Germline CNV Detection through Whole-Exome Sequencing (WES) Data Analysis Enhances Resolution of Rare Genetic Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Whole-Exome Sequencing Data
2.3. CNV Analysis—ExomeDepth
2.4. CNV Confirmation
3. Results
3.1. CNV Detection and Characteristics
3.2. Diagnostic Yield
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramos-Fuentes, F.; González-Meneses, A.; Ars, E.; Hernández-Jaras, J. Genetic Diagnosis of Rare Diseases: Past and Present. Adv. Ther. 2020, 37, 29–37. [Google Scholar] [CrossRef]
- Hartley, T.; Lemire, G.; Kernohan, K.D.; Howley, H.E.; Adams, D.R.; Boycott, K.M. New Diagnostic Approaches for Undiagnosed Rare Genetic Diseases. Annu. Rev. Genomics Hum. Genet. 2020, 21, 351–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amberger, J.S.; Bocchini, C.A.; Scott, A.F.; Hamosh, A. OMIM.Org: Leveraging Knowledge across Phenotype-Gene Relationships. Nucleic Acids Res. 2019, 47, D1038–D1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boycott, K.M.; Rath, A.; Chong, J.X.; Hartley, T.; Alkuraya, F.S.; Baynam, G.; Brookes, A.J.; Brudno, M.; Carracedo, A.; den Dunnen, J.T.; et al. International Cooperation to Enable the Diagnosis of All Rare Genetic Diseases. Am. J. Hum. Genet. 2017, 100, 695–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawyer, S.L.; Hartley, T.; Dyment, D.A.; Beaulieu, C.L.; Schwartzentruber, J.; Smith, A.; Bedford, H.M.; Bernard, G.; Bernier, F.P.; Brais, B.; et al. Utility of Whole-Exome Sequencing for Those near the End of the Diagnostic Odyssey: Time to Address Gaps in Care. Clin. Genet. 2016, 89, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Rahit, K.M.T.H.; Tarailo-Graovac, M. Genetic Modifiers and Rare Mendelian Disease. Genes 2020, 11, 239. [Google Scholar] [CrossRef] [Green Version]
- Royer-Bertrand, B.; Cisarova, K.; Niel-Butschi, F.; Mittaz-Crettol, L.; Fodstad, H.; Superti-Furga, A. CNV Detection from Exome Sequencing Data in Routine Diagnostics of Rare Genetic Disorders: Opportunities and Limitations. Genes 2021, 12, 1427. [Google Scholar] [CrossRef]
- Shaikh, T.H. Copy Number Variation Disorders. Curr. Genet. Med. Rep. 2017, 5, 183–190. [Google Scholar] [CrossRef]
- Girirajan, S.; Campbell, C.D.; Eichler, E.E. Human Copy Number Variation and Complex Genetic Disease. Annu. Rev. Genet. 2011, 45, 203–226. [Google Scholar] [CrossRef]
- Testard, Q.; Vanhoye, X.; Yauy, K.; Naud, M.-E.; Vieville, G.; Rousseau, F.; Dauriat, B.; Marquet, V.; Bourthoumieu, S.; Geneviève, D.; et al. Exome Sequencing as a First-Tier Test for Copy Number Variant Detection: Retrospective Evaluation and Prospective Screening in 2418 Cases. J. Med. Genet. 2022, 59, 1234–1240. [Google Scholar] [CrossRef]
- Ewans, L.J.; Schofield, D.; Shrestha, R.; Zhu, Y.; Gayevskiy, V.; Ying, K.; Walsh, C.; Lee, E.; Kirk, E.P.; Colley, A.; et al. Whole-Exome Sequencing Reanalysis at 12 Months Boosts Diagnosis and Is Cost-Effective When Applied Early in Mendelian Disorders. Genet. Med. 2018, 20, 1564–1574. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Cabrera, J.M.; Del Valle, J.; Castellanos, E.; Feliubadaló, L.; Pineda, M.; Brunet, J.; Serra, E.; Capellà, G.; Lázaro, C.; Gel, B. Evaluation of CNV Detection Tools for NGS Panel Data in Genetic Diagnostics. Eur. J. Hum. Genet. 2020, 28, 1645–1655. [Google Scholar] [CrossRef]
- Rajagopalan, R.; Murrell, J.R.; Luo, M.; Conlin, L.K. A Highly Sensitive and Specific Workflow for Detecting Rare Copy-Number Variants from Exome Sequencing Data. Genome Med. 2020, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Boycott, K.M.; Hartley, T.; Biesecker, L.G.; Gibbs, R.A.; Innes, A.M.; Riess, O.; Belmont, J.; Dunwoodie, S.L.; Jojic, N.; Lassmann, T.; et al. A Diagnosis for All Rare Genetic Diseases: The Horizon and the Next Frontiers. Cell 2019, 177, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Jalkh, N.; Corbani, S.; Haidar, Z.; Hamdan, N.; Farah, E.; Abou Ghoch, J.; Ghosn, R.; Salem, N.; Fawaz, A.; Djambas Khayat, C.; et al. The Added Value of WES Reanalysis in the Field of Genetic Diagnosis: Lessons Learned from 200 Exomes in the Lebanese Population. BMC Med. Genom. 2019, 12, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdick, K.J.; Cogan, J.D.; Rives, L.C.; Robertson, A.K.; Koziura, M.E.; Brokamp, E.; Duncan, L.; Hannig, V.; Pfotenhauer, J.; Vanzo, R.; et al. Limitations of Exome Sequencing in Detecting Rare and Undiagnosed Diseases. Am. J. Med. Genet. A 2020, 182, 1400–1406. [Google Scholar] [CrossRef] [PubMed]
- Quaio, C.R.D.C.; Moreira, C.M.; Novo-Filho, G.M.; Sacramento-Bobotis, P.R.; Groenner Penna, M.; Perazzio, S.F.; Dutra, A.P.; da Silva, R.A.; Santos, M.N.P.; de Arruda, V.Y.N.; et al. Diagnostic Power and Clinical Impact of Exome Sequencing in a Cohort of 500 Patients with Rare Diseases. Am. J. Med. Genet. C Semin. Med. Genet. 2020, 184, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Marinakis, N.M.; Svingou, M.; Veltra, D.; Kekou, K.; Sofocleous, C.; Tilemis, F.-N.; Kosma, K.; Tsoutsou, E.; Fryssira, H.; Traeger-Synodinos, J. Phenotype-Driven Variant Filtration Strategy in Exome Sequencing toward a High Diagnostic Yield and Identification of 85 Novel Variants in 400 Patients with Rare Mendelian Disorders. Am. J. Med. Genet. A 2021, 185, 2561–2571. [Google Scholar] [CrossRef]
- Veltra, D.; Tilemis, F.-N.; Marinakis, N.M.; Svingou, M.; Mitrakos, A.; Kosma, K.; Tsoutsou, I.; Makrythanasis, P.; Theodorou, V.; Katsalouli, M.; et al. Combined Exome Analysis and Exome Depth Assessment Achieves a High Diagnostic Yield in an Epilepsy Case Series, Revealing Significant Genomic Heterogeneity and Novel Mechanisms. Expert Rev. Mol. Diagn. 2023, 23, 85–103. [Google Scholar] [CrossRef]
- Plagnol, V.; Curtis, J.; Epstein, M.; Mok, K.Y.; Stebbings, E.; Grigoriadou, S.; Wood, N.W.; Hambleton, S.; Burns, S.O.; Thrasher, A.J.; et al. A Robust Model for Read Count Data in Exome Sequencing Experiments and Implications for Copy Number Variant Calling. Bioinformatics 2012, 28, 2747–2754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Durbin, R. Fast and Accurate Long-Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ Data to High Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef] [Green Version]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The Human Genomic Variant Search Engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurbich, T.A.; Ilinsky, V.V. ClassifyCNV: A Tool for Clinical Annotation of Copy-Number Variants. Sci. Rep. 2020, 10, 20375. [Google Scholar] [CrossRef]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Correction: Technical Standards for the Interpretation and Reporting of Constitutional Copy-Number Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2021, 23, 2230. [Google Scholar] [CrossRef]
- Marchuk, D.S.; Crooks, K.; Strande, N.; Kaiser-Rogers, K.; Milko, L.V.; Brandt, A.; Arreola, A.; Tilley, C.R.; Bizon, C.; Vora, N.L.; et al. Increasing the Diagnostic Yield of Exome Sequencing by Copy Number Variant Analysis. PLoS ONE 2018, 13, e0209185. [Google Scholar] [CrossRef] [Green Version]
- Ellingford, J.M.; Campbell, C.; Barton, S.; Bhaskar, S.; Gupta, S.; Taylor, R.L.; Sergouniotis, P.I.; Horn, B.; Lamb, J.A.; Michaelides, M.; et al. Validation of Copy Number Variation Analysis for Next-Generation Sequencing Diagnostics. Eur. J. Hum. Genet. 2017, 25, 719–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lupski, J.R. Genomic Disorders: Structural Features of the Genome Can Lead to DNA Rearrangements and Human Disease Traits. Trends Genet. 1998, 14, 417–422. [Google Scholar] [CrossRef]
- Choi, B.G.; Hwang, S.K.; Kwon, J.E.; Kim, Y.H. Array Comparative Genomic Hybridization as the First-Line Investigation for Neonates with Congenital Heart Disease: Experience in a Single Tertiary Center. Korean Circ. J. 2018, 48, 209–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, N.P. Methods and Strategies for Analyzing Copy Number Variation Using DNA Microarrays. Nat. Genet. 2007, 39, S16–S21. [Google Scholar] [CrossRef] [Green Version]
- Gordeeva, V.; Sharova, E.; Babalyan, K.; Sultanov, R.; Govorun, V.M.; Arapidi, G. Benchmarking Germline CNV Calling Tools from Exome Sequencing Data. Sci. Rep. 2021, 11, 14416. [Google Scholar] [CrossRef] [PubMed]
- Gabrielaite, M.; Torp, M.H.; Rasmussen, M.S.; Andreu-Sánchez, S.; Vieira, F.G.; Pedersen, C.B.; Kinalis, S.; Madsen, M.B.; Kodama, M.; Demircan, G.S.; et al. A Comparison of Tools for Copy-Number Variation Detection in Germline Whole Exome and Whole Genome Sequencing Data. Cancers 2021, 13, 6283. [Google Scholar] [CrossRef] [PubMed]
- Tisserant, E.; Vitobello, A.; Callegarin, D.; Verdez, S.; Bruel, A.-L.; Aho Glele, L.S.; Sorlin, A.; Viora-Dupont, E.; Konyukh, M.; Marle, N.; et al. Copy Number Variants Calling from WES Data through EXome Hidden Markov Model (XHMM) Identifies Additional 2.5% Pathogenic Genomic Imbalances Smaller than 30 Kb Undetected by Array-CGH. Ann. Hum. Genet. 2022, 86, 171–180. [Google Scholar] [CrossRef]
- Cooper, G.M.; Coe, B.P.; Girirajan, S.; Rosenfeld, J.A.; Vu, T.H.; Baker, C.; Williams, C.; Stalker, H.; Hamid, R.; Hannig, V.; et al. A Copy Number Variation Morbidity Map of Developmental Delay. Nat. Genet. 2011, 43, 838–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochstenbach, R.; van Binsbergen, E.; Engelen, J.; Nieuwint, A.; Polstra, A.; Poddighe, P.; Ruivenkamp, C.; Sikkema-Raddatz, B.; Smeets, D.; Poot, M. Array Analysis and Karyotyping: Workflow Consequences Based on a Retrospective Study of 36,325 Patients with Idiopathic Developmental Delay in the Netherlands. Eur. J. Med. Genet. 2009, 52, 161–169. [Google Scholar] [CrossRef]
- Vickers, R.R.; Gibson, J.S. A Review of the Genomic Analysis of Children Presenting with Developmental Delay/Intellectual Disability and Associated Dysmorphic Features. Cureus 2019, 11, e3873. [Google Scholar] [CrossRef] [Green Version]
- Koyama, S.; Sato, H.; Wada, M.; Kawanami, T.; Emi, M.; Kato, T. Whole-Exome Sequencing and Digital PCR Identified a Novel Compound Heterozygous Mutation in the NPHP1 Gene in a Case of Joubert Syndrome and Related Disorders. BMC Med. Genet. 2017, 18, 37. [Google Scholar] [CrossRef] [Green Version]
- Tilemis, F.-N.; Marinakis, N.M.; Kosma, K.; Fostira, F.; Traeger-Synodinos, J. Identification of a Novel IQCE Large Deletion through Copy Number Variant Analysis from Whole-Exome Sequencing Data of a Patient with Postaxial Polydactyly Type A7. Mol. Syndromol. 2023, 14, 225–230. [Google Scholar] [CrossRef]
- Zanardo, É.A.; Monteiro, F.P.; Chehimi, S.N.; Oliveira, Y.G.; Dias, A.T.; Costa, L.A.; Ramos, L.L.; Novo-Filho, G.M.; Montenegro, M.M.; Nascimento, A.M.; et al. Application of Whole-Exome Sequencing in Detecting Copy Number Variants in Patients with Developmental Delay and/or Multiple Congenital Malformations. J. Mol. Diagn. 2020, 22, 1041–1049. [Google Scholar] [CrossRef]
- Büchse, T.; Horras, N.; Lenfert, E.; Krystal, G.; Körbel, S.; Schümann, M.; Krause, E.; Mikkat, S.; Tiedge, M. CIN85 Interacting Proteins in B Cells-Specific Role for SHIP-1. Mol. Cell Proteomics 2011, 10, M110.006239. [Google Scholar] [CrossRef] [Green Version]
- Keller, B.; Shoukier, M.; Schulz, K.; Bhatt, A.; Heine, I.; Strohmeier, V.; Speckmann, C.; Engels, N.; Warnatz, K.; Wienands, J. Germline Deletion of CIN85 in Humans with X Chromosome-Linked Antibody Deficiency. J. Exp. Med. 2018, 215, 1327–1336. [Google Scholar] [CrossRef]
- Shimokawa, N.; Haglund, K.; Hölter, S.M.; Grabbe, C.; Kirkin, V.; Koibuchi, N.; Schultz, C.; Rozman, J.; Hoeller, D.; Qiu, C.-H.; et al. CIN85 Regulates Dopamine Receptor Endocytosis and Governs Behaviour in Mice. EMBO J. 2010, 29, 2421–2432. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, A.; Kuwajima, M.; Miyake, K.; Kojima, K.; Nakashima, N.; Jimbo, E.F.; Kubota, T.; Momoi, M.Y.; Yamagata, T. An Xp22.12 Microduplication Including RPS6KA3 Identified in a Family with Variably Affected Intellectual and Behavioral Disabilities. J. Hum. Genet. 2013, 58, 755–757. [Google Scholar] [CrossRef] [Green Version]
- Uliana, V.; Bonatti, F.; Zanatta, V.; Mozzoni, P.; Martorana, D.; Percesepe, A. Spectrum of X-Linked Intellectual Disabilities and Psychiatric Symptoms in a Family Harbouring a Xp22.12 Microduplication Encompassing the RPS6KA3 Gene. J. Genet. 2019, 98, 10. [Google Scholar] [CrossRef]
- Colin, E.; Huynh Cong, E.; Mollet, G.; Guichet, A.; Gribouval, O.; Arrondel, C.; Boyer, O.; Daniel, L.; Gubler, M.-C.; Ekinci, Z.; et al. Loss-of-Function Mutations in WDR73 Are Responsible for Microcephaly and Steroid-Resistant Nephrotic Syndrome: Galloway-Mowat Syndrome. Am. J. Hum. Genet. 2014, 95, 637–648. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Yang, P.; Farrell, S.A. A Case of 8q22.1 Microdeletion without the Nablus Mask-like Facial Syndrome Phenotype. Eur. J. Med. Genet. 2010, 53, 108–110. [Google Scholar] [CrossRef]
- Allanson, J.; Smith, A.; Hare, H.; Albrecht, B.; Bijlsma, E.; Dallapiccola, B.; Donti, E.; Fitzpatrick, D.; Isidor, B.; Lachlan, K.; et al. Nablus Mask-like Facial Syndrome: Deletion of Chromosome 8q22.1 Is Necessary but Not Sufficient to Cause the Phenotype. Am. J. Med. Genet. A 2012, 158A, 2091–2099. [Google Scholar] [CrossRef]
- Shieh, J.T.C.; Aradhya, S.; Novelli, A.; Manning, M.A.; Cherry, A.M.; Brumblay, J.; Salpietro, C.D.; Bernardini, L.; Dallapiccola, B.; Hoyme, H.E. Nablus Mask-like Facial Syndrome Is Caused by a Microdeletion of 8q Detected by Array-Based Comparative Genomic Hybridization. Am. J. Med. Genet. A 2006, 140, 1267–1273. [Google Scholar] [CrossRef]
- Filer, D.L.; Kuo, F.; Brandt, A.T.; Tilley, C.R.; Mieczkowski, P.A.; Berg, J.S.; Robasky, K.; Li, Y.; Bizon, C.; Tilson, J.L.; et al. Pre-Capture Multiplexing Provides Additional Power to Detect Copy Number Variation in Exome Sequencing. BMC Bioinform. 2021, 22, 374. [Google Scholar] [CrossRef]
- de Ligt, J.; Boone, P.M.; Pfundt, R.; Vissers, L.E.L.M.; Richmond, T.; Geoghegan, J.; O’Moore, K.; de Leeuw, N.; Shaw, C.; Brunner, H.G.; et al. Detection of Clinically Relevant Copy Number Variants with Whole-Exome Sequencing. Hum. Mutat. 2013, 34, 1439–1448. [Google Scholar] [CrossRef]
- Mandelker, D.; Schmidt, R.J.; Ankala, A.; McDonald Gibson, K.; Bowser, M.; Sharma, H.; Duffy, E.; Hegde, M.; Santani, A.; Lebo, M.; et al. Navigating Highly Homologous Genes in a Molecular Diagnostic Setting: A Resource for Clinical next-Generation Sequencing. Genet. Med. 2016, 18, 1282–1289. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zhang, M.; Li, X.; Wang, Z.; Pan, D.; Shi, Y. Performance Comparison of Four Types of Target Enrichment Baits for Exome DNA Sequencing. Hereditas 2021, 158, 10. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Zhou, W. The Third Generation Sequencing: The Advanced Approach to Genetic Diseases. Transl. Pediatr. 2020, 9, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Petersen, L.M.; Martin, I.W.; Moschetti, W.E.; Kershaw, C.M.; Tsongalis, G.J. Third-Generation Sequencing in the Clinical Laboratory: Exploring the Advantages and Challenges of Nanopore Sequencing. J. Clin. Microbiol. 2019, 58, e01315-19. [Google Scholar] [CrossRef] [PubMed]
Category of Disorder | Cases | Considered Resolved after CNV Analysis | Remained Unresolved after CNV Analysis | CNV Positive Rates (Enriched Diagnostic Yield *) |
---|---|---|---|---|
Neurodevelopmental | 156 | 19 | 137 | 12.2% (4.2%) |
Neuromuscular | 67 | 5 | 62 | 7.5% (1.1%) |
Skeletal and connective tissue | 46 | 1 | 45 | 2.2% (0.2%) |
Renal | 26 | 1 | 25 | 3.9% (0.2%) |
Metabolic | 22 | 5 | 17 | 22.7% (1.1%) |
Ocular/Auditory | 21 | 2 | 19 | 9.5% (0.4%) |
Congenital anomalies/Syndromic | 20 | 2 | 18 | 10% (0.4%) |
Cardio and/or vascular | 17 | 0 | 17 | 0% (0%) |
Dermatological | 8 | 1 | 7 | 12.5% (0.2%) |
Others | 71 | 4 | 67 | 5.6% (0.9%) |
Total | 454 | 40 | 414 | 8.8% (4.3%) |
Algorithm/ Tool | Total Number of CNVs Detected in Each Sample | Number of Causative CNVs Identified (10 Positive Controls) | Concordance between Algorithms and Confirmation Methods | Range of CNVs Sizes | Need for Additional Tools? |
---|---|---|---|---|---|
ExomeDepth | 140 | 10 (of 10) | 96% | 1 exon—Entire chromosome | No |
cn.MOPS | 35 | 9 (of 10) | 85% | 3 exons—Entire chromosome | Yes—for annotation |
DeAnnCNV | 4 | 5 (of 10) | 91%(in the 5 detected) | 3 exons—Some Kbs | Yes—to convert BAM files to .tar.gz format |
Patient | Clinical Features | Age/Gender | Type | CNV Coordinates in Grch37/hg19 (CNV Size) | BF | Reads Ratio | Genes | No of Coding Genes/Exons (Exon No) | CNV Classification (ACMG/Clingen Score) | CNV Confirmation Method | Inheritance | SNV Combined with the CNV | Disease (MIM Number) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Neurodevelopmental Disorders | |||||||||||||
9 | Delayed speech and language development | 5-years-old/M | DUP | chrX:19564040_19954016 (390 Kb) | 124 | 1.64 | SH3KBP1 (NM_031892) | 15 Exons (1–15) | VUS: 0 (1A, 3A, 4N, 4O) | aCGH: arr[GRCh37] Χp22.12(19,591,222_19,935,900)x2 | XL | n/a | Immunodeficiency 61 (300310) |
10 | Seizures, GDD, preaxial hand polydactyly, knee dislocation, scoliosis and hypertelorism | 11-years-old/F | DUP | chr17:44949883_46507482 (1.6 Mb) | 1740 | 1.4 | PNPO (Whole gene) + 34 genes | 35 genes | LIKELY PATHOGENIC: 0.9 (1A, 2H, 2K, 2L, 3A, 4L, 4O) | STRs (Duplication Paternal) + Sanger (SNV Maternal) | AR, Compound HTZ with Pathogenic SNV | PNPO: c.674G>A, p.(Arg225His) | Pyridoxamine 5′-phosphate oxidase deficiency (610090) |
11 | GDD, dysplastic corpus callosum, inability to walk, almond-shaped palpebral fissure | 7-years-old/F | DEL | chr4:40337485_41941400 (1.6 Mb) | 342 | 0.7 (HTZ) | NSUN7, UCHL1, CHRNA9, MIR4802, APBB2, TMEM33, PHOX2B + 4 genes | 11 Genes | PATHOGENIC: 1 (1A, 2A, 2H, 3A, 4L) | n/a | AD (Haploinsufficiency) | n/a | n/a |
14 | Seizures, tetraplegia, GDD, microcephaly, corpus callosum and cerebellar atrophy, reduced cerebral white matter volume, cataract and hip dislocation | 15-years-old/F | DEL | chr15:84908070_85681134 (773 Kb) | 690 | 0.55 (HTZ) | WDR73 + 12 genes | 13 Genes | PATHOGENIC: 1 (1A, 2A, 2H, 3A, 4L, 4N) | n/a | AR, Compound HTZ with Pathogenic SNV (seemed HOM) | WDR73: c.525_565dup, p.(Asp189Valfs*6) | Galloway-Mowat syndrome 1 (251300) |
Skeletal/Connective tissue Disorders | |||||||||||||
25 | Polydactyly, brachydactyly and hypoplastic teeth | 3-years-old/F | DEL | chr7:2606751_2641098 (34.3 Kb) | 29 | 0.7 (HTZ) | IQCE (NM_152558) | 17 Exons (2–18) | LIKELY PATHOGENIC: 0.9 (1A, 2B, 2E, 3A) | STRs (Deletion Maternal) + Sanger seq for SNV (SNV Paternal) | AR, Compound HTZ with Pathogenic SNV (seemed HOM) | IQCE: c.895_904del, p. (Val301Serfs*8) | Polydactyly, postaxial, type A7 (617642) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tilemis, F.-N.; Marinakis, N.M.; Veltra, D.; Svingou, M.; Kekou, K.; Mitrakos, A.; Tzetis, M.; Kosma, K.; Makrythanasis, P.; Traeger-Synodinos, J.; et al. Germline CNV Detection through Whole-Exome Sequencing (WES) Data Analysis Enhances Resolution of Rare Genetic Diseases. Genes 2023, 14, 1490. https://doi.org/10.3390/genes14071490
Tilemis F-N, Marinakis NM, Veltra D, Svingou M, Kekou K, Mitrakos A, Tzetis M, Kosma K, Makrythanasis P, Traeger-Synodinos J, et al. Germline CNV Detection through Whole-Exome Sequencing (WES) Data Analysis Enhances Resolution of Rare Genetic Diseases. Genes. 2023; 14(7):1490. https://doi.org/10.3390/genes14071490
Chicago/Turabian StyleTilemis, Faidon-Nikolaos, Nikolaos M. Marinakis, Danai Veltra, Maria Svingou, Kyriaki Kekou, Anastasios Mitrakos, Maria Tzetis, Konstantina Kosma, Periklis Makrythanasis, Joanne Traeger-Synodinos, and et al. 2023. "Germline CNV Detection through Whole-Exome Sequencing (WES) Data Analysis Enhances Resolution of Rare Genetic Diseases" Genes 14, no. 7: 1490. https://doi.org/10.3390/genes14071490
APA StyleTilemis, F.-N., Marinakis, N. M., Veltra, D., Svingou, M., Kekou, K., Mitrakos, A., Tzetis, M., Kosma, K., Makrythanasis, P., Traeger-Synodinos, J., & Sofocleous, C. (2023). Germline CNV Detection through Whole-Exome Sequencing (WES) Data Analysis Enhances Resolution of Rare Genetic Diseases. Genes, 14(7), 1490. https://doi.org/10.3390/genes14071490