siamea seedlings. J. Environ. Biol. 2011, 32, 173–178. [Google Scholar] [PubMed]
- Mazars, C.; Thuleau, P.; Lamotte, O.; Bourque, S. Cross-Talk between Ros and Calcium in Regulation of Nuclear Activities. Mol. Plant 2010, 3, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.R.; Chaitanya, K.V.; Vivekanandan, M. Drought-Induced Responses of Photosynthesis and Antioxidant Metabolism in Higher Plants. J. Plant Physiol. 2004, 161, 1189–1202. [Google Scholar] [CrossRef]
- Johnson, S.M.; Doherty, S.J.; Croy, R.R.D. Biphasic Superoxide Generation in Potato Tubers. A Self-Amplifying Response to Stress. Plant Physiol. 2003, 131, 1440–1449. [Google Scholar] [CrossRef] [PubMed]
- Slesak, I.; Libik, M.; Karpinska, B.; Karpinski, S.; Miszalski, Z. The Role of Hydrogen Peroxide in Regulation of Plant Metabolism and Cellular Signalling in Response to Environmental Stresses. Acta Biochim. Pol. 2007, 54, 39–50. [Google Scholar] [CrossRef]
- Catala, A. Lipid Peroxidation. Available online: https://www.intechopen.com/books/2553 (accessed on 3 April 2023).
- Ashapkin, V.V.; Kutueva, L.I.; Aleksandrushkina, N.I.; Vanyushin, B.F. Epigenetic Mechanisms of Plant Adaptation to Biotic and Abiotic Stresses. Int. J. Mol. Sci. 2020, 21, 7457. [Google Scholar] [CrossRef]
- Smirnoff, N. Ascorbic Acid: Metabolism and Functions of a Multi-Facetted Molecule. Curr. Opin. Plant Biol. 2000, 3, 229–235. [Google Scholar] [CrossRef]
- Müller-Moulé, P.; Golan, T.; Niyogi, K.K. Ascorbate-Deficient Mutants of Arabidopsis Grow in High Light despite Chronic Photooxidative Stress. Plant Physiol. 2004, 134, 1163–1172. [Google Scholar] [CrossRef]
- Smirnoff, N.; Wheeler, G.L. Ascorbic Acid in Plants: Biosynthesis and Function. Crit. Rev. Plant Sci. 2000, 19, 267–290. [Google Scholar] [CrossRef]
- Khan, T.; Mazid, M.; Mohammad, F. A Review of Ascorbic Acid Potentialities against Oxidative Stress Induced in Plants. J. Agrobiol. 2011, 28, 97–111. [Google Scholar] [CrossRef]
- Siripornadulsil, S.; Traina, S.; Verma, D.P.; Sayre, R.T. Molecular Mechanisms of Proline-Mediated Tolerance to Toxic Heavy Metals in Transgenic Microalgae. Plant Cell 2002, 14, 2837–2847. [Google Scholar] [CrossRef]
- Agar, H.; Galatali, S.; Ozkaya, D.E.; Kaya, E. A Primary Study: Investigation of the in Vitro Salt Stress Effects on Development in Thymus Cilicicus Boiss. & Bal. Glob. J. Bot. Sci. 2022, 10, 23–27. [Google Scholar] [CrossRef]
- Aziz, E.E.; Hendawy, S.F. Effect of soil type and irrigation intervals on plant growth, essential oil yield and constituents of Thymus Vulgaris plant. Thymus Plant 2008, 4, 443–450. [Google Scholar]
- Kaur, H.; Kohli, S.K.; Khanna, K.; Bhardwaj, R. Scrutinizing the Impact of Water Deficit in Plants: Transcriptional Regulation, Signaling, Photosynthetic Efficacy, and Management. Physiol. Plant. 2021, 172, 935–962. [Google Scholar] [CrossRef]
- Haworth, M.; Killi, D.; Materassi, A.; Raschi, A.; Centritto, M. Impaired Stomatal Control Is Associated with Reduced Photosynthetic Physiology in Crop Species Grown at Elevated [CO2]. Front. Plant Sci. 2016, 7, 1568. [Google Scholar] [CrossRef] [PubMed]
- Frary, A. Plant Physiology and Developmentplant; Lincoln, T., Eduardo, Z., Ian Max, M., Angus, M., Eds.; Sinauer Associates Inc.: Sunderland, MA, USA, 2015; Volume 117, pp. 397–399. ISBN 978-1-60535-255-8. [Google Scholar] [CrossRef]
- Bielach, A.; Hrtyan, M.; Tognetti, V. Plants under Stress: Involvement of Auxin and Cytokinin. Int. J. Mol. Sci. 2017, 18, 1427. [Google Scholar] [CrossRef]
- Smirnoff, N. The Role of Active Oxygen in the Response of Plants to Water Deficit and Desiccation. New Phytol. 1993, 125, 27–58. [Google Scholar] [CrossRef]
- Naservafaei, S.; Sohrabi, Y.; Moradi, P.; Mac Sweeney, E.; Mastinu, A. Biological Response of Lallemantia Iberica to Brassinolide Treatment under Different Watering Conditions. Plants 2021, 10, 496. [Google Scholar] [CrossRef] [PubMed]
- Karimmojeni, H.; Rezaei, M.; Tseng, T.-M.; Mastinu, A. Effects of Metribuzin Herbicide on Some Morpho-Physiological Characteristics of Two Echinacea Species. Horticulturae 2022, 8, 169. [Google Scholar] [CrossRef]
- Rasheed, S.; Bashir, K.; Kim, J.-M.; Ando, M.; Tanaka, M.; Seki, M. The Modulation of Acetic Acid Pathway Genes in Arabidopsis Improves Survival under Drought Stress. Sci. Rep. 2018, 8, 7831. [Google Scholar] [CrossRef]
- Luo, M.; Cheng, K.; Xu, Y.; Yang, S.; Wu, K. Plant Responses to Abiotic Stress Regulated by Histone Deacetylases. Front. Plant Sci. 2017, 8, 2147. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, M.; Azimi-Moqadam, M.-R.; MohseniFard, E.; Shekari, F.; Jafary, H.; Moradi, P.; Pucci, M.; Abate, G.; Mastinu, A. Physiological and Molecular Aspects of Two Thymus Species Differently Sensitive to Drought Stress. BioTech 2022, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Moradi, P.; Ford-Lloyd, B.; Pritchard, J. Metabolic Responses of Thymus Vulgaris to Water Deficit Stress. Curr. Metab. 2018, 6, 64–74. [Google Scholar] [CrossRef]
- Moori, S.; Ahmadi-Lahijani, M.J. Hormopriming Instigates Defense Mechanisms in Thyme (Thymus Vulgaris L.) Seeds under Cadmium Stress. J. Appl. Res. Med. Aromat. Plants 2020, 19, 100268. [Google Scholar] [CrossRef]
- Linhart, Y.B.; Keefover-Ring, K.; Mooney, K.A.; Breland, B.; Thompson, J.D. A Chemical Polymorphism in a Multitrophic Setting: Thyme Monoterpene Composition and Food Web Structure. Am. Nat. 2005, 166, 517–529. [Google Scholar] [CrossRef]
- Loxdale, H.D.; Balog, A. Aphid Specialism as an Example of Ecological-Evolutionary Divergence. Biol. Rev. 2017, 93, 642–657. [Google Scholar] [CrossRef]
- Adorjan, B.; Buchbauer, G. Biological Properties of Essential Oils: An Updated Review. Flavour Fragr. J. 2010, 25, 407–426. [Google Scholar] [CrossRef]
- Kamkar, A.; Tooryan, F.; AkhondzadehBasti, A.; Misaghi, A.; Shariatifar, N. Chemical composition of summer savory (Satureja hortensis L.) essential oil and comparison of antioxidant activity with aqueous and alcoholic extracts. J. Vet. Res. 2013, 68, 183–190. [Google Scholar]
- Adiguzel, A.; Ozer, H.; Kilic, H.; Cetin, B. Screening of Antimicrobial Activity of Essential Oil and Methanol Extract of Satureja hortensis on Foodborne Bacteria and Fungi. Czech J. Food Sci. 2007, 25, 81–89. [Google Scholar] [CrossRef]
- Popovici, R.A.; Vaduva, D.; Pinzaru, I.; Dehelean, C.A.; Farcas, C.G.; Coricovac, D.; Danciu, C.; Popescu, I.; Alexa, E.; Lazureanu, V.; et al. A comparative study on the biological activity of essential oil and total hydro-alcoholic extract of Satureja hortensis L. Exp. Ther. Med. 2019, 18, 932–942. [Google Scholar] [CrossRef]
- Ramos, M.; Beltrán, A.; Peltzer, M.; Valente, A.J.M.; Garrigós, M.D.C. Release and antioxidant activity of carvacrol and thymol from polypropylene active packaging films. LWT Food Sci. Technol. 2014, 58, 470–477. [Google Scholar] [CrossRef]
- Chen, Q.; Gan, Z.; Zhao, J.; Wang, Y.; Zhang, S.; Li, J.; Ni, Y. In Vitro Comparison of Antioxidant Capacity of Cumin (Cuminum cyminum L.) Oils and Their Main Components. LWT Food Sci. Technol. 2014, 55, 632–637. [Google Scholar] [CrossRef]
- Chua, L.S.; Lau, C.H.; Chew, C.Y.; Ismail, N.I.; Soontorngun, N. Phytochemical Profile of Orthosiphon Aristatus Extracts after Storage: Rosmarinic Acid and Other Caffeic Acid Derivatives. Phytomedicine 2018, 39, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and Anti-Inflammatory Activities of Quercetin and Its Derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Aksu, M.I.; Özer, H. Effects of Lyophilized Water Extract ofSatureja Hortensison the Shelf Life and Quality Properties of Ground Beef. J. Food Process. Preserv. 2012, 37, 777–783. [Google Scholar] [CrossRef]
- Vahidyan, H.; Sahari, M.A.; Barzegar, M.; Naghdi Badi, H. Application of Zataria multiflora Boiss. and Satureja hortensis L. essential oils as two natural antioxidants in Mayonnaise formulated with linseed oil. J. Med. Plants 2012, 11, 69–79. [Google Scholar]
- Jafari, F.; Ghavidel, F.; Zarshenas, M.M. A Critical Overview on the Pharmacological and Clinical Aspects of Popular Satureja Species. J. Acupunct. Meridian Stud. 2016, 9, 118–127. [Google Scholar] [CrossRef]
- Hazrati, H.; Saharkhiz, M.J.; Niakousari, M.; Moein, M. Natural Herbicide Activity of Satureja hortensis L. Essential Oil Nanoemulsion on the Seed Germination and Morphophysiological Features of Two Important Weed Species. Ecotoxicol. Environ. Saf. 2017, 142, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Banu, M.N.; Hoque, M.A.; Watanabe-Sugimoto, M.; Matsuoka, K.; Nakamura, Y.; Shimoishi, Y.; Murata, Y. Proline and Glycinebetaine Induce Antioxidant Defense Gene Expression and Suppress Cell Death in Cultured Tobacco Cells under Salt Stress. J. Plant Physiol. 2009, 166, 146–156. [Google Scholar] [CrossRef]
- Mehdizadeh, L.; Moghaddam, M.; Lakzian, A. Alleviating Negative Effects of Salinity Stress in Summer Savory (Satureja hortensis L.) by Biochar Application. Acta Physiol. Plant. 2019, 41, 98. [Google Scholar] [CrossRef]
- Nikee, E.; Pazoki, A.; Zahedi, H. Influences of Ascorbic Acid and Gibberellin on Alleviation of Salt Stress in Summer Savory (Satureja hortensis L.). Int. J. Biosci. (IJB) 2014, 5, 245–255. [Google Scholar] [CrossRef]
- Miranshahi, B.; Sayyari, M. Methyl jasmonate mitigates drought stress injuries and affects essential oil of summer savory. J. Agric. Sci. Tech. 2016, 18, 1635–1645. [Google Scholar]
- Zimowska, B. Diversity of fungi occurring on savory (Satureja hortensis L.). Herba Pol. 2010, 2, 56. [Google Scholar]
- Wubben, J.P.; Mulder, W.; ten Have, A.; van Kan, J.A.; Visser, J. Cloning and Partial Characterization of Endopolygalacturonase Genes from Botrytis Cinerea. Appl. Environ. Microbiol. 1999, 65, 1596–1602. [Google Scholar] [CrossRef]
- Shah, P.; Gutierrez-Sanchez, G.; Orlando, R.; Bergmann, C. A Proteomic Study of Pectin-Degrading Enzymes Secreted by Botrytis Cinerea Grown in Liquid Culture. PROTEOMICS 2009, 9, 3126–3135. [Google Scholar] [CrossRef]
- Zwenger, S.; Basu, C. Plant terpenoids: Applications and future potentials. Biotechnol. Mol. Biol. Rev. 2008, 3, 1. [Google Scholar]
- Heil, M.; Silva Bueno, J.C. Within-Plant Signaling by Volatiles Leads to Induction and Priming of an Indirect Plant Defense in Nature. Proc. Natl. Acad. Sci. USA 2007, 104, 5467–5472. [Google Scholar] [CrossRef]
- Ton, J.; D’Alessandro, M.; Jourdie, V.; Jakab, G.; Karlen, D.; Held, M.; Mauch-Mani, B.; Turlings, T.C.J. Priming by Airborne Signals Boosts Direct and Indirect Resistance in Maize. Plant J. 2006, 49, 16–26. [Google Scholar] [CrossRef]
- Cheong, J.-J.; Do Choi, Y. Methyl jasmonate as a vital substance in plants. Trends Genet. 2003, 19, 409–413. [Google Scholar] [CrossRef]
- Rodríguez, A.A.; Stella, A.M.; Storni, M.M.; Zulpa, G.; Zaccaro, M.C. Effects of Cyanobacterial Extracellular Products and Gibberellic Acid on Salinity Tolerance in Oryza Satival. Saline Syst. 2006, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Maggio, A.; Barbieri, G.; Raimondi, G.; De Pascale, S. Contrasting Effects of GA3 Treatments on Tomato Plants Exposed to Increasing Salinity. J. Plant Growth Regul. 2009, 29, 63–72. [Google Scholar] [CrossRef]
- Ashraf, M.; Karim, F.; Rasul, E. Interactive effects of gibberellic acid (GA3) and salt stress on growth, ion accumulation and photosynthetic capacity of two spring wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Plant Growth Regul. 2002, 36, 49–59. [Google Scholar] [CrossRef]
- Wen, F.-p.; Zhang, Z.-h.; Bai, T.; Xu, Q.; Pan, Y.-h. Proteomics Reveals the Effects of Gibberellic Acid (GA3) on Salt-Stressed Rice (Oryza sativa L.) Shoots. Plant Sci. 2010, 178, 170–175. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Deng, X.P.; Kwak, S.S. Over expression of CuZn superoxide dismutase (CuZn SOD) and ascorbate peroxidase (APX) in transgenic sweet potato enhances tolerance and recovery from drought stress. Afr. J. Biotechnol. 2015, 9, 8378–8391. [Google Scholar]
- Desikan, R. Aba, Hydrogen Peroxide and Nitric Oxide Signalling in Stomatal Guard Cells. J. Exp. Bot. 2003, 55, 205–212. [Google Scholar] [CrossRef]
- Krishnan, N.; Dickman, M.B.; Becker, D.F. Proline Modulates the Intracellular Redox Environment and Protects Mammalian Cells against Oxidative Stress. Free. Radic. Biol. Med. 2008, 44, 671–681. [Google Scholar] [CrossRef]
- Lamalakshmi Devi, E.; Kumar, S.; Basanta Singh, T.; Sharma, S.K.; Beemrote, A.; Devi, C.P.; Chongtham, S.K.; Singh, C.H.; Yumlembam, R.A.; Haribhushan, A.; et al. Adaptation Strategies and Defence Mechanisms of Plants during Environmental Stress. In Medicinal Plants and Environmental Challenges; Ghorbanpour, M., Varma, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 359–413. [Google Scholar] [CrossRef]
- HongBo, S.; ZongSuo, L.; MingAn, S.; ShiMeng, S.; ZanMin, H. Investigation on Dynamic Changes of Photosynthetic Characteristics of 10 Wheat (Triticum Aestivum L.) Genotypes during Two Vegetative-Growth Stages at Water Deficits. Colloids Surf. B Biointerfaces 2005, 43, 221–227. [Google Scholar] [CrossRef]
- Blumwald, E.; Anil, G.; Allen, G. New diections for a diverse planet. In Proceedings of the 4th international crop science congress, Brisbane, Australia, 26 September–1 October 2004; Available online: http://www.cropscience.org.au (accessed on 7 February 2023).
- Croteau, R.B.; Davis, E.M.; Ringer, K.L.; Wildung, M.R. (-)-Menthol biosynthesis and molecular genetics. Naturwissenschaften 2005, 92, 562–577. [Google Scholar] [CrossRef]
- Gang, D.R.; Wang, J.; Dudareva, N.; Nam, K.H.; Simon, J.E.; Lewinsohn, E.; Pichersky, E. An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol. 2001, 125, 539–555. [Google Scholar] [CrossRef]
- Xu, C.; Wang, M.; Zhou, L.; Quan, T.; Xia, G. Heterologous Expression of the Wheat Aquaporin Gene TATIP2;2 Compromises the Abiotic Stress Tolerance of Arabidopsis Thaliana. PLoS ONE 2013, 8, e79618. [Google Scholar] [CrossRef] [PubMed]
- Moradi, P.; Ford-Lloyd, B.; Pritchard, J. Metabolomic Approach Reveals the Biochemical Mechanisms Underlying Drought Stress Tolerance in Thyme. Anal. Biochem. 2017, 527, 49–62. [Google Scholar] [CrossRef]
- Kulak, M.; Jorrín-Novo, J.V.; Romero-Rodriguez, M.C.; Yildirim, E.D.; Gul, F.; Karaman, S. Seed Priming with Salicylic Acid on Plant Growth and Essential Oil Composition in Basil (Ocimum basilicum L.) Plants Grown under Water Stress Conditions. Ind. Crops Prod. 2021, 161, 113235. [Google Scholar] [CrossRef]
- Alizadeh, A.; Moghaddam, M.; Asgharzade, A.; Sourestani, M.M. Phytochemical and Physiological Response of Satureja hortensis L. to Different Irrigation Regimes and Chitosan Application. Ind. Crops Prod. 2020, 158, 112990. [Google Scholar] [CrossRef]
- Bakhshian, M.; Naderi, M.R.; Javanmard, H.R.; Bahreininejad, B. The Growth of Summer Savory (Satureja Hortensis) Affected by Fertilization and Plant Growth Regulators in Temperature Stress. Biocatal. Agric. Biotechnol. 2022, 43, 102371. [Google Scholar] [CrossRef]
- Dikova, B. Tomato spotted wilt virus on some medicinal and essential oil-bearing plants in Bulgaria. Bulg. J. Agric. Sci. 2011, 17, 306–313. [Google Scholar]
- Bansal, K.C.; Singh, A.K.; Wani, S.H. Plastid Transformation for Abiotic Stress Tolerance in Plants. Methods Mol. Biol. 2012, 913, 351–358. [Google Scholar] [CrossRef]
- Khan, H.; Wani, S.H. Molecular approaches to enhance abiotic stresses tolerance. In Innovations in Plant Science and Biotechnology; Wani, S.H., Malik, C.P., Hora, A., Kaur, R., Eds.; Agrobios (India): Jodhpur, India, 2014; pp. 111–152. ISBN 978-81-7754-553-1. [Google Scholar]
- Gonda, I.; Faigenboim, A.; Adler, C.; Milavski, R.; Karp, M.-J.; Shachter, A.; Ronen, G.; Baruch, K.; Chaimovitsh, D.; Dudai, N. The Genome Sequence of Tetraploid Sweet Basil, Ocimum Basilicum L., Provides Tools for Advanced Genome Editing and Molecular Breeding. DNA Res. 2020, 27, dsaa027. [Google Scholar] [CrossRef] [PubMed]
- Pyne, R.M.; Koroch, A.R.; Wyenandt, C.A.; Simon, J.E. A Rapid Screening Approach to Identify Resistance to Basil Downy Mildew (Peronospora Belbahrii). HortScience 2014, 49, 1041–1045. [Google Scholar] [CrossRef]
- Bi, H.H.; Song, Y.Y.; Zeng, R.S. Biochemical and molecular responses of host plants to mycorrhizal infection and their roles in plant defence. Allelopath. J. 2007, 20, 15–28. [Google Scholar]
- Raffaele, S.; Vailleau, F.; Leger, A.; Joubès, J.; Miersch, O.; Huard, C.; Blée, E.; Mongrand, S.; Domergue, F.; Roby, D. A MYB Transcription Factor Regulates Very-Long-Chain Fatty Acid Biosynthesis for Activation of the Hypersensitive Cell Death Response in Arabidopsis. Plant Cell 2008, 20, 752–767. [Google Scholar] [CrossRef]
- Pérez-Clemente, R.M.; Vives, V.; Zandalinas, S.I.; López-Climent, M.F.; Muñoz, V.; Gómez-Cadenas, A. Biotechnological Approaches to Study Plant Responses to Stress. BioMed Res. Int. 2013, 2013, 654120. [Google Scholar] [CrossRef] [PubMed]
- Seo, P.J.; Park, C.M. MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol. 2010, 186, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.; Hao, Y.; Kapoor, A.; Dong, C.-H.; Fujii, H.; Zheng, X.; Zhu, J.-K. A R2R3 Type MYB Transcription Factor Is Involved in the Cold Regulation of CBF Genes and in Acquired Freezing Tolerance. J. Biol. Chem. 2006, 281, 37636–37645. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.-L. Molecular Markers and Marker-Assisted Breeding in Plants. Plant Breed. Lab. Fields 2013, 3, 45–83. [Google Scholar] [CrossRef]
- Gonda, I.; Milavski, R.; Adler, C.; Abu-Abied, M.; Tal, O.; Faigenboim, A.; Chaimovitsh, D.; Dudai, N. Genome-Based High-Resolution Mapping of Fusarium Wilt Resistance in Sweet Basil. Plant Sci. 2022, 321, 111316. [Google Scholar] [CrossRef]
- Ben-Naim, Y.; Falach, L.; Cohen, Y. Transfer of Downy Mildew Resistance from Wild Basil (Ocimum Americanum) to Sweet Basil (O. Basilicum). Phytopathology 2018, 108, 114–123. [Google Scholar] [CrossRef]
Aromatic Plant Species | Chemical Composition | Fresh Leaves | References |
---|---|---|---|
Volatile Oil | |||
O. basilicum L. | Dry matter (909.1 g kg−1), cude ash (89.84 g kg−1), crude protein (208.8 g kg−1), ether extract (11.21 g kg−1), crude fiber (45.91 g kg−1), NFI (sugars readily hydrolyzed) (553.3 g kg−1), Mg (79.8 μg g−1), Ca (1278 μg g−1), K (2135 μg g−1), Na (218.5 μg g−1), Fe (26.31 μg g−1), Cu (1.95 μg g−1), Mn (8.56 μg g−1) and Zn (45.14 μg g−1) Alkaloids, tannins, flavonoids, cholesterol, terpernoids, glycosides, cardiac glycosides, phenols, carbohydrates, and phlobatannins | [8,9] | |
(~6.20 mg/g) Linalool (56.7–60.6%), epi-α-cadinol (8.6–11.4%), α-bergamotene (7.4–9.2%) and γ-cadinene (3.2–5.4%, germacrene D (1.13.3%), camphor (1.13.1%) | [10,11] | ||
T. vulgaris L. | Oxygen terpene derivatives (1,8-cineole, linalool, followed by camphor, endo-borneol, α-terpineol and linalyl acetate), terpene hydrocarbons (α-pinene, camphene and β–pinene, trans-caryophylle, four flavonoids (two flavanones and two flavones)—sakuranetin, 6,7-dimethylcarthamidin, respectively 5-desmethylsinensetin and -hydroxy-3,7,8,2′,4′-pentamethoxy-flavone | [12] | |
(12 mL/kg ≤) Thymol (~47.59%), γ-Terpinene (~30.90%), para-Cymene (~8.41%), Carene<δ-2-> (~3.76%), Caryophyllene (2.68%), α-Thujene, α-Pinene, β-Pinene, β-Myrcene, α-Phellandrene, D-Limonene, β-Phellandrene, Terpineol, Terpinen-4-ol, Cyclohexene, 1-methyl-4-(5-methyl-1-methylene-4-hexenyl) | [13] | ||
S. hortensis L. | Moisture (72%), protein (4.2%), fat (1.65%), sugar (4.45%), fibre (8.60%), ash (2.11%) Minerals: K (1.68–3.38 mg·kg−1 DM),P (0.31–0.72 mg·kg−1 DM), Ca (1.08–2.84 mg·kg−1 DM), Mg (0.25–0.61 mg·kg−1 DM), Fe (242–726 mg·kg−1 DM), and Na (0.007–0.013 mg·kg−1 DM) | [14,15] [16] | |
(≥ 5%) Carvacrol (11–67%, Thymol (0.3–28.2%), γ-terpinene (15.30–39%), p-cymene (3.5–19.6%), α-phellandrene, α- and β-pinene, Sabinene, terpineol, α-thujene | [15,17], [18,19,20,21,22] |
Type of Stress | Anatomical, Physiological, and Molecular Changes | Contributing Factors | References | |
---|---|---|---|---|
Abiotic | Salinity | Higher Na+ concentrations | Increased MDA accumulation | [64] |
Enhanced proline content | [4] | |||
Photosynthetic pigments decrease | Chlorophyllase enzyme activity enhancement | [65] | ||
Induces essential oil production | Higher oil gland density | [4,65,66] | ||
Drought | Plant growth process is inhibited | Constrained cell elongation and differentiation | [67,68] | |
Disruption of main metabolic processes | Chlorophyll reduction | [69] | ||
Photosynthesis inhibation | [69] | |||
Cell division suppresion | [69] | |||
Protein complexes imbalance | Chlorophyll a and b depletion | [70,71] | ||
Chlorophyllase activity enhancement | ||||
Photosynthesis inhibition | Stomatal blockage | [72] | ||
RubisCO enzyme activity cut | [73] | |||
Cell osmotic adjustment | Proline accumulation | [69] | ||
CO2 assimilation | [74] | |||
Biotic | Twospotted spider mite (Tetranychus urticae Koch) | Small chlorotic spots | Lower concentrations of nitrogen, phosphorous, and protein | [75] |
Cell physiology disruption | Photosynthesis reduction and phytotoxic compounds injection | [75,76] | ||
Plasma membrane potential change | Cytosolic free Ca2+ changes | [75] | ||
Oxidative damage | Increase in cellular concentration of reactive oxygen species and, subsequently, of H2O2 | [75] |
Type of Stress | Anatomical, Physiological, and Molecular Changes | Contributing Factors | References | |
---|---|---|---|---|
Abiotic | Salinity | Nutritional imbalance in plant tissues | Electrolyte leakage increase | [103] |
Reduction of the photosynthetic capacity | CO2 assimilation reduction | [129] | ||
Drought | Mitigate cell division, elongation, and differentiation | Decreases cell turgor | [7,130] | |
Minimizes enzyme activities | [7,130] | |||
Decreases energy supply | [7,130] | |||
Photosynthetic processes reduction | Lower level of relative water content (RWC) | [131,132] | ||
Affects the level of endogenous phytohormones | Alters relations between ABA, ethylene, GA3, cytokinins, and auxins | [7,133,134,135] | ||
Reduces concentration of chlorophyll a and b and total chlorophyll | Increases ROS production | [7,135,136,137] | ||
Carotenoids concentration reduction | Enhancement of ABA hormone | [7,133] | ||
H2O2 and lipid peroxidation enhancement | MDA concentration increase | [7] | ||
Adjustment of osmotic potential | Increased soluble sugars, proline, and free amino acid concentrations | [7] | ||
Considerable synthesis of total soluble phenols and phenylalanine ammonia-lyase (PAL) | Enhanced specific activity of PPO (polyphenol oxidase) | [7] | ||
Plant gene expression adjustment | Increased HDA-6 levels | [138,139,140] | ||
Secondary metabolites boost | Phe, Trp, and Asn amino acids | [141] | ||
Cd contamination (seeds) | Phytochelatin synthesis | Osmolytes (proline) accumulation | [142] | |
ROS production enhancement | Increase in MDA content | [142] | ||
Biotic | Aphis serpylli Koch | Cell physiology disruption | Carvacrol, Geraniol, and Thymol monoterpenes mitigate attack | [143,144] |
Linalol enhances attack | [143,144] |
Type of Stress | Anatomical, Physiological and Molecular Changes | Contributing Factors | References | |
---|---|---|---|---|
Abiotic | Salinity | Growth decrese | High osmotic proficiency | [49,66] |
Salt ions toxicity | [66] | |||
Cytokinin cutoff | [66] | |||
Enhanced inhibitor production | [66] | |||
Decreasing water and nutrient uptake | [49] | |||
Higher Na+ concentrations | Lipid peroxidation increase | [157] | ||
Enhanced membrane damage | [157] | |||
Electrolyte leakage | [158] | |||
Increased MDA accumulation | [158] | |||
TPC, TSC, proline, and essential oil enhancement | [49] | |||
Chlorophyll content | Free oxygen radicals exposure/peroxidation | [49,159] | ||
Decreased transpiration rate | Gas exchange mittigation | [159] | ||
Imbalance in plant tissues | Reduced Ca and K | [49] | ||
Increased Cl and Na concentration | [49] | |||
Drought | Mitigate cell division, elongation, and differentiation | Decreases cell turgor | [160] | |
Decreased relative water content (RWC) | ||||
Minimizes enzyme activities | [160] | |||
Decreases energy supply | [160] | |||
Reduced the plant height and the number of subsidiary branches | [43] | |||
Intensified malondialdehyde (MDA), H2O2, and proline contents | [43] | |||
Improved total chlorophyll, chlorophyll a and b, and carotenoid contents | [43] | |||
Biotic | Botrytis cinerea Pers. | Necrosis and narrowing tissues | Endopolygalacturonase content enhancement | [161,162,163] |
Pectin degradation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avasiloaiei, D.I.; Calara, M.; Brezeanu, P.M.; Murariu, O.C.; Brezeanu, C. On the Future Perspectives of Some Medicinal Plants within Lamiaceae Botanic Family Regarding Their Comprehensive Properties and Resistance against Biotic and Abiotic Stresses. Genes 2023, 14, 955. https://doi.org/10.3390/genes14050955
Avasiloaiei DI, Calara M, Brezeanu PM, Murariu OC, Brezeanu C. On the Future Perspectives of Some Medicinal Plants within Lamiaceae Botanic Family Regarding Their Comprehensive Properties and Resistance against Biotic and Abiotic Stresses. Genes. 2023; 14(5):955. https://doi.org/10.3390/genes14050955
Chicago/Turabian StyleAvasiloaiei, Dan Ioan, Mariana Calara, Petre Marian Brezeanu, Otilia Cristina Murariu, and Creola Brezeanu. 2023. "On the Future Perspectives of Some Medicinal Plants within Lamiaceae Botanic Family Regarding Their Comprehensive Properties and Resistance against Biotic and Abiotic Stresses" Genes 14, no. 5: 955. https://doi.org/10.3390/genes14050955
APA StyleAvasiloaiei, D. I., Calara, M., Brezeanu, P. M., Murariu, O. C., & Brezeanu, C. (2023). On the Future Perspectives of Some Medicinal Plants within Lamiaceae Botanic Family Regarding Their Comprehensive Properties and Resistance against Biotic and Abiotic Stresses. Genes, 14(5), 955. https://doi.org/10.3390/genes14050955