The APOBEC3B c.783delG Truncating Mutation Is Not Associated with an Increased Risk of Breast Cancer in the Polish Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hereditary Breast Cancer Cases
2.2. Unselected Cases of Breast Cancer
2.3. Controls
2.4. Sequencing of the APOBEC3B Gene
2.5. Genotyping
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and Future Burden of Breast Cancer: Global Statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef]
- Narod, S.A.; Foulkes, W.D. BRCA1 and BRCA2: 1994 and beyond. Nat. Rev. Cancer 2004, 4, 665–676. [Google Scholar] [CrossRef]
- Friend, S.H. Breast cancer susceptibility testing: Realities in the post-genomic era. Nat. Genet. 1996, 13, 16–17. [Google Scholar] [CrossRef] [PubMed]
- Szwiec, M.; Jakubowska, A.; Górski, B.; Huzarski, T.; Tomiczek-Szwiec, J.; Gronwald, J.; Dębniak, T.; Byrski, T.; Kluźniak, W.; Wokołorczyk, D.; et al. Recurrent Mutations of BRCA1 and BRCA2 in Poland: An Update. Clin. Genet. 2015, 87, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.; Seal, S.; Thompson, D.; Kelly, P.; Renwick, A.; Elliott, A.; Reid, S.; Spanova, K.; Barfoot, R.; Chagtai, T.; et al. PALB2, Which Encodes a BRCA2-Interacting Protein, Is a Breast Cancer Susceptibility Gene. Nat. Genet. 2007, 39, 165–167. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, A.C.; Casadei, S.; Heikkinen, T.; Barrowdale, D.; Pylkäs, K.; Roberts, J.; Lee, A.; Subramanian, D.; De Leeneer, K.; Fostira, F.; et al. Breast-Cancer Risk in Families with Mutations in PALB2. N. Engl. J. Med. 2014, 371, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meijers-Heijboer, H.; van den Ouweland, A.; Klijn, J.; Wasielewski, M.; de Snoo, A.; Oldenburg, R.; Hollestelle, A.; Houben, M.; Crepin, E.; van Veghel-Plandsoen, M.; et al. Low-Penetrance Susceptibility to Breast Cancer due to CHEK2(*)1100delC in Noncarriers of BRCA1 or BRCA2 Mutations. Nat. Genet. 2002, 31, 55–59. [Google Scholar]
- Vahteristo, P.; Bartkova, J.; Eerola, H.; Syrjäkoski, K.; Ojala, S.; Kilpivaara, O.; Tamminen, A.; Kononen, J.; Aittomäki, K.; Heikkilä, P.; et al. A CHEK2 Genetic Variant Contributing to a Substantial Fraction of Familial Breast Cancer. Am. J. Hum. Genet. 2002, 71, 432–438. [Google Scholar] [CrossRef] [Green Version]
- Goldgar, D.E.; Healey, S.; Dowty, J.G.; Da Silva, L.; Chen, X.; Spurdle, A.B.; Terry, M.B.; Daly, M.J.; Buys, S.M.; Southey, M.C.; et al. Rare Variants in the ATM gene and Risk of Breast Cancer. Breast Cancer Res. 2011, 13, R73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratajska, M.; Antoszewska, E.; Piskorz, A.; Brozek, I.; Borg, Å.; Kusmierek, H.; Biernat, W.; Limon, J. Cancer Predisposing BARD1 Mutations in Breast–ovarian Cancer Families. Breast Cancer Res. Treat. 2012, 131, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Suszynska, M.; Kluzniak, W.; Wokolorczyk, D.; Jakubowska, A.; Huzarski, T.; Gronwald, J.; Debniak, T.; Szwiec, M.; Ratajska, M.; Klonowska, K.; et al. BARD1 Is a Low/Moderate Breast Cancer Risk Gene: Evidence Based on An Association Study of the Central European p.Q564X Recurrent Mutation. Cancers 2019, 11, 740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heikkinen, K.; Karppinen, S.-M.; Soini, Y.; Mäkinen, M.; Winqvist, R. Mutation Screening of Mre11 Complex Genes: Indication of RAD50 Involvement in Breast and Ovarian Cancer Susceptibility. J. Med. Genet. 2003, 40, e131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meindl, A.; Hellebrand, H.; Wiek, C.; Erven, V.; Wappenschmidt, B.; Niederacher, D.; Freund, M.; Lichtner, P.; Hartmann, L.; Schaal, H.; et al. Germline Mutations in Breast and Ovarian Cancer Pedigrees Establish RAD51C as a Human Cancer Susceptibility Gene. Nat. Genet. 2010, 42, 410–414. [Google Scholar] [CrossRef]
- Osher, D.J.; De Leeneer, K.; Michils, G.; Hamel, N.; Tomiak, E.; Poppe, B.; Leunen, K.; Legius, E.; Shuen, A.; Smith, E.; et al. Mutation Analysis of RAD51D in Non-BRCA1/2 Ovarian and Breast Cancer Families. Br. J. Cancer 2012, 106, 1460–1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, A.; Graña, B.; Fachal, L.; Santamariña, M.; Cameselle-Teijeiro, J.; Ruíz-Ponte, C.; Carracedo, A.; Vega, A. Beyond BRCA1 and BRCA2 Wild-Type Breast And/or Ovarian Cancer Families: Germline Mutations in TP53 and PTEN. Clin. Genet. 2010, 77, 193–196. [Google Scholar] [CrossRef]
- Guénard, F.; Pedneault, C.S.-L.; Ouellette, G.; Labrie, Y.; Simard, J.; INHERIT; Durocher, F. Evaluation of the Contribution of the Three Breast Cancer Susceptibility Genes CHEK2, STK11, and PALB2 in Non-BRCA1/2 French Canadian Families with High Risk of Breast Cancer. Genet. Test. Mol. Biomark. 2010, 14, 515–526. [Google Scholar] [CrossRef]
- Benusiglio, P.R.; Malka, D.; Rouleau, E.; De Pauw, A.; Buecher, B.; Noguès, C.; Fourme, E.; Colas, C.; Coulet, F.; Warcoin, M.; et al. CDH1 Germline Mutations and the Hereditary Diffuse Gastric and Lobular Breast Cancer Syndrome: A Multicentre Study. J. Med. Genet. 2013, 50, 486–489. [Google Scholar] [CrossRef]
- Pharoah, P.D.; Guilford, P.; Caldas, C. International Gastric Cancer Linkage Consortium Incidence of Gastric Cancer and Breast Cancer in CDH1 (E-Cadherin) Mutation Carriers from Hereditary Diffuse Gastric Cancer Families. Gastroenterology 2001, 121, 1348–1353. [Google Scholar] [CrossRef] [PubMed]
- Kluźniak, W.; Wokołorczyk, D.; Rusak, B.; Huzarski, T.; Kashyap, A.; Stempa, K.; Rudnicka, H.; Jakubowska, A.; Szwiec, M.; Morawska, S.; et al. Inherited Variants in BLM and the Risk and Clinical Characteristics of Breast Cancer. Cancers 2019, 11, 1548. [Google Scholar] [CrossRef] [Green Version]
- Górski, B.; Debniak, T.; Masojć, B.; Mierzejewski, M.; Medrek, K.; Cybulski, C.; Jakubowska, A.; Kurzawski, G.; Chosia, M.; Scott, R.; et al. Germline 657del5 Mutation in the NBS1 Gene in Breast Cancer Patients. Int. J. Cancer 2003, 106, 379–381. [Google Scholar] [CrossRef]
- Park, D.J.; Lesueur, F.; Nguyen-Dumont, T.; Pertesi, M.; Odefrey, F.; Hammet, F.; Neuhausen, S.L.; John, E.M.; Andrulis, I.L.; Terry, M.B.; et al. Rare Mutations in XRCC2 Increase the Risk of Breast Cancer. Am. J. Hum. Genet. 2012, 90, 734–739. [Google Scholar] [CrossRef] [Green Version]
- Akbari, M.R.; Cybulski, C. RECQL: A DNA Helicase in Breast Cancer. Oncotarget 2015, 6, 26558–26559. [Google Scholar] [CrossRef]
- Seal, S.; Thompson, D.; Renwick, A.; Elliott, A.; Kelly, P.; Barfoot, R.; Chagtai, T.; Jayatilake, H.; Ahmed, M.; Spanova, K.; et al. Truncating Mutations in the Fanconi Anemia J Gene BRIP1 Are Low-Penetrance Breast Cancer Susceptibility Alleles. Nat. Genet. 2006, 38, 1239–1241. [Google Scholar] [CrossRef] [PubMed]
- Breast Cancer Association Consortium; Dorling, L.; Carvalho, S.; Allen, J.; González-Neira, A.; Luccarini, C.; Wahlström, C.; Pooley, K.A.; Parsons, M.T.; Fortuno, C.; et al. Breast Cancer Risk Genes—Association Analysis in More than 113,000 Women. N. Engl. J. Med. 2021, 384, 428–439. [Google Scholar]
- Hu, C.; Hart, S.N.; Gnanaolivu, R.; Huang, H.; Lee, K.Y.; Na, J.; Gao, C.; Lilyquist, J.; Yadav, S.; Boddicker, N.J.; et al. A Population-Based Study of Genes Previously Implicated in Breast Cancer. N. Engl. J. Med. 2021, 384, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Cybulski, C.; Zamani, N.; Kluźniak, W.; Milano, L.; Wokołorczyk, D.; Stempa, K.; Rudnicka, H.; Zhang, S.; Zadeh, M.; Huzarski, T.; et al. Variants in ATRIP Are Associated with Breast Cancer Susceptibility in the Polish Population and UK Biobank. Am. J. Hum. Genet. 2023, 110, 648–662. [Google Scholar] [CrossRef]
- Jarmuz, A.; Chester, A.; Bayliss, J.; Gisbourne, J.; Dunham, I.; Scott, J.; Navaratnam, N. An Anthropoid-Specific Locus of Orphan C to U RNA-Editing Enzymes on Chromosome 22. Genomics 2002, 79, 285–296. [Google Scholar] [CrossRef]
- Navaratnam, N.; Sarwar, R. An Overview of Cytidine Deaminases. Int. J. Hematol. 2006, 83, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Suspène, R.; Aynaud, M.-M.; Guétard, D.; Henry, M.; Eckhoff, G.; Marchio, A.; Pineau, P.; Dejean, A.; Vartanian, J.-P.; Wain-Hobson, S. Somatic Hypermutation of Human Mitochondrial and Nuclear DNA by APOBEC3 Cytidine Deaminases, a Pathway for DNA Catabolism. Proc. Natl. Acad. Sci. 2011, 108, 4858–4863. [Google Scholar] [CrossRef] [Green Version]
- Shinohara, M.; Io, K.; Shindo, K.; Matsui, M.; Sakamoto, T.; Tada, K.; Kobayashi, M.; Kadowaki, N.; Takaori-Kondo, A. APOBEC3B Can Impair Genomic Stability by Inducing Base Substitutions in Genomic DNA in Human Cells. Sci. Rep. 2012, 2, 806. [Google Scholar] [CrossRef] [Green Version]
- Refsland, E.W.; Harris, R.S. The APOBEC3 Family of Retroelement Restriction Factors. Curr. Top. Microbiol. Immunol. 2013, 371, 1–27. [Google Scholar]
- Mao, Y.; Lv, M.; Zhang, Y.; Nie, G.; Cui, J.; Wang, Y.; Wang, Y.; Cao, W.; Liu, X.; Wang, X.; et al. APOBEC3B expression and its prognostic potential in breast cancer. Oncol Lett. 2020, 4, 3205–3214. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.J.R.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.-L.; et al. Signatures of Mutational Processes in Human Cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Asaoka, M.; Patnaik, S.K.; Ishikawa, T.; Takabe, K. Different Members of the APOBEC3 Family of DNA Mutators Have Opposing Associations with the Landscape of Breast Cancer. Am. J. Cancer Res. 2021, 11, 5111–5125. [Google Scholar] [PubMed]
- Kanu, N.; Cerone, M.A.; Goh, G.; Zalmas, L.-P.; Bartkova, J.; Dietzen, M.; McGranahan, N.; Rogers, R.; Law, E.K.; Gromova, I.; et al. DNA Replication Stress Mediates APOBEC3 Family Mutagenesis in Breast Cancer. Genome Biol. 2016, 17, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komatsu, A.; Nagasaki, K.; Fujimori, M.; Amano, J.; Miki, Y. Identification of Novel Deletion Polymorphisms in Breast Cancer. Int. J. Oncol. 2008, 33, 261–270. [Google Scholar]
- Long, J.; Delahanty, R.J.; Li, G.; Gao, Y.-T.; Lu, W.; Cai, Q.; Xiang, Y.-B.; Li, C.; Ji, B.-T.; Zheng, Y.; et al. A Common Deletion in the APOBEC3 Genes and Breast Cancer Risk. J. Natl. Cancer Inst. 2013, 105, 573–579. [Google Scholar] [CrossRef]
- Rezaei, M.; Hashemi, M.; Hashemi, S.M.; Mashhadi, M.A.; Taheri, M. APOBEC3 Deletion Is Associated with Breast Cancer Risk in a Sample of Southeast Iranian Population. Int. J. Mol. Cell Med. 2015, 4, 103–108. [Google Scholar]
- Wen, W.X.; Soo, J.S.-S.; Kwan, P.Y.; Hong, E.; Khang, T.F.; Mariapun, S.; Lee, C.S.-M.; Hasan, S.N.; Rajadurai, P.; Yip, C.H.; et al. Germline APOBEC3B Deletion Is Associated with Breast Cancer Risk in an Asian Multi-Ethnic Cohort and with Immune Cell Presentation. Breast Cancer Res. 2016, 18, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xuan, D.; Li, G.; Cai, Q.; Deming-Halverson, S.; Shrubsole, M.J.; Shu, X.-O.; Kelley, M.C.; Zheng, W.; Long, J. APOBEC3 Deletion Polymorphism Is Associated with Breast Cancer Risk among Women of European Ancestry. Carcinogenesis 2013, 34, 2240–2243. [Google Scholar] [CrossRef] [Green Version]
- Göhler, S.; Da Silva Filho, M.I.; Johansson, R.; Enquist-Olsson, K.; Henriksson, R.; Hemminki, K.; Lenner, P.; Försti, A. Impact of Functional Germline Variants and a Deletion Polymorphism in APOBEC3A and APOBEC3B on Breast Cancer Risk and Survival in a Swedish Study Population. J. Cancer Res. Clin. Oncol. 2016, 142, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Marouf, C.; Göhler, S.; Filho, M.I.D.S.; Hajji, O.; Hemminki, K.; Nadifi, S.; Försti, A. Analysis of Functional Germline Variants in APOBEC3 and Driver Genes on Breast Cancer Risk in Moroccan Study Population. BMC Cancer 2016, 16, 165. [Google Scholar] [CrossRef] [Green Version]
- Revathidevi, S.; Manikandan, M.; Rao, A.K.D.M.; Vinothkumar, V.; Arunkumar, G.; Rajkumar, K.S.; Ramani, R.; Rajaraman, R.; Ajay, C.; Munirajan, A.K. Analysis of APOBEC3A/3B Germline Deletion Polymorphism in Breast, Cervical and Oral Cancers from South India and Its Impact on miRNA Regulation. Tumor Biol. 2016, 37, 11983–11990. [Google Scholar] [CrossRef]
- Klonowska, K.; Kluzniak, W.; Rusak, B.; Jakubowska, A.; Ratajska, M.; Krawczynska, N.; Vasilevska, D.; Czubak, K.; Wojciechowska, M.; Cybulski, C.; et al. The 30 Kb Deletion in the APOBEC3 Cluster Decreases APOBEC3A and APOBEC3B Expression and Creates a Transcriptionally Active Hybrid Gene but Does Not Associate with Breast Cancer in the European Population. Oncotarget 2017, 8, 76357–76374. [Google Scholar] [CrossRef] [Green Version]
- Cybulski, C.; Kluźniak, W.; Huzarski, T.; Wokołorczyk, D.; Kashyap, A.; Rusak, B.; Stempa, K.; Gronwald, J.; Szymiczek, A.; Bagherzadeh, M.; et al. The Spectrum of Mutations Predisposing to Familial Breast Cancer in Poland. Int. J. Cancer 2019, 145, 3311–3320. [Google Scholar] [CrossRef] [PubMed]
- Pujol, P.; Barberis, M.; Beer, P.; Friedman, E.; Piulats, J.M.; Capoluongo, E.D.; Garcia Foncillas, J.; Ray-Coquard, I.; Penault-Llorca, F.; Foulkes, W.D.; et al. Clinical Practice Guidelines for BRCA1 and BRCA2 Genetic Testing. Eur. J. Cancer 2021, 146, 30–47. [Google Scholar] [CrossRef]
- Metcalfe, K.; Eisen, A.; Senter, L.; Armel, S.; Bordeleau, L.; Meschino, W.S.; Pal, T.; Lynch, H.T.; Tung, N.M.; Kwong, A.; et al. International Trends in the Uptake of Cancer Risk Reduction Strategies in Women with a BRCA1 or BRCA2 Mutation. Br. J. Cancer 2019, 121, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Narod, S.A.; Huzarski, T.; Gronwald, J.; Byrski, T.; Marczyk, E.; Cybulski, C.; Szwiec, M.; Wisniowski, R.; Birkenfeld, B.; Kilar, E.; et al. Predictors of Survival for Breast Cancer Patients with a BRCA1 Mutation. Breast Cancer Res. Treat. 2018, 168, 513–521. [Google Scholar] [CrossRef]
- Tutt, A.; Tovey, H.; Cheang, M.C.U.; Kernaghan, S.; Kilburn, L.; Gazinska, P.; Owen, J.; Abraham, J.; Barrett, S.; Barrett-Lee, P.; et al. Carboplatin in BRCA1/2-Mutated and Triple-Negative Breast Cancer BRCAness Subgroups: The TNT Trial. Nat. Med. 2018, 24, 628–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortesi, L.; Rugo, H.S.; Jackisch, C. An Overview of PARP Inhibitors for the Treatment of Breast Cancer. Target. Oncol. 2021, 16, 255–282. [Google Scholar] [CrossRef]
- Weischer, M.; Bojesen, S.E.; Ellervik, C.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. CHEK2*1100delC Genotyping for Clinical Assessment of Breast Cancer Risk: Meta-Analyses of 26,000 Patient Cases and 27,000 Controls. J. Clin. Oncol. 2008, 26, 542–548. [Google Scholar] [CrossRef] [Green Version]
- Tomiczek-Szwiec, J.; Szwiec, M.; Falco, M.; Cybulski, C.; Wokolorczyk, D.; Jakubowska, A.; Gronwald, J.; Stawicka, M.; Godlewski, D.; Kilar, E.; et al. The Impact of Oophorectomy on Survival from Breast Cancer in Patients with CHEK2 Mutations. Br. J. Cancer 2022, 127, 84–91. [Google Scholar] [CrossRef]
- Cybulski, C.; Huzarski, T.; Byrski, T.; Gronwald, J.; Debniak, T.; Jakubowska, A.; Górski, B.; Wokołorczyk, D.; Masojć, B.; Narod, S.A.; et al. Estrogen Receptor Status in CHEK2-Positive Breast Cancers: Implications for Chemoprevention. Clin. Genet. 2009, 75, 72–78. [Google Scholar] [CrossRef]
- Cybulski, C.; Wokołorczyk, D.; Jakubowska, A.; Huzarski, T.; Byrski, T.; Gronwald, J.; Masojć, B.; Deebniak, T.; Górski, B.; Blecharz, P.; et al. Risk of Breast Cancer in Women with a CHEK2 Mutation with and without a Family History of Breast Cancer. J. Clin. Oncol. 2011, 29, 3747–3752. [Google Scholar] [CrossRef]
- Łukomska, A.; Menkiszak, J.; Gronwald, J.; Tomiczek-Szwiec, J.; Szwiec, M.; Jasiówka, M.; Blecharz, P.; Kluz, T.; Stawicka-Niełacna, M.; Mądry, R.; et al. Recurrent Mutations in BRCA1, BRCA2, RAD51C, PALB2 and CHEK2 in Polish Patients with Ovarian Cancer. Cancers 2021, 13, 849. [Google Scholar] [CrossRef]
- Cybulski, C.; Kluźniak, W.; Huzarski, T.; Wokołorczyk, D.; Kashyap, A.; Jakubowska, A.; Szwiec, M.; Byrski, T.; Dębniak, T.; Górski, B.; et al. Clinical Outcomes in Women with Breast Cancer and a PALB2 Mutation: A Prospective Cohort Analysis. Lancet Oncol. 2015, 16, 638–644. [Google Scholar] [CrossRef]
- Hanson, H.; Kulkarni, A.; Loong, L.; Kavanaugh, G.; Torr, B.; Allen, S.; Ahmed, M.; Antoniou, A.C.; Cleaver, R.; Dabir, T.; et al. UK Consensus Recommendations for Clinical Management of Cancer Risk for Women with Germline Pathogenic Variants in Cancer Predisposition Genes: RAD51C, RAD51D, BRIP1 and PALB2. J. Med. Genet. 2023, 60, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Lowry, K.P.; Geuzinge, H.A.; Stout, N.K.; Alagoz, O.; Hampton, J.; Kerlikowske, K.; de Koning, H.J.; Miglioretti, D.L.; van Ravesteyn, N.T.; Schechter, C.; et al. Breast Cancer Screening Strategies for Women With ATM, CHEK2, and PALB2 Pathogenic Variants: A Comparative Modeling Analysis. JAMA Oncol. 2022, 8, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Rogoża-Janiszewska, E.; Malińska, K.; Górski, B.; Scott, R.J.; Cybulski, C.; Kluźniak, W.; Lener, M.; Jakubowska, A.; Gronwald, J.; Huzarski, T.; et al. Prevalence of Germline TP53 Variants among Early-Onset Breast Cancer Patients from Polish Population. Breast Cancer 2021, 28, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Beeghly-Fadiel, A.; Long, J.; Zheng, W. Genetic Variants Associated with Breast-Cancer Risk: Comprehensive Research Synopsis, Meta-Analysis, and Epidemiological Evidence. Lancet Oncol. 2011, 12, 477–488. [Google Scholar] [CrossRef] [Green Version]
- Pauklin, S.; Sernández, I.V.; Bachmann, G.; Ramiro, A.R.; Petersen-Mahrt, S.K. Estrogen Directly Activates AID Transcription and Function. J. Exp. Med. 2009, 206, 99–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radmanesh, H.; Spethmann, T.; Enßen, J.; Schürmann, P.; Bhuju, S.; Geffers, R.; Antonenkova, N.; Khusnutdinova, E.; Sadr-Nabavi, A.; Shandiz, F.H.; et al. Assessment of an APOBEC3B Truncating Mutation, c.783delG, in Patients with Breast Cancer. Breast Cancer Res. Treat. 2017, 162, 31–37. [Google Scholar] [CrossRef] [PubMed]
Total (n) | APOBEC3B Mutation Positive | Prevalence (%) | OR (CI 95%) | p-Value | |
---|---|---|---|---|---|
Patients with Breast Cancer | |||||
All cases | 12,484 | 60 | 0.48% | 0.95 (0.56–1.59) | 0.9 |
Age (years) | |||||
≤40 | 1310 | 7 | 0.53% | 1.06 (0.44–2.51) | 0.9 |
41–50 | 4468 | 21 | 0.47% | 0.93 (0.50–1.72) | 0.9 |
51–60 | 3220 | 14 | 0.43% | 0.86 (0.43–1.71) | 0.8 |
61–70 | 2206 | 13 | 0.59% | 1.16 (0.57–2.36) | 0.8 |
≥71 | 1280 | 5 | 0.39% | 0.77 (0.29 –2.06) | 0.8 |
Number of Relatives with Breast Cancer * | |||||
0 | 9583 | 46 | 0.48% | 0.95 (0.55–1.61) | 0.9 |
1 | 1510 | 5 | 0.33% | 0.65 (0.24–1.75) | 0.5 |
≥2 | 458 | 3 | 0.66% | 1.29 (0.38–4.39) | 0.9 |
Reference | |||||
Cancer-free controls | 3740 | 19 | 0.51% | - | - |
APOBEC3B Mutation Positive Cases n = 60 | APOBEC3B Mutation Negative Cases n = 12,424 | p-Value | |
---|---|---|---|
Age at diagnosis (years) | 53.5 (33–83) | 54.0 (18–93) | 0.7 |
Histological features | |||
Ductal, grade 3 | 7/52 (13.5%) | 2023/10,093 (20%) | 0.3 |
Ductal, grade 1–2 | 22/52 (42.3%) | 4049/10,093 (40.1%) | 0.9 |
Ductal, grade unknown | 4/52 (7.7%) | 669/10,093 (6.6%) | 1.0 |
Medullary | 0/52 (0%) | 294/10,093 (2.9%) | 0.4 |
Lobular | 5/52 (9.6%) | 1241/10,093 (12.3%) | 0.7 |
Tubulolobular | 2/52 (3.8%) | 114/10,093 (1.1%) | 0.2 |
DCIS with microinvasion | 2/52 (3.8%) | 304/10,093 (3%) | 0.7 |
Other or undefined | 10/52 (19.2%) | 1399/10,093 (13.9%) | 0.4 |
Receptor status | |||
Estrogen receptor-positive | 36/43 (83.7%) | 5963/8592 (69.4%) | 0.1 |
Progesterone receptor-positive | 35/44 (79.5%) | 5882/8290 (70.9%) | 0.3 |
HER2-positive | 4/34 (11.8%) | 1275/7243 (17.6%) | 0.5 |
Size (cm) | |||
<1 | 7/46 (15.2%) | 905/7929 (11.4%) | 0.6 |
1–1.9 | 22/46 (47.8%) | 3212/7929 (40.5%) | 0.4 |
2–4.9 | 17/46 (37%) | 3482/7929 (43.9%) | 0.4 |
≥5 | 0/46 (0%) | 330/7929 (4.1%) | 0.3 |
Lymph node-positive | 14/47 (29.8%) | 3560/8179 (43.5%) | 0.1 |
Bilateral | 5/50 (10%) | 448/9786 (4.6%) | 0.1 |
Multifocal | 5/49 (10.2%) | 1068/8110 (13.2%) | 0.7 |
Chemotherapy (yes) | 24/50 (48%) | 4923/9166 (53.7%) | 0.5 |
Tamoxifen (yes) | 29/37 (78.4%) | 4116/6150 (66.9%) | 0.2 |
Vital status (deceased) | 10/59 (16.9%) | 2044/12,294 (16.6%) | 0.9 |
Cancer Site | Number (%) of Cancers in Relatives of APOBEC3B Mutation Positive Patients (n = 54 Families) | Number (%) of Cancers in Relatives of APOBEC3B Mutation Negative Patients (n = 11,497 Families) | p-Value | ||
---|---|---|---|---|---|
N | % | N | % | ||
Breast | 9 | 16.7% | 1904 | 16.6% | 1.0 |
Colon | 1 | 1.9% | 891 | 7.8% | 0.2 |
Kidney | 2 | 3.7% | 310 | 2.7% | 1.0 |
Larynx | 3 | 5.6% | 454 | 3.9% | 0.8 |
Lung | 6 | 11.1% | 1688 | 14.7% | 0.6 |
Leukemia or Lymphoma | 2 | 3.7% | 462 | 4.0% | 0.9 |
Pancreas | 2 | 3.7% | 322 | 2.8% | 0.7 |
Prostate | 4 | 7.4% | 788 | 6.9% | 0.9 |
Stomach | 1 | 1.9% | 968 | 8.4% | 0.1 |
Cervix/Endometrium | 1 | 1.9% | 1179 | 10.3% | 0.1 |
Ovary | 2 | 3.7% | 389 | 3.4% | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gliniewicz, K.; Kluźniak, W.; Wokołorczyk, D.; Huzarski, T.; Stempa, K.; Rudnicka, H.; Jakubowska, A.; Szwiec, M.; Jarkiewicz-Tretyn, J.; Naczk, M.; et al. The APOBEC3B c.783delG Truncating Mutation Is Not Associated with an Increased Risk of Breast Cancer in the Polish Population. Genes 2023, 14, 1329. https://doi.org/10.3390/genes14071329
Gliniewicz K, Kluźniak W, Wokołorczyk D, Huzarski T, Stempa K, Rudnicka H, Jakubowska A, Szwiec M, Jarkiewicz-Tretyn J, Naczk M, et al. The APOBEC3B c.783delG Truncating Mutation Is Not Associated with an Increased Risk of Breast Cancer in the Polish Population. Genes. 2023; 14(7):1329. https://doi.org/10.3390/genes14071329
Chicago/Turabian StyleGliniewicz, Katarzyna, Wojciech Kluźniak, Dominika Wokołorczyk, Tomasz Huzarski, Klaudia Stempa, Helena Rudnicka, Anna Jakubowska, Marek Szwiec, Joanna Jarkiewicz-Tretyn, Mariusz Naczk, and et al. 2023. "The APOBEC3B c.783delG Truncating Mutation Is Not Associated with an Increased Risk of Breast Cancer in the Polish Population" Genes 14, no. 7: 1329. https://doi.org/10.3390/genes14071329
APA StyleGliniewicz, K., Kluźniak, W., Wokołorczyk, D., Huzarski, T., Stempa, K., Rudnicka, H., Jakubowska, A., Szwiec, M., Jarkiewicz-Tretyn, J., Naczk, M., Kluz, T., Dębniak, T., Gronwald, J., Lubiński, J., Narod, S. A., Akbari, M. R., & Cybulski, C. (2023). The APOBEC3B c.783delG Truncating Mutation Is Not Associated with an Increased Risk of Breast Cancer in the Polish Population. Genes, 14(7), 1329. https://doi.org/10.3390/genes14071329