Nucleic Acids Persistence—Benefits and Limitations in Forensic Genetics
Abstract
:1. Introduction
2. Analysis of Genetic Material
3. Degradation Factors
3.1. Time
3.1.1. Historical Cases—Genetic Material Identification after Long Time
3.1.2. Post-Mortem Interval (PMI) and Time since Deposition (TsD)
3.2. Temperature
3.3. pH
3.4. Cleaning Agents
3.5. Water Environment
3.6. Maceration
3.7. Radiation
4. Future Directions
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jobling, M.A.; Gill, P. Encoded evidence: DNA in forensic analysis. Nat. Rev. Genet. 2004, 5, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.; Kokshoorn, B.; Biedermann, A. Evaluation of forensic genetics findings given activity level propositions: A review. Forensic Sci. Int. Genet. 2018, 36, 34–49. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.F. DNA: Blueprint of the Proteins. In Chemical Biology; Schmidt, M.F., Ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 33–47. [Google Scholar]
- Travers, A.; Muskhelishvili, G. DNA structure and function. FEBS J. 2015, 282, 2279–2295. [Google Scholar] [CrossRef] [PubMed]
- Reither, J.B.; Gray, E.; Durdle, A.; Conlan, X.A.; van Oorschot, R.A.; Szkuta, B. Investigation into the prevalence of background DNA on flooring within houses and its transfer to a contacting surface. Forensic Sci. Int. 2021, 318, 110563. [Google Scholar] [CrossRef]
- Fonneløp, A.E.; Ramse, M.; Egeland, T.; Gill, P. The implications of shedder status and background DNA on direct and secondary transfer in an attack scenario. Forensic Sci. Int. Genet. 2017, 29, 48–60. [Google Scholar] [CrossRef]
- Suguna, S.; Nandal, D.; Kamble, S.; Bharatha, A.; Kunkulol, R. Genomic DNA isolation from human whole blood samples by non enzymatic salting out method. Int. J. Pharm. Sci. 2014, 6, 198–199. [Google Scholar]
- Fordyce, S.L.; Kampmann, M.L.; Van Doorn, N.L.; Gilbert, M.T.P. Long-term RNA persistence in postmortem contexts. Investig. Genet. 2013, 4, 7. [Google Scholar] [CrossRef]
- Lindahl, T. Instability and decay of the primary structure of DNA. Nature 1993, 362, 709–715. [Google Scholar] [CrossRef]
- Fattorini, P.; Bonin, S.; Marrubini, G.; Bertoglio, B.; Grignani, P.; Recchia, E.; Pitacco, P.; Zupanic Pajnic, I.; Sorcaburu-Ciglieri, S.; Previderè, C. Highly degraded RNA can still provide molecular information: An in vitro approach. Electrophoresis 2020, 41, 386–393. [Google Scholar] [CrossRef]
- Humphreys-Beher, M.G.; King, F.K.; Bunnel, B.; Brody, B. Isolation of biologically active RNA from human autopsy for the study of cystic fibrosis. Biotechnol. Appl. Biochem. 1986, 8, 392–403. [Google Scholar]
- Cummings, T.J.; Strum, J.C.; Yoon, L.W.; Szymanski, M.H.; Hulette, C.M. Recovery and expression of messenger RNA from postmortem human brain tissue. Modern Pathol. 2001, 14, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- Hofreiter, M.; Jaenicke, V.; Serre, D.; Haeseler, A.V.; Pääbo, S. DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res. 2001, 29, 4793–4799. [Google Scholar] [CrossRef] [PubMed]
- Pääbo, S.; Poinar, H.; Serre, D.; Jaenicke-Després, V.; Hebler, J.; Rohland, N.; Kuch, M.; Krause, J.; Vigilant, L.; Hofreiter, M. Genetic analyses from ancient DNA. Annu. Rev. Genet. 2004, 38, 645–679. [Google Scholar] [CrossRef] [PubMed]
- Sampaio-Silva, F.; Magalhães, T.; Carvalho, F.; Dinis-Oliveira, R.J.; Silvestre, R. Profiling of RNA degradation for estimation of post morterm interval. PLoS ONE 2013, 8, e56507. [Google Scholar] [CrossRef]
- Van den Berge, M.; Wiskerke, D.; Gerretsen, R.R.R.; Tabak, J.; Sijen, T. DNA and RNA profiling of excavated human remains with varying postmortem intervals. Int. J. Leg. Med. 2016, 130, 1471–1480. [Google Scholar] [CrossRef]
- Preece, P.; Cairns, N.J. Quantifying mRNA in postmortem human brain: Influence of gender, age at death, postmortem interval, brain pH, agonal state and inter-lobe mRNA variance. Mol. Brain Res. 2003, 118, 60–71. [Google Scholar] [CrossRef]
- Bellacosa, A.; Moss, E.G. RNA repair: Damage control. Curr. Biol. 2003, 13, R482–R484. [Google Scholar] [CrossRef]
- Chatterjee, N.; Walker, G.C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 2017, 58, 235–263. [Google Scholar] [CrossRef]
- Handt, O.; Höss, M.; Krings, M.; Pääbo, S. Ancient DNA: Methodological challenges. Experientia 1994, 50, 524–529. [Google Scholar] [CrossRef]
- Zeiss, C.J. The apoptosis-necrosis continuum: Insights from genetically altered mice. Vet. Pathol. 2003, 40, 481–495. [Google Scholar] [CrossRef]
- Durdle, A.; Mitchell, R.J.; van Oorschot, R.A. The human DNA content in artifacts deposited by the blowfly Lucilia cuprina fed human blood, semen and saliva. Forensic Sci. Int. 2013, 233, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.C.; Santos, A.B.R.; Rabelo, K.C.N.; Souza, C.A.; Santos, S.M.; Crovella, S. Human autosomal DNA and X chromosome STR profiles obtained from Chrysomya albiceps (Diptera: Calliphoridae) larvae used as a biological trace. Genet. Mol. Res. 2016, 15, gmr15047622. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.M. Forensic DNA Typing: Biology & Technology Behind STR Markers; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Freire-Aradas, A.; Fondevila, M.; Kriegel, A.K.; Phillips, C.; Gill, P.; Prieto, L.; Carracedo, A.; Lareu, M.V. A new SNP assay for identification of highly degraded human DNA. Forensic Sci. Int. Genet. 2012, 6, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Alaeddini, R.; Walsh, S.J.; Abbas, A. Forensic implications of genetic analyses from degraded DNA—A review. Forensic Sci. Int. Genet. 2010, 4, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Al-Kandari, N.M.; Singh, J.; Sangar, V.C. Time-dependent effects of temperature and humidity on quality of DNA in samples of human saliva, blood and semen in Kuwait. Int. J. Pharm. Sci. Res. 2016, 7, 2852–2873. [Google Scholar]
- Burger, J.; Hummel, S.; Herrmann, B.; Henke, W. DNA preservation: A microsatellite-DNA study on ancient skeletal remains. Electrophoresis 1999, 20, 1722–1728. [Google Scholar] [CrossRef]
- Cermakova, E.; Lencova, S.; Mukherjee, S.; Horka, P.; Vobruba, S.; Demnerova, K.; Zdenkova, K. Identification of fish species and targeted genetic modifications based on DNA analysis: State of the art. Foods 2023, 12, 228. [Google Scholar] [CrossRef]
- Gilbert, M.T.; Binladen, J.; Miller, W.; Wiuf, C.; Willerslev, E.; Poinar, H.; Carlson, J.E.; Leebens-Mack, J.H.; Schuster, S.C. Recharacterization of ancient DNA miscoding lesions: Insights in the era of sequencing-by-synthesis. Nucleic Acids Res. 2007, 35, 1–10. [Google Scholar] [CrossRef]
- Wells, J.; LaMotte, L. The role of a PMI-prediction model in evaluating forensic entomology experimental design, the importance of covariates, and the utility of response variables for estimating time since death. Insects 2017, 8, 47. [Google Scholar] [CrossRef]
- Gill, P. An assessment of the utility of single nucleotide polymorphisms (SNPs) for forensic purposes. Int. J. Leg. Med. 2001, 114, 204–210. [Google Scholar] [CrossRef]
- Dixon, L.A.; Dobbins, A.E.; Pulker, H.K.; Butler, J.M.; Vallone, P.M.; Coble, M.D.; Parson, W.; Berger, B.; Grubweisser, P.; Mogensen, H.S.; et al. Analysis of artificially degraded DNA using STRs and SNPs—Results of a collaborative European (EDNAP) exercise. Forensic Sci. Int. 2006, 164, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Mulero, J.J.; Chang, C.W.; Lagace, R.E.; Wang, D.Y.; Bas, J.L.; McMahon, T.P.; Hennessy, L.K. Development and validation of the AmpFℓSTR® MiniFilerTM PCR Amplification Kit: A miniSTR multiplex for the analysis of degraded and/or PCR inhibited DNA. J. Forensic Sci. 2008, 53, 838–852. [Google Scholar] [CrossRef]
- Bender, K.; Schneider, P.M.; Rittner, C. Application of mtDNA sequence analysis in forensic casework for the identification of human remains. Forensic Sci. Int. 2000, 113, 103–107. [Google Scholar] [CrossRef]
- Just, R.S.; Irwin, J.A.; O’Callaghan, J.E.; Saunier, J.L.; Coble, M.D.; Vallone, P.M.; Butler, J.M.; Barritt, S.M.; Parsons, T.J. Toward increased utility of mtDNA in forensic identifications. Forensic Sci. Int. 2004, 146, S147–S149. [Google Scholar] [CrossRef] [PubMed]
- Green, R.L.; Roinestad, I.C.; Boland, C.; Hennessy, L.K. Developmental validation of the Quantifiler™ real-time PCR kits for the quantification of human nuclear DNA samples. J. Forensic Sci. 2005, 50, 809–825. [Google Scholar] [CrossRef] [PubMed]
- Barbisin, M.; Fang, R.; O’Shea, C.E.; Calandro, L.M.; Furtado, M.R.; Shewale, J.G. Developmental validation of the Quantifiler® Duo DNA quantification kit for simultaneous quantification of total human and human male DNA and detection of PCR inhibitors in biological samples. J. Forensic Sci. 2009, 54, 305–319. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Kim, H.S.; Kim, M.H.; Park, M.; Kwon, H.; Lee, Y.H.; Lee, D.S. Validation of reduced reagent volumes in the implementation of the Quantifiler® Trio Quantification Kit. J. Forensic Sci. 2018, 63, 517–525. [Google Scholar] [CrossRef]
- Morrison, J.; McColl, S.; Louhelainen, J.; Sheppard, K.; May, A.; Girdland-Flink, L.; Watts, G.; Dawnay, N. Assessing the performance of quantity and quality metrics using the QIAGEN Investigator® Quantiplex® pro RGQ kit. Sci. Justice 2020, 60, 388–397. [Google Scholar] [CrossRef]
- Frégeau, C.J.; Laurin, N. The Qiagen Investigator® Quantiplex HYres as an alternative kit for DNA quantification. Forensic Sci. Int. Genet. 2015, 16, 148–162. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, D.; Delauriere, L.; Schagat, T. Methods of RNA Quality Assessment. 2012. Available online: http://www.promega.co.uk/resources/pubhub/methods-of-rna-quality-assessment/ (accessed on 27 May 2023).
- Kloosterman, A.; Sjerps, M.; Quak, A. Error rates in forensic DNA analysis: Definition, numbers, impact and communication. Forensic Sci. Int. Genet. 2014, 12, 77–85. [Google Scholar] [CrossRef]
- Nilsson, M.; Maeyer, H.D.; Allen, M. Evaluation of different cleaning strategies for removal of contaminating DNA molecules. Genes 2022, 13, 162. [Google Scholar] [CrossRef] [PubMed]
- Sprecher, C.J.; Puers, C.; Lins, A.M.; Schumm, J.W. General approach to analysis of polymorphic short tandem repeat loci. BioTechniques 1996, 20, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Rojas, A.R.; Angeles-Estrada, L.; Pérez Vielma, N.M.; Sánchez-Monroy, V. Short tandem repeat (STR) instability in the oral mucosa of patients submitted to fixed orthodontic therapy: A limitation of STR profile quality for human identification. Forensic Sci. Med. Pathol. 2022, 18, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Harder, M.; Renneberg, R.; Meyer, P.; Krause-Kyora, B.; Wurmb-Schwark, N.V. STR-typing of ancient skeletal remains: Which multiplex-PCR kit is the best? Croat. Med. J. 2012, 53, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, C.M.; Klein-Unseld, R.; Klintschar, M.; Wiegand, P. Comparison of different interpretation strategies for low template DNA mixtures. Forensic Sci. Int. Genet. 2012, 6, 716–722. [Google Scholar] [CrossRef]
- Parys-Proszek, A.; Marcińska, M.; Branicki, W.; Pawłowski, R.; Kupiec, T.; Grzybowski, T.; Woźniak, M.; Spólnicka, M.; Jacewicz, R. Examination of LT-DNA traces–literature overview and general recommendations of the Polish Speaking Working Group of the International Society for Forensic Genetics (ISFG-PL). Arch. Forensic Med. Criminol. 2020, 70, 103–123. [Google Scholar] [CrossRef]
- Dash, H.R.; Das, S. Microbial degradation of forensic samples of biological origin: Potential threat to human DNA typing. Mol. Biotechnol. 2018, 60, 141–153. [Google Scholar] [CrossRef]
- Van Oorschot, R.A.; Ballantyne, K.N.; Mitchell, R.J. Forensic trace DNA: A review. Investig. Genet. 2010, 1, 14. [Google Scholar] [CrossRef]
- Alterauge, A.; Lösch, S.; Sulzer, A.; Gysi, M.; Haas, C. Beyond simple kinship and identification: aDNA analyses from a 17th-19th century crypt in Germany. Forensic Sci. Int. Genet. 2021, 53, 102498. [Google Scholar] [CrossRef]
- Gaibar, M.; Esteban, M.E.; Via, M.; Harich, N.; Kandil, M.; Fernández-Santander, A. Usefulness of autosomal STR polymorphisms beyond forensic purposes: Data on Arabic-and Berber-speaking populations from central Morocco. Ann. Hum. Biol. 2012, 39, 297–304. [Google Scholar] [CrossRef]
- Gittelson, S.; Steffen, C.R.; Coble, M.D. Low-template DNA: A single DNA analysis or two replicates? Forensic Sci. Int. 2016, 264, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.T.; Drábek, J.; Opel, K.L.; Butler, J.M.; McCord, B.R. A study on the effects of degradation and template concentration on the amplification efficiency of the STR Miniplex primer sets. J. Forensic Sci. 2004, 49, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Opel, K.L.; Chung, D.T.; Drábek, J.; Tatarek, N.E.; Jantz, L.M.; McCord, B.R. The application of miniplex primer sets in the analysis of degraded DNA from human skeletal remains. J. Forensic Sci. 2006, 51, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Holland, M.M.; Cave, C.A.; Holland, C.A.; Bille, T.W. Development of a quality, high throughput DNA analysis procedure for skeletal samples to assist with the identification of victims from the World Trade Center attacks. Croat. Med. J. 2003, 44, 264–272. [Google Scholar] [PubMed]
- Coble, M.D.; Butler, J.M. Characterization of new miniSTR loci to aid analysis of degraded DNA. J. Forensic Sci. 2005, 50, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Tie, J.; Uchigasaki, S. Detection of short tandem repeat polymorphisms from human nails using direct polymerase chain reaction method. Electrophoresis 2014, 35, 3188–3192. [Google Scholar] [CrossRef]
- Sirker, M.; Schneider, P.M.; Gomes, I. A 17-month time course study of human RNA and DNA degradation in body fluids under dry and humid environmental conditions. Int. J. Leg. Med. 2016, 130, 1431–1438. [Google Scholar] [CrossRef]
- Wang, H.; Mao, J.; Li, Y.; Luo, H.; Wu, J.; Liao, M.; Linag, W.; Zhang, L. 5 miRNA expression analyze in post-mortem interval (PMI) within 48 h. Forensic Sci. Int. Genet. Suppl. Ser. 2013, 4, e190–e191. [Google Scholar] [CrossRef]
- Alonso, A.; Martín, P.; Albarrán, C.; García, P.; García, O.; de Simón, L.F.; Garcia-Hirszfeld, J.; Sancho, M.; de La Rua, C.; Fernández-Piqueras, J. Real-time PCR designs to estimate nuclear and mitochondrial DNA copy number in forensic and ancient DNA studies. Forensic Sci. Int. 2004, 139, 141–149. [Google Scholar] [CrossRef]
- Rollo, F.; Ubaldi, M.; Ermini, L.; Marota, I. Ötzi’s last meals: DNA analysis of the intestinal content of the Neolithic glacier mummy from the Alps. Proc. Nat. Acad. Sci. USA 2002, 99, 12594–12599. [Google Scholar] [CrossRef]
- Oh, C.S.; Seo, M.; Lee, H.J.; Kim, M.J.; Lim, D.S.; Shin, D.H. Genetic analysis of ancient Clonorchis sinensis eggs attained from Goryeong mummy of Joseon dynasty period. J. Parasitol. 2022, 108, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Loreille, O.; Ratnayake, S.; Bazinet, A.L.; Stockwell, T.B.; Sommer, D.D.; Rohland, N.; Mallick, S.; Johnson, P.L.F.; Skoglund, P.; Onorato, A.J.; et al. Biological sexing of a 4000-year-old Egyptian mummy head to assess the potential of nuclear DNA recovery from the most damaged and limited forensic specimens. Genes 2018, 9, 135. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.; Fu, Q.; Aximu-Petri, A.; Glocke, I.; Nickel, B.; Arsuaga, J.L.; Martinez, I.; Gracia, A.; Bermudez de Castro, J.M.; Carbonell, E.; et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 2014, 505, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Slon, V.; Hopfe, C.; Weiß, C.L.; Mafessoni, F.; De La Rasilla, M.; Lalueza-Fox, C.; Rosas, A.; Soressi, M.; Knul, M.V.; Miller, R.; et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 2017, 356, 605–608. [Google Scholar] [CrossRef]
- Rohland, N.; Glocke, I.; Aximu-Petri, A.; Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 2018, 13, 2447–2461. [Google Scholar] [CrossRef]
- Kalmar, T.; Bachrati, C.Z.; Marcsik, A.; Rasko, I. A simple and efficient method for PCR amplifiable DNA extraction from ancient bones. Nucleic Acids Res. 2000, 28, e67. [Google Scholar] [CrossRef]
- Leonard, J.A.; Wayne, R.K.; Cooper, A. Population genetics of Ice Age brown bears. Proc. Nat. Acad. Sci. USA 2000, 97, 1651–1654. [Google Scholar] [CrossRef]
- Gansauge, M.T.; Aximu-Petri, A.; Nagel, S.; Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 2020, 15, 2279–2300. [Google Scholar] [CrossRef]
- Hänni, C.; Brousseau, T.; Laudet, V.; Stehelin, D. Isopropanol precipitation removes PCR inhibitors from ancient bone extracts. Nucleic Acids Res. 1995, 23, 881. [Google Scholar] [CrossRef]
- Glocke, I.; Meyer, M. Extending the spectrum of DNA sequences retrieved from ancient bones and teeth. Genome Res. 2017, 27, 1230–1237. [Google Scholar] [CrossRef]
- Gaensslen, R.E. Forensic analysis of biological evidence. In Forensic Sciences; Wecht, C.H., Ed.; Matthew Bender Elite Products: New York, NY, USA, 2000; Volume 1, Chapter 29. [Google Scholar]
- Connery, S.A. Three decade old cold case murder solved with evidence from a sexual assault kit. J. Forensic Leg. Med. 2013, 20, 355–356. [Google Scholar] [CrossRef] [PubMed]
- Evans, C. The Casebook of Forensic Detection: How Science Solved 100 of the World’s Most Baffling Crimes, Updated Ed.; Berkley Books: Ney York, NY, USA, 2007. [Google Scholar]
- Leahy, P. Using DNA and forensic science to catch the guilty and protect the innocent. Fed. Sent. R. 2007, 20, 354. [Google Scholar] [CrossRef]
- Driscoll, A. The Evolution of the Criminal Justice System through DNA Sequencing. 2017. Available online: https://digitalcommons.sacredheart.edu/cgi/viewcontent.cgi?article=1361&context=acadfest (accessed on 27 May 2023).
- Hampikian, G.; West, E.; Akselrod, O. The genetics of innocence: Analysis of 194 US DNA exonerations. Ann. Rev. Genom. Hum. Genet. 2019, 12, 97–120. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yi, S.; Liu, L. Image analysis for degradation of DNA in retinal nuclei of rat after death. J. Huazhong Uni. Sci. Technol. 2007, 27, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.; Soni, S.; White, J.; Can, G.; Javan, G.T. Evaluation of DNA degradation using flow cytometry: Promising tool for postmortem interval determination. Am. J. Forensic Med. Pathol. 2015, 36, 104–110. [Google Scholar] [CrossRef]
- Huang, H.S.; Matevossian, A.; Jiang, Y.; Akbarian, S. Chromatin immunoprecipitation in postmortem brain. J. Neurosci. Methods 2006, 156, 284–292. [Google Scholar] [CrossRef]
- Liu, L.; Shu, X.; Ren, L.; Zhou, H.; Li, Y.; Liu, W.; Zhu, C.; Liu, L. Determination of the early time of death by computerized image analysis of DNA degradation: Which is the best quantitative indicator of DNA degradation? J. Huazhong Univ. Sci. Technolog. Med. Sci. 2007, 27, 362–366. [Google Scholar] [CrossRef]
- Johnson, L.A.; Ferris, J.A. Analysis of postmortem DNA degradation by single-cell gel electrophoresis. Forensic Sci. Int. 2002, 126, 43–47. [Google Scholar] [CrossRef]
- Birdsill, A.C.; Walker, D.G.; Lue, L.; Sue, L.I.; Beach, T.G. Postmortem interval effect on RNA and gene expression in human brain tissue. Cell Tissue Bank. 2011, 12, 311–318. [Google Scholar] [CrossRef]
- González-Herrera, L.; Valenzuela, A.; Marchal, J.A.; Lorente, J.A.; Villanueva, E. Studies on RNA integrity and gene expression in human myocardial tissue, pericardial fluid and blood, and its postmortem stability. Forensic Sci. Int. 2013, 232, 218–228. [Google Scholar] [CrossRef]
- Scrivano, S.; Sanavio, M.; Tozzo, P.; Caenazzo, L. Analysis of RNA in the estimation of post-mortem interval: A review of current evidence. Int. J. Leg. Med. 2019, 133, 1629–1640. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.H.; Ma, K.J.; Zhang, H.; He, M.; Zhang, P.; Shen, Y.W.; Jiang, N.; Ma, D.; Chen, L. A time course study demonstrating mRNA, microRNA, 18S rRNA, and U6 snRNA changes to estimate PMI in deceased rat’s spleen. J. Forensic Sci. 2017, 59, 1286–1294. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.; Du, T.; Ye, X.; Shao, C.; Xie, J.; Shen, Y. Using miRNAs and circRNAs to estimate PMI in advanced stage. Leg. Med. 2019, 38, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.E.; Sashital, D.G.; Zuo, X.; Wang, Y.X.; Butcher, S.E. Structure of the yeast U2/U6 snRNA complex. RNA 2012, 18, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.; Du, T.; Shao, C.; Liu, Z.; Li, L.; Shen, Y. Evaluating the potential of housekeeping genes, rRNAs, snRNAs, microRNAs and circRNAs as reference genes for the estimation of PMI. Forensic Sci. Med. Pathol. 2018, 14, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.H.; Ma, J.L.; Pan, H.; Zeng, Y.; Tao, L.; Zhang, H.; Li, W.-C.; Ma, K.-J.; Chen, L. Estimation of the human postmortem interval using an established rat mathematical model and multi-RNA markers. Forensic Sci. Med. Pathol. 2017, 13, 20–27. [Google Scholar] [CrossRef]
- Inoue, H.; Kimura, A.; Tuji, T. Degradation profile of mRNA in a dead rat body: Basic semi-quantification study. Forensic Sci. Int. 2002, 130, 127–132. [Google Scholar] [CrossRef]
- Trotter, S.A.; Brill Ii, L.B.; Bennett, J.P., Jr. Stability of gene expression in postmortem brain revealed by cDNA gene array analysis. Brain Res. 2002, 942, 120–123. [Google Scholar] [CrossRef]
- Belk, A.; Xu, Z.Z.; Carter, D.O.; Lynne, A.; Bucheli, S.; Knight, R.; Metcalf, J.L. Microbiome data accurately predicts the postmortem interval using random forest regression models. Genes 2018, 9, 104. [Google Scholar] [CrossRef]
- Sguazzi, G.; Mickleburgh, H.L.; Ghignone, S.; Voyron, S.; Renò, F.; Migliario, M.; Sellitto, F.; Lovisolo, F.; Camurani, G.; Ogbanga, N.; et al. Microbial DNA in human nucleic acid extracts: Recoverability of the microbiome in DNA extracts stored frozen long-term and its potential and ethical implications for forensic investigation. Forensic Sci. Int. Genet. 2022, 59, 102686. [Google Scholar] [CrossRef]
- Bremmer, R.H.; de Bruin, K.G.; van Gemert, M.J.; van Leeuwen, T.G.; Aalders, M.C. Forensic quest for age determination of bloodstains. Forensic Sci. Int. 2012, 216, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sijen, T.; Harbison, S. On the identification of body fluids and tissues: A crucial link in the investigation and solution of crime. Genes 2021, 12, 1728. [Google Scholar] [CrossRef] [PubMed]
- Naresh, K.; Ritika, G.; Aanchal, M.; Dhruw, S.; Shukla, S.K. Role of vaginal washing in semen detection and DNA profiling in delayed medical examination of sexual assault cases: A case study. J. Forensic Sci. Criminol. 2017, 5, 501. [Google Scholar]
- Bird, T.A.G.; Walton-Williams, L.; Williams, G. Time since deposition of biological fluids using RNA degradation. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 401–402. [Google Scholar] [CrossRef]
- Bauer, M.; Polzin, S.; Patzelt, D. Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: A possible indicator of the age of bloodstains? Forensic Sci. Int. 2003, 138, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.E.; Hobbs, G.R.; Bishop, C.P. Multivariate analysis for estimating the age of a bloodstain. J. Forensic Sci. 2011, 56, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Kohlmeier, F.; Schneider, P.M. Successful mRNA profiling of 23 years old blood stains. Forensic Sci. Int. Genet. 2012, 6, 274–276. [Google Scholar] [CrossRef]
- Weinbrecht, K.D.; Fu, J.; Payton, M.; Allen, R.W. Time-dependent loss of mRNA transcripts from forensic stains. Res. Rep. Forensic Med. Sci. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Zubakov, D.; Kokshoorn, M.; Kloosterman, A.; Kayser, M. New markers for old stains: Stable mRNA markers for blood and saliva identification from up to 16-year-old stains. Int. J. Leg. Med. 2009, 123, 71–74. [Google Scholar] [CrossRef]
- Boyko, T.; Mitchell, R.J.; van Oorschot, R.A.H. DNA within cars: Prevalence of DNA from driver, passenger and others on steering wheels. Aust. J. Forensic Sci. 2019, 51 (Suppl. 1), S91–S94. [Google Scholar] [CrossRef]
- De Wolff, T.; Aarts, L.H.J.; van den Berge, M.; Boyko, T.; van Oorschot, R.A.H.; Zuidberg, M.; Kokshoorn, B. Prevalence of DNA in vehicles: Linking clothing of a suspect to car occupancy. Aust. J. Forensic Sci. 2019, 51 (Suppl. 1), S103–S106. [Google Scholar] [CrossRef]
- Boyko, T.; Szkuta, B.; Mitchell, R.J.; van Oorschot, R.A. Prevalence of DNA from the driver, passengers and others within a car of an exclusive driver. Forensic Sci. Int. 2019, 307, 110139. [Google Scholar] [CrossRef] [PubMed]
- De Wolff, T.R.; Aarts, L.H.J.; van den Berge, M.; Boyko, T.; van Oorschot, R.A.H.; Zuidberg, M.; Kokshoorn, B. Prevalence of DNA of regular occupants in vehicles. Forensic Sci. Int. 2021, 320, 110713. [Google Scholar] [CrossRef] [PubMed]
- Grubwieser, P.; Pavlic, M.; Günther, M.; Rabl, W. Airbag contact in traffic accidents: DNA detection to determine the driver identity. Int. J. Leg. Med. 2004, 118, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.; Connolly, E. The prevalence and persistence of saliva in vehicles. Forensic Sci. Int. Genet. 2021, 53, 102530. [Google Scholar] [CrossRef]
- Van Oorschot, R.A.; Szkuta, B.; Meakin, G.E.; Kokshoorn, B.; Goray, M. DNA transfer in forensic science: A review. Forensic Sci. Int. Genet. 2019, 38, 140–166. [Google Scholar] [CrossRef]
- Burrill, J.; Daniel, B.; Frascione, N. A review of trace “Touch DNA” deposits: Variability factors and an exploration of cellular composition. Forensic Sci. Int. Genet. 2019, 39, 8–18. [Google Scholar] [CrossRef]
- Kaesler, T.; Kirkbride, K.P.; Linacre, A. Persistence of touch DNA on commonly encountered substrates in different storage conditions. Forensic Sci Int. 2023, 348, 111728. [Google Scholar] [CrossRef]
- Forsberg, C.; Pettersson, L.; Boiso, L. The effect of freezing, thawing and long-term storage on forensic DNA extracts. Forensic Sci. Int. Genet. 2022, 8, 77–78. [Google Scholar] [CrossRef]
- Zhang, Y.; He, L.; Li, S. Temperature dependence of DNA elasticity: An all-atom molecular dynamics simulation study. J. Chem. Phys. 2023, 158, 094902. [Google Scholar] [CrossRef]
- Hanson, E.K.; Ballantyne, J. A blue spectral shift of the hemoglobin soret band correlates with the age (time since deposition) of dried bloodstains. PLoS ONE 2010, 5, e12830. [Google Scholar] [CrossRef] [PubMed]
- Driessen, R.P.; Sitters, G.; Laurens, N.; Moolenaar, G.F.; Wuite, G.J.; Goosen, N.; Dame, R.T. Effect of temperature on the intrinsic flexibility of DNA and its interaction with architectural proteins. Biochemistry 2014, 53, 6430–6438. [Google Scholar] [CrossRef] [PubMed]
- Cossette, M.L.; Stotesbury, T.; Shafer, A.B. Quantifying visible absorbance changes and DNA degradation in aging bloodstains under extreme temperatures. Forensic Sci. Int. 2021, 318, 110627. [Google Scholar] [CrossRef] [PubMed]
- Zadora, G.; Menżyk, A. In the pursuit of the holy grail of forensic science–Spectroscopic studies on the estimation of time since deposition of bloodstains. Trends Anal. Chem. 2018, 105, 137–165. [Google Scholar] [CrossRef]
- Abdel Hady, R.H.; Thabet, H.Z.; Ebrahem, N.E.; Yassa, H.A. Thermal effects on DNA degradation in blood and seminal stains: Forensic view. Acad. Forensic Pathol. 2021, 11, 7–23. [Google Scholar] [CrossRef]
- Abdulla, J.M.; Gomaa, R.; Attalla, S.M.; Nader, L.M. Investigation of DNA degradation in forensic blood samples after exposure to different environmental conditions. Int. J. Med. Toxicol. Leg. Med. 2021, 24, 66–74. [Google Scholar] [CrossRef]
- Lee, L.Y.C.; Wong, H.Y.; Lee, J.Y.; Waffa, Z.B.M.; Aw, Z.Q.; Fauzi, S.N.A.B.M.; Hoe, S.Y.; Lim, M.-L.; Syn, C.K.C. Persistence of DNA in the Singapore context. Int. J. Leg. Med. 2019, 133, 1341–1349. [Google Scholar] [CrossRef]
- Heneghan, N.; Fu, J.; Pritchard, J.; Payton, M.; Allen, R.W. The effect of environmental conditions on the rate of RNA degradation in dried blood stains. Forensic Sci. Int. Genet. 2021, 51, 102456. [Google Scholar] [CrossRef]
- Byard, R.W.; Gilbert, J.D.; Kostakis, C.; Heath, K.J. Circumstances of death and diagnostic difficulties in brushfire fatalities. J. Forensic Sci. 2012, 57, 969–972. [Google Scholar] [CrossRef]
- De Boer, H.H.; Maat, G.J.; Kadarmo, D.A.; Widodo, P.T.; Kloosterman, A.D.; Kal, A.J. DNA identification of human remains in Disaster Victim Identification (DVI): An efficient sampling method for muscle, bone, bone marrow and teeth. Forensic Sci. Int. 2018, 289, 253–259. [Google Scholar] [CrossRef]
- Emery, M.V.; Bolhofner, K.; Ghafoor, S.; Winingear, S.; Buikstra, J.E.; Fulginiti, L.C.; Stone, A.C. Whole mitochondrial genomes assembled from thermally altered forensic bones and teeth. Forensic Sci. Int. Genet. 2022, 56, 102610. [Google Scholar] [CrossRef] [PubMed]
- Hollard, C.; Keyser, C.; Delabarde, T.; Gonzalez, A.; Vilela Lamego, C.; Zvénigorosky, V.; Ludes, B. Case report: On the use of the HID-Ion AmpliSeq™ Ancestry Panel in a real forensic case. Int. J. Leg. Med. 2017, 131, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Fonneløp, A.E.; Johannessen, H.; Heen, G.; Molland, K.; Gill, P. A retrospective study on the transfer, persistence and recovery of sperm and epithelial cells in samples collected in sexual assault casework. Forensic Sci. Int. Genet. 2019, 43, 102–153. [Google Scholar] [CrossRef] [PubMed]
- Linhares, I.M.; Summers, P.R.; Larsen, B.; Giraldo, P.C.; Witkin, S.S. Contemporary perspectives on vaginal pH and lactobacilli. Am. J. Obstet. Gynecol. 2011, 204, 120.e1–120.e5. [Google Scholar] [CrossRef]
- Pfeifer, C.M.; Gass, A.; Klein-Unseld, R.; Wiegand, P. DNA persistence of bite marks on food and its relevance for STR typing. Int. J. Leg. Med. 2017, 131, 1221–1228. [Google Scholar] [CrossRef]
- Zapico, S.C.; Menéndez, S.T. Human mitochondrial DNA and nuclear DNA isolation from food bite marks. Arch. Oral Biol. 2016, 70, 67–72. [Google Scholar] [CrossRef]
- Corte-Real, A.; Silva, D.N.; Corte-Real, F.; Anjos, M.J. Bitemarks in foodstuffs–An approach for genetic identification of the bitter. Forensic Sci. Int. Genet. Suppl. Ser. 2013, 4, e340–e341. [Google Scholar] [CrossRef]
- Kadashett, V.; Shivakumar, K.M.; Baad, R.; Vibhute, N.; Belgaumi, U.; Bommanavar, S.; Kamate, W. Effect of concentrated acids on teeth: A forensic approach; An In-vitro study. J. Datta Meghe Inst. Med. Sci. Univ. 2021, 16, 283. [Google Scholar]
- Vermeij, E.; Zoon, P.; van Wijk, M.; Gerretsen, R. Microscopic residues of bone from dissolving human remains in acids. J. Forensic Sci. 2015, 60, 770–776. [Google Scholar] [CrossRef]
- Marrone, M.; Tarantino, F.; Stellacci, A.; Baldassarra, S.L.; Cazzato, G.; Vinci, F.; Dell’Erba, A. Forensic analysis and identification processes in mass disasters: Explosion of gun powder in the fireworks factory. Molecules 2022, 27, 244. [Google Scholar] [CrossRef]
- Higgins, D.; Austin, J.J. Teeth as a source of DNA for forensic identification of human remains: A review. Sci. Justice 2013, 53, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Hartnett, K.M.; Fulginiti, L.C.; Di Modica, F. The effects of corrosive substances on human bone, teeth, hair, nails, and soft tissue. J. Forensic Sci. 2011, 56, 954–959. [Google Scholar] [CrossRef] [PubMed]
- Robino, C.; Pazzi, M.; Di Vella, G.; Martinelli, D.; Mazzola, L.; Ricci, U.; Testi, R.; Vincenti, M. Evaluation of DNA typing as a positive identification method for soft and hard tissues immersed in strong acids. Leg. Med. 2015, 17, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, K.; Gupta, N.; Mujib, B.A.; Amberkar, V. Effect of acids on the teeth and its relevance in postmortem identification. J. Forensic Dent. Sci. 2009, 1, 93–98. [Google Scholar] [CrossRef]
- Tran, T.; Jasra, P. Degradation of fingernail composition from exposure to industrial chemicals. J. Emerg. Forensic Sci. Res. 2020, 5, 25–48. [Google Scholar]
- Al-Owaidi, M.R.A.A.; Al-Terehi, M.N.; Al-Saadi, A.H.; Zibara, K. Forensic STR identification of human teeth samples exposed to various acidic and alkaline chemical conditions in the Iraqi population. Syst. Rev. Pharm. 2020, 11, 352–359. [Google Scholar]
- Heymsfield, S.; Heshka, S.; Allison, D.B.; Pierson, R.N. Body Composition. HS Talks. 2009. Available online: https://hstalks.com/t/1150/body-composition/ (accessed on 27 May 2023).
- Bond, J.W.; Hammond, C. The value of DNA material recovered from crime scenes. J. Forensic Sci. 2008, 53, 797–801. [Google Scholar] [CrossRef]
- Jobin, R.M.; De Gouffe, M. The persistence of seminal constituents on panties after laundering. Significance to investigations of sexual assault. Can. Soc. Forensic Sci. J. 2003, 36, 1–10. [Google Scholar] [CrossRef]
- Noël, S.; Lagacé, K.; Raymond, S.; Granger, D.; Loyer, M.; Bourgoin, S.; Jolicoeur, C.; Séguin, D. Repeatedly washed semen stains: Optimal screening and sampling strategies for DNA analysis. Forensic Sci. Int. Genet. 2019, 38, 9–14. [Google Scholar] [CrossRef]
- Spector, J.; Von Gemmingen, D. The effect of washing on the detection of blood and seminal stains. Can. Soc. Forensic Sci. J. 1971, 4, 3–9. [Google Scholar] [CrossRef]
- Karadayi, S.; Moshfeghi, E.; Arasoglu, T.; Karadayi, B. Evaluating the persistence of laundered semen stains on fabric using a forensic light source system, prostate-specific antigen Semiquant test and DNA recovery-profiling. Med. Sci. Law 2020, 60, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.W.; Jung, Y.L.; Liu, T.; Alver, B.H.; Lee, S.; Ikegami, K.; Sohn, K.-A.; Minoda, A.; Tolstorukov, M.; Appert, A.; et al. Comparative analysis of metazoan chromatin organization. Nature 2014, 512, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Kuretake, S.; Kimura, Y.; Hoshi, K.; Yanagimachi, R. Fertilization and development of mouse oocytes injected with isolated sperm heads. Biol. Reprod. 1996, 55, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Alice, P.; Audrey, E.; Martine, B.; Guillaume, M.; Antoine, D.; Christian, D. Persistence of stains and DNA on evidence in hostile situations. Forensic Sci. Today 2016, 2, 10–12. [Google Scholar]
- Noël, S.; Lagacé, K.; Raymond, S.; Loyer, M.; Landry, R.; Larose, J.; Bourgoin, S.; Theberge, M.C.; Ligonde, A.; Jolicoeur, C.; et al. Clothing and Bedding from Sexual Assaults Cases: Is DNA Analysis Still Relevant after Laundering? 2017. Available online: https://www.promega.com/-/media/files/products-and-services/genetic-identity/ishi-28-poster-abstracts/4-alphonse-ligond.pdf (accessed on 27 May 2023).
- Brayley-Morris, H.; Sorrell, A.; Revoir, A.P.; Meakin, G.E.; Court, D.S.; Morgan, R.M. Persistence of DNA from laundered semen stains: Implications for child sex trafficking cases. Forensic Sci. Int. Genet. 2015, 19, 165–171. [Google Scholar] [CrossRef]
- Stojanović, I. Detection of bloodstains on cotton fabric after washing. Acta Med. Median. 2019, 58, 24–27. [Google Scholar] [CrossRef]
- Johannessen, H.; Gill, P.; Shanthan, G.; Fonneløp, A.E. Transfer, persistence and recovery of DNA and mRNA vaginal mucosa markers after intimate and social contact with Bayesian network analysis for activity level reporting. Forensic Sci. Int. Genet. 2022, 60, 102750. [Google Scholar] [CrossRef]
- Noël, S.; Lagacé, K.; Rogic, A.; Granger, D.; Bourgoin, S.; Jolicoeur, C.; Séguin, D. DNA transfer during laundering may yield complete genetic profiles. Forensic Sci. Int. Genet. 2016, 23, 240–247. [Google Scholar] [CrossRef]
- Voskoboinik, L.; Amiel, M.; Reshef, A.; Gafny, R.; Barash, M. Laundry in a washing machine as a mediator of secondary and tertiary DNA transfer. Int. J. Leg. Med. 2018, 132, 373–378. [Google Scholar] [CrossRef]
- Cox, M. A study of the sensitivity and specificity of four presumptive tests for blood. J. Forensic Sci. 1991, 36, 1503–1511. [Google Scholar] [CrossRef]
- Schweers, B.A.; Old, J.; Boonlayangoor, P.W.; Reich, K.A. Developmental validation of a novel lateral flow strip test for rapid identification of human blood (Rapid Stain Identification™-Blood). Forensic Sci. Int. Genet. 2008, 2, 243–247. [Google Scholar] [CrossRef]
- Kulstein, G.; Wiegand, P. Comprehensive examination of conventional and innovative body fluid identification approaches and DNA profiling of laundered blood-and saliva-stained pieces of cloths. Int. J. Leg. Med. 2018, 132, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Ünsal Sapan, T.; Erdoğan, I.T.; Atasoy, S. Human identification from washed blood stains. Bull. Nat. Res. Cent. 2021, 45, 148. [Google Scholar] [CrossRef]
- Schyma, C.; Madea, B.; Müller, R.; Zieger, M.; Utz, S.; Grabmüller, M. DNA-free does not mean RNA-free—The unwanted persistence of RNA. Forensic Sci. Int. 2021, 318, 110632. [Google Scholar] [CrossRef] [PubMed]
- Kenna, J.; Smyth, M.; McKenna, L.; Dockery, C.; McDermott, S.D. The recovery and persistence of salivary DNA on human skin. J. Forensic Sci. 2011, 56, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.; Panacek, E.; Green, W.; Kanthaswamy, S.; Hopkins, C.; Calloway, C. Recovery of salivary DNA from the skin after showering. Forensic Sci. Med. Pathol. 2015, 11, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Page, H.; Harris, L.; Taylor, L.; Bishop, T.; Newton, R. The recovery of semen from bath scrunchies. Aust. J. Forensic Sci. 2017, 49, 225–233. [Google Scholar] [CrossRef]
- Helmus, J.; Poetsch, J.; Pfeifer, M.; Bajanowski, T.; Poetsch, M. Cleaning a crime scene 2.0—What to do with the bloody knife after the crime? Int. J. Leg. Med. 2020, 134, 171–175. [Google Scholar] [CrossRef]
- Nakanishi, A.; Moriya, F.; Hashimoto, Y. Effects of environmental conditions to which nails are exposed on DNA analysis of them. Leg. Med. 2003, 5, S194–S197. [Google Scholar] [CrossRef]
- Beckwith, S.; Murakami, J.; Chapman, B. The persistence of semen on cotton fabric in various water environments. Aust. J. Forensic Sci. 2020, 52, 155–164. [Google Scholar] [CrossRef]
- Trapecar, M. Finger marks on glass and metal surfaces recovered from stagnant water. Egypt. J. Forensic Sci. 2012, 2, 48–53. [Google Scholar] [CrossRef]
- Borde, Y.M.; Tonnany, M.B.; Champod, C. A study on the effects of immersion in river water and seawater on blood, saliva, and sperm placed on objects mimicking crime scene exhibits. Can. Soc. Forensic Sci. J. 2008, 41, 149–163. [Google Scholar] [CrossRef]
- Garcia, A.A.; Munoz, I.; Pestoni, C.; Lareu, M.V.; Rodriguez-Calvo, M.S.; Carracedo, A. Effect of environmental factors on PCR-DNA analysis from dental pulp. Int. J. Leg. Med. 1996, 109, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Mansour, H.; Krebs, O.; Pinnschmidt, H.O.; Griem, N.; Hammann-Ehrt, I.; Püschel, K. Factors affecting dental DNA in various real post-mortem conditions. Int. J. Leg. Med. 2019, 133, 1751–1759. [Google Scholar] [CrossRef] [PubMed]
- Tomsia, M.; Droździok, K.; Javan, G.; Skowronek, R.; Szczepański, M.; Chełmecka, E. Costal cartilage ensures low degradation of DNA needed for genetic identification of human remains retrieved at different decomposition stages and different postmortem intervals. Postepy Hig. Med. Dosw. 2021, 75, 852–858. [Google Scholar] [CrossRef]
- Nolan, M.; Handt, O.; Linacre, A. Persistence of cellular material after exposure to water. J. Forensic Sci. 2023, 1–10. [Google Scholar] [CrossRef]
- Schmidt, M.; Kunz, S.N.; Wiegand, P.; Bamberg, M. Persistence of blood (DNA/RNA) on shoe soles under varying casework related conditions. Forensic Sci. Int. Genet. 2022, 57, 102648. [Google Scholar]
- Frippiat, C.; Gastaldi, A.; Van Grunderbeeck, S. Persistence of immersed blood and hair DNA: A preliminary study based on casework. J. Forensic Leg. Med. 2017, 51, 1–8. [Google Scholar] [CrossRef]
- Meixner, E.; Kallupurackal, V.; Kratzer, A.; Voegeli, P.; Thali, M.J.; Bolliger, S.A. Persistence and detection of touch DNA and blood stain DNA on pig skin exposed to water. Forensic Sci. Med. Pathol. 2020, 16, 243–251. [Google Scholar] [CrossRef]
- Mushtaq, S.; Rasool, N.; Firiyal, S. Detection of dry bloodstains on different fabrics after washing with commercially available detergents. Aust. J. Forensic Sci. 2016, 48, 87–94. [Google Scholar] [CrossRef]
- Helmus, J.; Zorell, S.; Bajanowski, T.; Poetsch, M. Persistence of DNA on clothes after exposure to water for different time periods—A study on bathtub, pond, and river. Int. J. Leg. Med. 2018, 132, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Raymond, J.J.; van Oorschot, R.A.; Gunn, P.R.; Walsh, S.J.; Roux, C. Trace evidence characteristics of DNA: A preliminary investigation of the persistence of DNA at crime scenes. Forensic Sci. Int. Genet. 2009, 4, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Sweet, D.; Shutler, G.G. Analysis of salivary DNA evidence from a bite mark on a body submerged in water. J. Forensic Sci. 1999, 44, 1069–1072. [Google Scholar] [CrossRef] [PubMed]
- Forger, L.V.; Inmon, A.L.; Book, M.K.; Donfack, J. Persistence and recovery of DNA on submerged duct tape. Forensic Gen. 2021, 1, 50–59. [Google Scholar] [CrossRef]
- Bertolini, E.; Grignani, P.; Bertoglio, B.; Marrubini, G.; Mazzarelli, D.; Lucheschi, S.; Bosetti, A.; Fattorini, P.; Cattaneo, C.; Previderé, C. Dead migrants in the Mediterranean: Genetic analysis of bone samples exposed to seawater. Forensic Sci. Int. 2022, 340, 111421. [Google Scholar] [CrossRef]
- Zupanič Pajnič, I.; Marrubini, G.; Pogorelc, B.G.; Zupanc, T.; Previderè, C.; Fattorini, P. On the long term storage of forensic DNA in water. Forensic Sci Int. 2019, 305, 110031. [Google Scholar] [CrossRef]
- Kaur, S.; Lamba, M.; Saini, V. Identification of a severely decomposed body by dental DNA STR analysis: A case report. Arab J. Forensic Sci. Forensic Med. 2018, 1, 1072–1079. [Google Scholar] [CrossRef]
- Bauer, M.; Gramlich, I.; Polzin, S.; Patzelt, D. Quantification of mRNA degradation as possible indicator of postmortem interval—A pilot study. Leg. Med. 2003, 5, 220–227. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, M.; Zhu, Y.; Zhang, L.; Zheng, Z.; Wang, Q.; Li, Y.; Zhang, P.; Zhu, S.; Ding, S.; et al. The persistence and stability of miRNA in bloodstained samples under different environmental conditions. Forensic Sci. Int. 2021, 318, 110594. [Google Scholar] [CrossRef]
- Jung, M.; Schaefer, A.; Steiner, I.; Kempkensteffen, C.; Stephan, C.; Erbersdobler, A.; Jung, K. Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clin. Chem. 2010, 56, 998–1006. [Google Scholar] [CrossRef]
- Winter, J.; Diederichs, S. Argonaute proteins regulate microRNA stability: Increased microRNA abundance by Argonaute proteins is due to microRNA stabilization. RNA Biol. 2011, 8, 1149–1157. [Google Scholar] [CrossRef] [PubMed]
- Mayes, C.; Houston, R.; Seashols-Williams, S.; LaRue, B.; Hughes-Stamm, S. The stability and persistence of blood and semen mRNA and miRNA targets for body fluid identification in environmentally challenged and laundered samples. Leg. Med. 2019, 38, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, D.; Wang, Q.; Tian, H.; Tan, M.; Peng, D.; Tan, Y.; Zhu, J.; Liang, W.; Zhang, L. mRNA and microRNA stability validation of blood samples under different environmental conditions. Forensic Sci. Int. Genet. 2021, 55, 102567. [Google Scholar] [CrossRef] [PubMed]
- Dilbeck, L. Use of Bluestar Forensic in lieu of luminol at crime scenes. J. Forensic Identif. 2006, 56, 706. [Google Scholar]
- Finnis, J.; Lewis, J.; Davidson, A. Comparison of methods for visualizing blood on dark surfaces. Sci. Justice 2013, 53, 178–186. [Google Scholar] [CrossRef]
- Barni, F.; Lewis, S.W.; Berti, A.; Miskelly, G.M.; Lago, G. Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta 2007, 72, 896–913. [Google Scholar] [CrossRef]
- Manna, A.D.; Montpetit, S. A novel approach to obtaining reliable PCR results from luminol treated bloodstains. J. Forensic Sci. 2000, 45, 886–890. [Google Scholar] [CrossRef]
- Jakovich, C.J. STR analysis following latent blood detection by luminol, fluorescein, and Bluestar. J. Forensic Identif. 2007, 57, 193. [Google Scholar]
- Tobe, S.S.; Watson, N.; Daeid, N.N. Evaluation of six presumptive tests for blood, their specificity, sensitivity, and effect on high molecular-weight DNA. J. Forensic Sci. 2007, 52, 102–109. [Google Scholar] [CrossRef]
- De Almeida, J.P.; Glesse, N.; Bonorino, C. Effect of presumptive tests reagents on human blood confirmatory tests and DNA analysis using real time polymerase chain reaction. Forensic Sci. Int. 2011, 206, 58–61. [Google Scholar] [CrossRef]
- Patel, G.; Hopwood, A. An evaluation of luminol formulations and their effect on DNA profiling. Int. J. Leg. Med. 2013, 127, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Couse, T.; Connor, M. A comparison of maceration techniques for use in forensic skeletal preparations. J. Forensic Investig. 2015, 3, 1–6. [Google Scholar]
- King, C.; Birch, W. Assessment of maceration techniques used to remove soft tissue from bone in cut mark analysis. J. Forensic Sci. 2015, 60, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Fenton, T.W.; Birkby, W.H.; Cornelison, J. A fast and safe non-bleaching method for forensic skeletal preparation. J. Forensic Sci. 2003, 48, 274–276. [Google Scholar] [CrossRef]
- Uhre, M.L.; Eriksen, A.M.; Simonsen, K.P.; Rasmussen, A.R.; Hjort, B.B.; Lynnerup, N. Enzymatic maceration of bone: A gentler technique than boiling. Med. Sci. Law 2015, 55, 90–96. [Google Scholar] [CrossRef]
- Hangay, G.; Dingley, M. Biological Museum Methods; Academic Press: London, UK, 1985. [Google Scholar]
- Lee, E.J.; Luedtke, J.G.; Allison, J.L.; Arber, C.E.; Merriwether, D.A.; Steadman, D.W. The effects of different maceration techniques on nuclear DNA amplification using human bone. J. Forensic Sci. 2010, 55, 1032–1038. [Google Scholar] [CrossRef]
- Rennick, S.L.; Fenton, T.W.; Foran, D.R. The effects of skeletal preparation techniques on DNA from human and non-human bone. J. Forensic Sci. 2005, 50, 1016–1019. [Google Scholar] [CrossRef]
- Ye, J.; Ji, A.; Parra, E.J.; Zheng, X.; Jiang, C.; Zhao, X.; Hu, L.; Tu, Z. A simple and efficient method for extracting DNA from old and burned bone. J. Forensic Sci. 2004, 49, JFS2003275. [Google Scholar] [CrossRef]
- Steadman, D.W.; DiAntonio, L.L.; Wilson, J.J.; Sheridan, K.E.; Tammariello, S.P. The effects of chemical and heat maceration techniques on the recovery of nuclear and mitochondrial DNA from bone. J. Forensic Sci. 2006, 51, 11–17. [Google Scholar] [CrossRef]
- Arismendi, J.L.; Baker, L.E.; Matteson, K.J. Effects of processing techniques on the forensic DNA analysis of human skeletal remains. J. Forensic Sci. 2004, 49, 904. [Google Scholar] [CrossRef]
- Frank, E.M.; Mundorff, A.Z.; Davoren, J.M. The effect of common imaging and hot water maceration on DNA recovery from skeletal remains. Forensic Sci. Int. Genet. 2015, 257, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Blau, S.; Robertson, S.; Johnstone, M. Disaster victim identification: New applications for postmortem computed tomography. J. Forensic Sci. 2008, 53, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Castro, D.M.; Coyle, H.M. Review: Biological Evidence Collection and Forensic Blood Identification; Forensic Science Department Henry C Lee College of Criminal Justice & Forensic Science, University of New Haven: West Heaven, CT, USA, 2013; pp. 1–18. [Google Scholar]
- Grosovsky, A.J.; De Boer, J.G.; De Jong, P.J.; Drobetsky, E.A.; Glickman, B.W. Base substitutions, frameshifts, and small deletions constitute ionizing radiation–induced point mutations in mammalian cells. Proc. Nat. Acad. Sci. USA 1988, 85, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, K. Basic radiation protection and radiobiology. In Introduction to Radiography and Patient Care, 2nd ed.; Adler, A., Carlton, R.R., Eds.; Saunders: Philadelphia, PA, USA, 1999; pp. 98–116. [Google Scholar]
- Gotherstrom, A.; Fischer, C.; Lindén, K. X-raying ancient bone: A destructive method in connection with DNA analysis. Laborativ Arkeol. 1995, 8, 26–28. [Google Scholar]
- Grieshaber, B.M.; Osborne, D.L.; Doubleday, A.F.; Kaestle, F.A. A pilot study into the effects of X-ray and computed tomography exposure on the amplification of DNA from bone. J. Archaeol. Sci. 2008, 35, 681–687. [Google Scholar] [CrossRef]
- Ravanat, J.L.; Douki, T.; Cadet, J. Direct and indirect effects of UV radiation on DNA and its components. J. Photochem. Photobiol. B Biol. 2001, 63, 88–102. [Google Scholar] [CrossRef]
- Yoon, J.H.; Lee, C.S.; O’Connor, T.R.; Yasui, A.; Pfeifer, G.P. The DNA damage spectrum produced by simulated sunlight. J. Mol. Biol. 2000, 299, 681–693. [Google Scholar] [CrossRef]
- Quaite, F.E.; Takayanagi, S.; Ruffini, J.; Sutherland, J.C.; Sutherland, B.M. DNA damage levels determine cyclobutyl pyrimidine dimer repair mechanisms in alfalfa seedlings. Plant Cell 1994, 6, 1635–1641. [Google Scholar] [CrossRef]
- Roy, S. Impact of UV radiation on genome stability and human health. Adv. Exp. Med. Biol. 2017, 996, 207–219. [Google Scholar]
- Hall, A.; Ballantyne, J. Characterization of UVC-induced DNA damage in bloodstains: Forensic implications. Anal. Bioanal. Chem. 2004, 380, 72–83. [Google Scholar] [CrossRef]
- Marrone, A.; Ballantyne, J. Changes in dry state hemoglobin over time do not increase the potential for oxidative DNA damage in dried blood. PLoS ONE 2009, 4, e5110. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.; Sims, L.M.; Ballantyne, J. Assessment of DNA damage induced by terrestrial UV irradiation of dried bloodstains: Forensic implications. Forensic Sci. Int. Genet. 2014, 8, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.M. The future of forensic DNA analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140252. [Google Scholar] [CrossRef] [PubMed]
- Butts, E.L.; Vallone, P.M. Rapid PCR protocols for forensic DNA typing on six thermal cycling platforms. Electrophoresis 2014, 35, 3053–3061. [Google Scholar] [CrossRef] [PubMed]
- Bowman, Z.; Daniel, R.; Gerostamoulos, D.; Woodford, N.; Hartman, D. Rapid DNA from a disaster victim identification perspective: Is it a game changer? Forensic Sci. Int. Genet. 2022, 58, 102684. [Google Scholar] [CrossRef]
- Nwawuba, S.U.; Mohammed, K.A.; Bukola, A.T.; Omusi, P.I.; Ayevbuomwan, D.E. Forensic DNA profiling: Autosomal short tandem repeat as a prominent marker in crime investigation. Malays. J. Med. Sci. 2020, 27, 22–35. [Google Scholar]
- Laurent, F.X.; Vibrac, G.; Rubio, A.; Thévenot, M.T.; Pène, L. Les nouvelles technologies d’analyses ADN au service des enquêtes judiciaires [The future of forensic DNA analysis for criminal justice]. Med. Sci. 2017, 33, 971–978. (In French) [Google Scholar]
- Senst, A.; Caliebe, A.; Scheurer, E.; Schulz, I. Validation and beyond: Next generation sequencing of forensic casework samples including challenging tissue samples from altered human corpses using the MiSeq FGx system. J. Forensic Sci. 2022, 67, 1382–1398. [Google Scholar] [CrossRef]
- Van der Gaag, K.J.; de Leeuw, R.H.; Hoogenboom, J.; Patel, J.; Storts, D.R.; Laros, J.F.J.; de Knijff, P. Massively parallel sequencing of short tandem repeats-Population data and mixture analysis results for the PowerSeq™ system. Forensic Sci. Int. Genet. 2016, 24, 86–96. [Google Scholar] [CrossRef]
- Hollard, C.; Ausset, L.; Chantrel, Y.; Jullien, S.; Clot, M.; Faivre, M.; Suzanne, É.; Pène, L.; Laurent, F.X. Automation and developmental validation of the ForenSeq™ DNA Signature Preparation kit for high-throughput analysis in forensic laboratories. Forensic Sci. Int. Genet. 2019, 40, 37–45. [Google Scholar] [CrossRef]
- Foley, M.M.; Oldoni, F. A global snapshot of current opinions of next-generation sequencing technologies usage in forensics. Forensic Sci. Int. Genet. 2023, 63, 102819. [Google Scholar] [CrossRef] [PubMed]
- Diepenbroek, M.; Bayer, B.; Anslinger, K. Pushing the Boundaries: Forensic DNA Phenotyping Challenged by Single-Cell Sequencing. Genes 2021, 12, 1362. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wu, Y.; Li, M.; Cao, S.; Guo, Y.; Zhang, L.; Chen, X.; Liang, W. Single-cell transcriptome study in forensic medicine: Prospective applications. Int. J. Leg. Med. 2022, 36, 1737–1743. [Google Scholar] [CrossRef]
- Galante, N.; Cotroneo, R.; Furci, D.; Lodetti, G.; Casali, M.B. Applications of artificial intelligence in forensic sciences: Current potential benefits, limitations and perspectives. Int. J. Leg. Med. 2023, 137, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Allwood, J.S.; Fierer, N.; Dunn, R.R. The future of environmental DNA in forensic science. Appl. Environ. Microbiol. 2020, 86, e01504-19. [Google Scholar] [CrossRef] [PubMed]
- Dash, H.R.; Arora, M. CRISPR-CasB technology in forensic DNA analysis: Challenges and solutions. Appl. Microbiol. Biotechnol. 2022, 106, 4367–4374. [Google Scholar] [CrossRef]
Analyzed Material and Source | Conditions of the Experiment | Duration | Results of Genetic Material Analysis | Reference |
---|---|---|---|---|
Water environent | ||||
DNA from the blood stain on the shoe sole | Walk on a dry surface, 10,000 steps | - | Partial degradation, full STR analysis possible | Schmidt et al., 2022 [175] |
Walk on a wet surface, 10 steps | Almost complete degradation | |||
DNA from blood stains | Blood-stained clothing placed in the water channel | 1 month | Complete degradation | Frippiat et al., 2017 [176] |
DNA from water-diluted blood | Blood diluted with sink drain water | 72 h | Complete degradation | |
Hair DNA | Hair submerged in water | 72 h | Complete degradation | |
DNA from blood stains on the skin | Blood-spotted skin submerged in cold water | 48 h | Partial degradation, full STR analysis possible | Meixner et al., 2020 [177] |
Touch DNA sample | Skin submerged in cold water | 7 days | Partial degradation, full STR analysis possible | |
DNA from epithelial cells on clothing | Clothes rinsed under running water | 10 min | Partial degradation, full STR analysis possible | Helmus et al., 2018 [179] |
Clothes placed in a bathtub with soapy water | 7 days | Partial degradation, full STR analysis possible | ||
Clothes immersed in the pond in summer | 3.5 h | Partial degradation, full STR analysis possible | ||
Clothes immersed in the pond in winter | 2 weeks | Partial degradation, full STR analysis possible | ||
Clothes dipped in the river in summer | 1 h | Partial degradation, full STR analysis possible | ||
Clothes dipped in the river in winter | 6 h | Partial degradation, full STR analysis possible | ||
Contact DNA from duct tape fingerprints | Duct tape immersed in seawater | 7 days | Partial degradation, full STR analysis possible | Forger et al., 2021 [182] |
Temperature | ||||
DNA from blood samples | Samples incubated at 55 °C and 41% humidity | 11 days | Complete degradation | Abdulla et al., 2021 [122] |
Samples incubated at 35 °C and 55% humidity | 21 days | Partial degradation, full STR analysis possible | ||
Samples incubated at 25 °C and 58% humidity | 21 days | Partial degradation, full STR analysis possible | ||
Samples incubated at 4 °C and 68% humidity | 21 days | No degradation detected | ||
mtDNA from skeletal remains | Bones burnt at <600 °C | - | Complete reconstruction of the mtDNA genome possible | Emery et al., 2022 [127] |
DNA from passive blood stains | Stains stored at −20 °C, 20 °C, and 40 °C | 15 days | Relationship between higher temperature and increased DNA degradation rate confirmed | Cossette et al., 2021 [119] |
RNA from blood stains | Stains incubated at different temperatures and relative humidity | - | RNA degradation rate decreases 5–10× while decreasing from 37 °C to 20 °C or from 75% to 35% relative humidity | Heneghan et al., 2021 [124] |
pH | ||||
DNA from skeletal remains | Two bodies attempted to be dissolved in concentrated HCl and H2SO4 mixture | 21 days | High degree degradation, DNA identification of only one victim possible | Vermeij et al., 2015 [135] |
Teeth | Teeth incubated in 25 mL 37% HCl | 15 h | Material dissolved completely | Jadhav et al., 2009 [140] |
Teeth incubated in 25 mL 65% HNO3 | 20 h | Material dissolved completely | ||
Teeth incubated in 25 mL 96% H2SO4 | 6 days | Residual sludge at the bottom of the container | ||
DNA from saliva and oral mucosa | Samples obtained from the bite marks on a fruit | 21 days | Partial degradation, full STR analysis possible | Pfeifer et al., 2017 [48] |
Nail samples | Samples incubated in 50% NaOH | 7 days | Material dissolved completely | Tran & Jasra, 2020 [141] |
Cleaning agents | ||||
DNA from sperm stains | Fabric with stains machine-washed 6× | - | Partial degradation, full STR analysis possible | Noël et al., 2017 [152] |
DNA from saliva stains | Fabric with stains machine-washed 3× | |||
DNA from semen stains | Fabric with 8-month-old stains several times machine-washed with detergent at 60 °C | - | Partial degradation, full STR analysis possible | Brayley-Morris et al., 2015 [153] |
DNA from blood stains | Fabric with stains machine-washed at 40 °C | - | Partial degradation, full STR analysis possible | Kulstein & Wiegand 2018, [172] |
Fabric with stains machine-washed at 60 °C | ||||
DNA from blood stains | Fabric with stains machine-washed at 90 °C | - | Partial degradation, full STR analysis possible | Alice et al., 2016 [151] |
DNA from blood stains | Fabric with stains machine-washed at 90 °C | - | Complete degradation | Ünsal et al., 2021 [161] |
mRNA | Samples exposed to changing temperature and humidity | 30 days | Amplification possible | Mayes et al., 2019 [190] |
mRNA | Samples exposed to changing temperature and humidity | 180 days | Amplification not possible | |
mRNA | Samples incubated in a dry environment | 360 days | No degradation | Li et al., 2021 [191] |
Samples incubated in a humid environment | 10 days | Partial degradation | ||
DNA from saliva deposited on the victim’s body | Samples exposed to shower water | - | Y chromosome STR analysis possible: complete profile obtained for majority of samples | Williams et al., 2015 [164] |
DNA from vaginal lavage | Vaginal lavage performed with delay | 100 h | Full STR analysis possible | Naresh et al. 2017 [99] |
DNA from blood traces, epithelial cells, and saliva located on knife | Knife rinsed with water | - | Partial degradation, full STR analysis possible | Helmus et al., 2020 [166] |
Knife washed by hand with detergent | ||||
Knife washed in a dishwasher | Complete degradation | |||
Preparations for biological traces visualization | ||||
DNA from biological traces | Materials treated with Luminol or Bluestar Forensic + immediate DNA analysis | - | Full STR analysis possible | Manna & Montpetit, 2000 [195]; Jakovich, 2007 [196]; Tobe et al., 2007 [197] |
DNA from biological traces | Material treated with Luminol + delayed DNA analysis | 30 days | Complete degradation | Almeida & Glesse, 2011 [198] |
Material treated with Bluestar Forensic + delayed DNA analysis | 120 days | |||
Maceration | ||||
DNA from macerated bones | Maceration by microwaving | - | Amplification possible | Lee et al., 2010 [205] |
Maceration with NaHCO3 at 90 °C | ||||
Maceration with EDTA/papain at 45 °C | ||||
Maceration with bleach at 22 °C | ||||
Maceration by boiling | ||||
Maceration with water at 90 °C | Almost complete degradation | |||
Maceration with 3.5% H2O2 at 22 °C | ||||
Radiation | ||||
DNA from X-rayed bones | Bones after one X-ray examination | - | Decreased amount of amplifiable DNA | Grieshaber et al., 2008 [216] |
Bones after one CT scan | ||||
DNA from cells present in bloodstains | Stains exposed to UV-C radiation | 100 days | Complete degradation | Hall & Ballantyne, 2004 [221] |
Stains treated with UV-A radiation | Full STR analysis possible | |||
Stains treated with UV-B radiation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żarczyńska, M.; Żarczyński, P.; Tomsia, M. Nucleic Acids Persistence—Benefits and Limitations in Forensic Genetics. Genes 2023, 14, 1643. https://doi.org/10.3390/genes14081643
Żarczyńska M, Żarczyński P, Tomsia M. Nucleic Acids Persistence—Benefits and Limitations in Forensic Genetics. Genes. 2023; 14(8):1643. https://doi.org/10.3390/genes14081643
Chicago/Turabian StyleŻarczyńska, Małgorzata, Piotr Żarczyński, and Marcin Tomsia. 2023. "Nucleic Acids Persistence—Benefits and Limitations in Forensic Genetics" Genes 14, no. 8: 1643. https://doi.org/10.3390/genes14081643
APA StyleŻarczyńska, M., Żarczyński, P., & Tomsia, M. (2023). Nucleic Acids Persistence—Benefits and Limitations in Forensic Genetics. Genes, 14(8), 1643. https://doi.org/10.3390/genes14081643