Relationship Between Vitamin D Receptor Gene BsmI Polymorphism and 25-Hydroxyvitamin D Total Levels in Slovak Postmenopausal Women with Reduced Bone Mineral Density
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Densitometric Measurement—DXA
- Total BMD, T-score, and Z-score in the left hip area;
- BMD, T-score, and Z-score in the left hip area;
- Total BMD, T-score, and Z-score in the lumbar spine (vertebrae L1-L4).
2.3. Biochemical Analysis
2.4. Molecular Genetic Analysis
2.5. Anthropometric Measurement
2.6. Statistical Analysis
3. Results
3.1. Results of Anthropometric Measurements and Biochemical Analyses
3.2. Results of Densitometric Measurements
3.3. Results of Molecular Genetic Analysis
3.4. Effect of the VDR Gene BsmI Polymorphism on Total Vitamin D Levels
3.5. Results of Correlation Analysis
4. Discussion
Study Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMD | Body mass density |
BMI | Body mass index |
VDR | Vitamin D receptor |
CG | Control group (norm) |
OPE | Osteopenic women group |
OPO | Osteoporotic women group |
PTH | Parathyroid hormone |
LH | Left hip |
25(OH)D total | Vitamin D total |
References
- Christakos, S.; Li, S.; De La Cruz, J.; Bikle, D.D. New developments in our understanding of vitamin metabolism, action and treatment. Metab. Clin. Exp. 2019, 98, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Khammissa, R.A.G.; Fourie, J.; Motswaledi, M.H.; Ballyram, R.; Lemmer, J.; Feller, L. The Biological Activities of Vitamin D and Its Receptor in Relation to Calcium and Bone Homeostasis, Cancer, Immune and Cardiovascular Systems, Skin Biology, and Oral Health. BioMed Res. Int. 2018, 2018, 9276380. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shen, L.; Gao, C.; Weng, R.; Fan, Y.; Xu, S.; Zhang, Z.; Hu, W. Vitamin D status and its associations with bone mineral density, bone turnover markers, and parathyroid hormone in Chinese postmenopausal women with osteopenia and osteoporosis. Front. Nutr. 2024, 10, 1307896. [Google Scholar] [CrossRef]
- Al Anouti, F.; Taha, Z.; Shamim, S.; Khalaf, K.; Al Kaabi, L.; Alsafar, H. An insight into the paradigms of osteoporosis: From genetics to biomechanics. Bone Rep. 2019, 11, 100216. [Google Scholar] [CrossRef]
- Brickley, M.B.; Mays, S.; George, M.; Prowse, T.L. Analysis of patterning in the occurrence of skeletal lesions used as indicators of vitamin D deficiency in subadult and adult skeletal remains. Int. J. Paleopathol. 2018, 23, 43–53. [Google Scholar] [CrossRef]
- Chowdhary, R.; Khan, R.B.; Masarkar, N.; Malik, R.; Goel, S.K. An association of VDR gene polymorphism in hypovitaminosis D mediated secondary hyperparathyroidism in adolescent girls; a tertiary hospital study in central India. Steroids 2022, 185, 109054. [Google Scholar] [CrossRef]
- Xiangpeng, L.; Zengli, Z.; Honghong, Z.; Hanmin, Z.; Jianlie, Z. Application Guideline for Vitamin D and Bone Health in Adult Chinese (2014 Standard Edition) Vitamin D Working Group of Osteoporosis Committee of China Gerontological Society. Chin. J. Osteoporos. 2014, 9, 1011–1030. [Google Scholar]
- Cheng, C.H.; Chen, L.R.; Chen, K.H. Osteoporosis Due to Hormone Imbalance: An Overview of the Effects of Estrogen Deficiency and Glucocorticoid Overuse on Bone Turnover. Int. J. Mol. Sci. 2022, 23, 1376. [Google Scholar] [CrossRef]
- Capatina, C.; Carsote, M.; Caragheorgheopol, A.; Poiana, C.; Berteanu, M. Vitamin D deficiency in postmenopausal women—Biological correlates. Maedica 2014, 9, 316–322. [Google Scholar]
- Melton, L.J. How many women have osteoporosis now? J. Bone Miner. Res. 1995, 10, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Banjabi, A.A.; Al-Ghafari, A.B.; Kumosani, T.A.; Kannan, K.; Fallatah, S.M. Genetic influence of vitamin D receptor gene polymorphisms on osteoporosis risk. Int. J. Health Sci. (Qassim) 2020, 14, 22–28. [Google Scholar]
- Pike, J.W.; Meyer, M.B.; Benkusky, N.A.; Lee, S.M.; St John, H.; Carlson, A.; Onal, M.; Shamsuzzaman, S. Genomic Determinants of Vitamin D-Regulated Gene Expression. Vitam. Horm. 2016, 100, 21–44. [Google Scholar] [PubMed]
- El-Hajj Fuleihan, G.; Bouillon, R.; Clarke, B.; Chakhtoura, M.; Cooper, C.; McClung, M.; Singh, R.J. Serum 25-Hydroxyvitamin D Levels: Variability, Knowledge Gaps, and the Concept of a Desirable Range. J. Bone Miner. Res. 2015, 30, 1119–1133. [Google Scholar] [CrossRef] [PubMed]
- Karohl, C.; Su, S.Y.; Kumari, M.; Tangpricha, V.; Veledar, E.; Vaccarino, V.; Raggi, P. Heritability and seasonal variability of vitamin D concentrations in male twins. Am. J. Clin. Nutr. 2010, 92, 1393–1398. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Al-Attas, O.S.; Alkharfy, K.M.; Khan, N.; Mohammed, A.K.; Vinodson, B.; Ansari, M.G.; Alenad, A.; Alokail, M.S. Association of VDR-gene variants with factors related to the metabolic syndrome, type 2 diabetes and vitamin D deficiency. Gene 2014, 542, 129–133. [Google Scholar] [CrossRef]
- Rahmadhani, R.; Zaharan, N.L.; Mohamed, Z.; Moy, F.M.; Jalaludin, M.Y. The associations between VDR BsmI polymorphisms and risk of vitamin D deficiency, obesity and insulin resistance in adolescents residing in a tropical country. PLoS ONE 2017, 12, e0178695. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, W.; Du, S.; Zhou, Z. Vitamin D receptor BsmI polymorphism and osteoporosis risk in post-menopausal women. Arch. Med. Sci. 2016, 12, 25–30. [Google Scholar] [CrossRef]
- Marozik, P.M.; Tamulaitiene, M.; Rudenka, E.; Alekna, V.; Mosse, I.; Rudenka, A.; Samokhovec, V.; Kobets, K. Association of Vitamin D Receptor Gene Variation with Osteoporosis Risk in Belarusian and Lithuanian Postmenopausal Women. Front. Endocrinol. 2018, 9, 305. [Google Scholar] [CrossRef]
- Chandanwale, R.; Chandanwale, K.; Chandanwale, R.; Chandanwale, A. Assessing the Correlation Between Anthropometric Measurements and Bone Densitometry as Indicators of Bone Health in Adult Women in the Community. Cureus 2024, 16, e68162. [Google Scholar] [CrossRef]
- Reginster, J.Y.; Burlet, N. Osteoporosis: A still increasing prevalence. Bone 2006, 38, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Aghaei, M.; Afshan, B.; Reza, H.; Qorbani, M.; Dashti, H.S.; Safari, R. Bone mineral density in Iranian patients: Effects of age, sex, and body mass index. Open J. Prev. Med. 2013, 3, 128–131. [Google Scholar] [CrossRef]
- Baheiraei, A.; Pocock, N.A.; Eisman, J.A.; Nguyen, N.D.; Nguyen, T.V. Bone mineral density, body mass index and cigarette smoking among Iranian women: Implications for prevention. BMC Musculoskelet. Disord. 2005, 6, 34. [Google Scholar] [CrossRef]
- Steinschneider, M.; Hagag, P.; Rapoport, M.J.; Weiss, M. Discordant effect of body mass index on bone mineral density and speed of sound. BMC Musculoskelet. Disord. 2003, 4, 15. [Google Scholar] [CrossRef]
- Rico, H.; Revilla, M.; Villa, L.F.; Alvarez del Buergo, M.; Ruiz-Contreras, D. Determinants of total-body and regional bone mineral content and density in postpubertal normal women. Metabolism 1994, 43, 263–266. [Google Scholar] [CrossRef]
- Henderson, N.K.; Price, R.I.; Cole, J.H.; Gutteridge, D.H.; Bhagat, C.I. Bone density in young women is associated with body weight and muscle strength but not dietary intakes. J. Bone Miner. Res. 1995, 10, 384–393. [Google Scholar] [CrossRef]
- Pluskiewicz, W.; Adamczyk, P.; Drozdzowska, B. Height loss in postmenopausal women-do we need more for fracture risk assessment? Results from the GO Study. Osteoporos. Int. 2021, 32, 2043–2049. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, T.; Muttappallymyalil, J.; Sreedharan, J.; Ahmed, A.; Alshamsi, A.A.; Al Ali, M.S.; Al Balsooshi, K.A. Association between Body Mass Index and Bone Mineral Density in Patients Referred for Dual-Energy X-Ray Absorptiometry Scan in Ajman, UAE. J. Osteoporos. 2011, 87, 6309. [Google Scholar] [CrossRef]
- Black, D.M.; Steinbuch, M.; Palermo, L.; Dargent-Molina, P.; Lindsay, R.; Hoseyni, M.S.; Johnell, O. An assessment tool for predicting fracture risk in postmenopausal women. Osteoporos. Int. 2001, 12, 519–528. [Google Scholar] [CrossRef]
- Montazerifar, F.; Karajibani, M.; Alamian, S.; Sandoughi, M.; Zakeri, Z.; Dashipour, A.R. Age, Weight and Body Mass Index Effect on Bone Mineral Density in Postmenopausal Women. Health Scope 2014, 3, e14075. [Google Scholar] [CrossRef]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.Y. Executive summary of European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Aging Clin. Exp. Res. 2019, 31, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.D.; Frost, S.A.; Center, J.R.; Eisman, J.A.; Nguyen, T.V. Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos. Int. 2007, 18, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.D.; Frost, S.A.; Center, J.R.; Eisman, J.A.; Nguyen, T.V. Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos. Int. 2008, 19, 1431–1434. [Google Scholar] [CrossRef]
- Adamczyk, P.; Werner, A.; Bach, M.; Żywiec, J.; Czekajło, A.; Grzeszczak, W.; Drozdzowska, B.; Pluskiewicz, W. Risk factors for fractures identified in the algorithm developed in 5-year follow-up of postmenopausal women from RAC-OST-POL study. J. Clin. Densitom. 2018, 21, 213–219. [Google Scholar] [CrossRef]
- Sadat-Ali, M.; Al Elq, A.H.; Al-Turki, H.A.; Al-Mulhim, F.A.; Al-Ali, A.K. Influence of vitamin D levels on bone mineral density and osteoporosis. Ann. Saudi Med. 2011, 31, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; Bhadricha, H.; Patil, A.; Surve, S.; Joshi, B.; Balasinor, N.; Desai, M. Association of OPG and RANKL gene polymorphisms with bone mineral density in Indian women. Gene 2022, 840, 1–20. [Google Scholar] [CrossRef]
- Gasperini, B.; Visconti, V.V.; Ciccacci, C.; Falvino, A.; Gasbarra, E.; Iundusi, R.; Brandi, M.L.; Botta, A.; Tarantino, U. Role of the Vitamin D Receptor (VDR) in the Pathogenesis of Osteoporosis: A Genetic, Epigenetic and Molecular Pilot Study. Genes 2023, 14, 542. [Google Scholar] [CrossRef]
- Liu, Y.; Recker, R.; Deng, H. Molecular Studies of Identification of Genes for Osteoporosis: The 2002 Update. J. Endocrinol. 2003, 177, 147–196. [Google Scholar] [CrossRef]
- Uitterlinden, A.G.; Fang, Y.; Van Meurs, J.B.J.; Pols, H.A.P.; Van Leeuwen, J.P.T.M. Genetics and Biology of Vitamin D Receptor Polymorphisms. Gene 2004, 338, 143–156. [Google Scholar] [CrossRef]
- Kamiński, A.; Bogacz, A.; Niezgoda-Nowak, J.T.; Podralska, M.; Górska, A.; Soczawa, M.; Czerny, B. The VDR rs1544410 and rs11568820 Variants and the Risk of Osteoporosis in the Polish Population. Int. J. Mol. Sci. 2025, 26, 481. [Google Scholar] [CrossRef]
- Kow, M.; Akam, E.; Singh, P.; Singh, M.; Cox, N.; Bhatti, J.S.; Tuck, S.P.; Francis, R.M.; Datta, H.; Mastana, S. Vitamin D receptor (VDR) gene polymorphism and osteoporosis risk in White British men. Ann. Hum. Biol. 2019, 46, 430–433. [Google Scholar] [CrossRef] [PubMed]
- Techapatiphandee, M.; Tammachote, N.; Tammachote, R.; Wongkularb, A.; Yanatatsaneejit, P. VDR and TNFSF11 polymorphisms are associated with osteoporosis in Thai patients. Biomed. Rep. 2018, 9, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, M.; Pourahmad-Jaktaji, R. The Effect of Some Polymorphisms in Vitamin D Receptor Gene in Menopausal Women with Osteoporosis. J. Clin. Diagn. Res. 2016, 10, RC06–RC10. [Google Scholar] [CrossRef]
- Moran, J.M.; Pedrera-Canal, M.; Rodriguez-Velasco, F.J.; Vera, V.; Lavado-Garcia, J.M.; Fernandez, P.; Pedrera-Zamorano, J.D. Lack of association of vitamin D receptor BsmI gene polymorphism with bone mineral density in Spanish postmenopausal women. PeerJ 2015, 3, e953. [Google Scholar] [CrossRef] [PubMed]
- Seremak-Mrozikiewicz, A.; Drews, K.; Mrozikiewicz, P.M.; Bartkowiak-Wieczorek, J.; Marcinkowska, M.; Wawrzyniak, A.; Slomski, R.; Kalak, R.; Czerny, B.; Horst-Sikorska, W. Correlation of vitamin D receptor gene (VDR) polymorphism with osteoporotic changes in Polish postmenopausal women. Neuro Endocrinol. Lett. 2009, 30, 540–546. [Google Scholar]
- Ahmad, I.; Jafar, T.; Mahdi, F.; Arshad, M.; Das, S.K.; Waliullah, S.; Mahdi, A.A. Association of Vitamin D Receptor (FokI and BsmI) Gene Polymorphism with Bone Mineral Density and Their Effect on 25-Hydroxyvitamin D Level in North Indian Postmenopausal Women with Osteoporosis. Indian J. Clin. Biochem. 2018, 33, 429–437. [Google Scholar] [CrossRef]
- Boroń, D.; Kamiński, A.; Kotrych, D.; Bogacz, A.; Uzar, I.; Mrozikiewicz, P.M.; Czerny, B. Polymorphism of vitamin D3 receptor and its relation to mineral bone density in perimenopausal women. Osteoporos. Int. 2015, 26, 1045–1052. [Google Scholar] [CrossRef]
- Gennari, L.; Becherini, L.; Masi, L.; Mansani, R.; Gonnelli, S.; Cepollaro, C.; Martini, S.; Montagnani, A.; Lentini, G.; Becorpi, A.M.; et al. Vitamin D and estrogen receptor allelic variants in Italian postmenopausal women: Evidence of multiple gene contribution to bone mineral density. J. Clin. Endocrinol. Metab. 1998, 83, 939–944. [Google Scholar] [CrossRef]
- Douroudis, K.; Tarassi, K.; Ioannidis, G.; Giannakopoulos, F.; Moutsatsou, P.; Thalassinos, N.; Papasteriades, C. Association of vitamin D receptor gene polymorphisms with bone mineral density in postmenopausal women of Hellenic origin. Maturitas 2003, 45, 191–197. [Google Scholar] [CrossRef]
- Lisker, R.; López, M.A.; Jasqui, S.; Ponce De León Rosales, S.; Correa-Rotter, R.; Sánchez, S.; Mutchinick, O.M. Association of vitamin D receptor polymorphisms with osteoporosis in mexican postmenopausal women. Hum. Biol. 2003, 75, 399–403. [Google Scholar] [CrossRef]
- Shen, H.; Xie, J.; Lu, H. Vitamin D receptor gene and risk of fracture in postmenopausal women: A meta-analysis. Climacteric: The journal of the International Menopause. Society 2014, 17, 319–324. [Google Scholar]
- Fang, Y.; Rivadeneira, F.; van Meurs, J.B.; Pols, H.A.; Ioannidis, J.P.; Uitterlinden, A.G. Vitamin D receptor gene BsmI and TaqI polymorphisms and fracture risk: A meta-analysis. Bone 2006, 39, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Mondockova, V.; Kovacova, V.; Zemanova, N.; Babikova, M.; Martiniakova, M.; Galbavy, D.; Omelka, R. Vitamin D Receptor Gene Polymorphisms Affect Osteoporosis-Related Traits and Response to Antiresorptive Therapy. Genes 2023, 14, 193. [Google Scholar] [CrossRef] [PubMed]
- Marozik, P.M.; Rudenka, A.; Kobets, K.; Rudenka, E. Vitamin D Status, Bone Mineral Density, and VDR Gene Polymorphism in a Cohort of Belarusian Postmenopausal Women. Nutrients 2021, 13, 837. [Google Scholar] [CrossRef] [PubMed]
- Divanoglou, N.; Komninou, D.; Stea, E.A.; Argiriou, A.; Papatzikas, G.; Tsakalof, A.; Pazaitou-Panayiotou, K.; Georgakis, M.K.; Petridou, E. Association of Vitamin D Receptor Gene Polymorphisms with Serum Vitamin D Levels in a Greek Rural Population (Velestino Study). Lifestyle Genom. 2021, 14, 81–90. [Google Scholar] [CrossRef]
- Çakir, M.; Koç, E.M.; Soyöz, M.; Karahan Çöven, H.İ.; Aydogmus, S.; Sozmen, K. The effects of VDR gene polymorphisms and Lifestyle features on vitamin D levels of postmenopausal women. Ankara Med. J. 2023, 23, 284–294. [Google Scholar] [CrossRef]
Total (n = 287) | OPO (n = 96) | OPE (n = 126) | CG (n = 65) | p Post-Hoc | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Anthropometric Parameters | |||||||||
Age (years) | 62.83 | 9.42 | 65.98 | 9.20 | 62.60 | 8.80 | 58.63 | 9.31 | 0.001 * OPO vs. OPE: p = 0.019 OPO vs. CG: p < 0.001 OPE vs. CG: p = 0.013 |
Age at onset of menopause (years) | 48.62 | 4.91 | 48.24 | 5.29 | 48.43 | 4.82 | 49.54 | 4.44 | 0.120 |
Body weight (kg) | 74.27 | 13.17 | 67.71 | 10.73 | 75.23 | 11.15 | 82.09 | 15.26 | 0.001 * OPO vs. OPE: p < 0.001 OPO vs. CG: p < 0.001 OPE vs. CG: p = 0.010 |
Body height (cm) | 160.51 | 6.65 | 159.66 | 7.06 | 160.28 | 6.25 | 162.19 | 6.58 | 0.053 |
BMI (kg/m2) | 28.89 | 5.30 | 26.61 | 4.42 | 29.36 | 4.52 | 31.38 | 6.49 | 0.001 * OPO vs. OPE: p < 0.001 OPO vs. CG: p < 0.001 |
Biochemical Parameters | |||||||||
PTH (pg/mL) | 25.89 | 15.37 | 32.32 | 17.22 | 20.41 | 13.23 | 27.02 | 12.28 | 0.001 * OPO vs. OPE: p < 0.001 OPE vs. CG: p = 0.003 |
25(OH)D total (ng/mL) | 20.24 | 12.85 | 17.04 | 12.01 | 23.23 | 14.16 | 19.20 | 9.91 | 0.001 * OPO vs. OPE: p < 0.001 |
Total (n = 287) | OPO (n = 96) | OPE (n = 126) | CG (n = 65) | p | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Left hip–neck | |||||||||
T-score | −1.29 | 1.09 | −2.13 | 0.84 | −1.32 | 0.69 | 0.01 | 0.73 | 0.001 * |
Z-score | 0.11 | 1.04 | −0.57 | 0.85 | 0.05 | 0.71 | 1.24 | 0.88 | 0.001 * |
BMD (g/cm2) | 0.71 | 0.12 | 0.61 | 0.09 | 0.70 | 0.08 | 0.85 | 0.08 | 0.001 * |
Left hip total | |||||||||
T-score | −0.35 | 1.06 | −1.14 | 0.87 | −0.33 | 0.77 | 0.80 | 0.69 | 0.001 * |
Z-score | 0.78 | 1.03 | 0.18 | 0.94 | 0.74 | 0.81 | 1.74 | 0.81 | 0.001 * |
BMD (g/cm2) | 0.90 | 0.13 | 0.81 | 0.11 | 0.90 | 0.09 | 1.04 | 0.09 | 0.001 * |
Spine total | |||||||||
T-score | −1.06 | 1.48 | −2.44 | 0.69 | −0.88 | 1.02 | 0.63 | 1.14 | 0.001 * |
Z-score | 0.53 | 1.55 | −0.67 | 0.95 | 0.69 | 1.28 | 2.01 | 1.36 | 0.001 * |
BMD (g/cm2) | 0.93 | 0.16 | 0.78 | 0.08 | 0.95 | 0.11 | 1.12 | 0.13 | 0.001 * |
Genotype | HWE | χ2 | p | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TT | TC | CC | |||||||||
n | % | n | % | n | % | ||||||
OPO | 15 | 15.63 | 43 | 44.79 | 38 | 39.58 | 0.627 | 1.624 | 0.804 | ||
OPE | 24 | 19.05 | 57 | 45.24 | 45 | 35.71 | 0.436 | ||||
CG | 8 | 12.31 | 31 | 47.69 | 26 | 40.00 | 0.790 | ||||
Allele | χ2 | p | OR | CI | |||||||
T | C | ||||||||||
n | % | n | % | ||||||||
OPO | 73 | 38.02 | 119 | 61.98 | 1.262 | 0.419 | 1.182 | 0.788–1.772 | |||
OPE | 105 | 41.67 | 147 | 58.33 | |||||||
CG | 47 | 36.15 | 83 | 63.85 |
Parameter | Genotype | p | |||||
---|---|---|---|---|---|---|---|
TT | TC | CC | |||||
n = 24 | n = 57 | n = 45 | |||||
Mean | SD | Mean | SD | Mean | SD | ||
Age (years) | 63.92 | 5.23 | 62.02 | 9.73 | 62.64 | 12.25 | 0.386 |
Onset of menopause (years) | 47.29 | 4.52 | 48.33 | 5.42 | 49.16 | 6.73 | 0.235 |
Body weight (kg) | 76.98 | 11.01 | 74.76 | 11.99 | 74.89 | 12.76 | 0.727 |
Body height (cm) | 158.85 | 6.15 | 160.89 | 6.30 | 160.27 | 22.22 | 0.409 |
BMI (kg/m2) | 30.57 | 4.43 | 28.95 | 4.87 | 29.22 | 5.89 | 0.169 |
T-score LH neck | −1.30 | 0.73 | −1.28 | 0.71 | −1.39 | 0.72 | 0.738 |
T-score LH total | −0.27 | 0.91 | −0.34 | 0.72 | −0.35 | 0.77 | 0.921 |
Z-score LH neck | 0.18 | 0.67 | 0.03 | 0.74 | 0.02 | 0.69 | 0.496 |
Z-score LH total | 0.89 | 0.85 | 0.66 | 0.81 | 0.75 | 0.81 | 0.538 |
BMD LH neck | 0.70 | 0.08 | 0.71 | 0.08 | 0.70 | 0.12 | 0.723 |
BMD LH total | 0.91 | 0.11 | 0.90 | 0.09 | 0.90 | 0.09 | 0.943 |
T-score spine | −0.52 | 1.35 | −1.01 | 1.00 | −0.92 | 0.82 | 0.155 |
Z-score spine | 1.20 | 1.54 | 0.47 | 1.31 | 0.68 | 0.98 | 0.034 * TT vs. TC: p = 0.034 |
BMD spine | 0.99 | 0.15 | 0.94 | 0.11 | 0.94 | 0.09 | 0.159 |
PTH (pg/mL) | 19.66 | 10.79 | 19.78 | 13.80 | 21.60 | 13.85 | 0.773 |
25(OH)D total (ng/mL) | 22.75 | 11.97 | 23.39 | 15.47 | 23.27 | 13.80 | 0.939 |
Optimal Condition | Insufficiency | Deficiency | Significant Deficiency | χ2 | p | |||||
---|---|---|---|---|---|---|---|---|---|---|
Genotype | n | % | n | % | n | % | n | % | ||
Control Group (n = 65) | ||||||||||
TT | 2 | 3.08 | 1 | 1.54 | 4 | 6.15 | 1 | 1.54 | 8.451 | 0.207 |
TC | 2 | 3.08 | 9 | 13.85 | 12 | 18.46 | 8 | 12.31 | ||
CC | 5 | 7.69 | 11 | 16.92 | 4 | 6.15 | 6 | 9.23 | ||
Osteopenia (n = 126) | ||||||||||
TT | 8 | 6.35 | 3 | 2.38 | 11 | 8.73 | 2 | 1.59 | 8.729 | 0.189 |
TC | 12 | 9.52 | 17 | 13.49 | 21 | 16.67 | 7 | 5.56 | ||
CC | 8 | 6.35 | 20 | 15.87 | 14 | 11.11 | 3 | 2.38 | ||
Osteoporosis (n = 96) | ||||||||||
TT | 0 | 0.00 | 4 | 4.17 | 7 | 7.29 | 4 | 4.17 | 2.132 | 0.907 |
TC | 2 | 2.08 | 14 | 14.58 | 13 | 13.54 | 14 | 14.58 | ||
CC | 2 | 2.08 | 13 | 13.54 | 13 | 13.54 | 10 | 10.42 | ||
Total (n = 287) | ||||||||||
TT | 10 | 3.48 | 8 | 2.79 | 22 | 7.67 | 7 | 2.44 | 12.241 | 0.057 |
TC | 16 | 5.57 | 40 | 13.94 | 46 | 16.03 | 29 | 10.10 | ||
CC | 15 | 5.23 | 44 | 15.33 | 31 | 10.80 | 19 | 6.62 |
Category | Total n | Genotypes | χ2 | p | |||
---|---|---|---|---|---|---|---|
CC | TT + TC | ||||||
n | % | n | % | ||||
Control Group (n = 65) | |||||||
Optimal condition | 9 | 5 | 55.56 | 4 | 44.44 | 5.582 | 0.134 |
Insufficiency | 21 | 11 | 52.38 | 10 | 47.62 | ||
Deficiency | 20 | 4 | 20.00 | 16 | 80.00 | ||
Significant deficiency | 15 | 6 | 40.00 | 9 | 60.00 | ||
Osteopenia (n = 126) | |||||||
Optimal condition | 28 | 8 | 28.57 | 20 | 71.43 | 5.336 | 0.149 |
Insufficiency | 40 | 20 | 50.00 | 20 | 50.00 | ||
Deficiency | 46 | 14 | 30.43 | 32 | 69.57 | ||
Significant deficiency | 12 | 3 | 25.00 | 9 | 75.00 | ||
Osteoporosis (n = 96) | |||||||
Optimal condition | 4 | 2 | 50.00 | 2 | 50.00 | 0.429 | 0.934 |
Insufficiency | 31 | 13 | 41.94 | 18 | 58.06 | ||
Deficiency | 33 | 13 | 39.39 | 20 | 60.61 | ||
Significant deficiency | 28 | 10 | 35.71 | 18 | 64.29 | ||
Total (n = 287) | |||||||
Optimal condition | 41 | 15 | 36.59 | 26 | 63.41 | 5.964 | 0.113 |
Insufficiency | 92 | 44 | 47.83 | 48 | 52.17 | ||
Deficiency | 99 | 31 | 31.31 | 68 | 68.69 | ||
Significant deficiency | 55 | 19 | 34.55 | 36 | 65.45 |
Group | Parameter | Parameter | r | p |
---|---|---|---|---|
CG | 25(OH)D | BMI | 0.113 | 0.376 |
T-score LH neck | −0.1101 | 0.386 | ||
T-score spine | −0.1625 | 0.200 | ||
BMD LH neck | −0.111 | 0.384 | ||
BMD spine | −0.164 | 0.196 | ||
OPE | 25(OH)D | BMI | −0.047 | 0.606 |
T-score LH neck | −0.045 | 0.622 | ||
T-score spine | −0.182 | 0.042 * | ||
BMD LH neck | −0.050 | 0.579 | ||
BMD spine | −0.177 | 0.048 * | ||
OPO | 25(OH)D | BMI | −0.085 | 0.409 |
T-score LH neck | −0.072 | 0.486 | ||
T-score spine | −0.180 | 0.079 | ||
BMD LH neck | −0.068 | 0.508 | ||
BMD spine | −0.139 | 0.176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mydlárová Blaščáková, M.; Lőrinczová, Z.; Anderková, L.; Czerwińska-Ledwig, O.; Mikulová, Ľ.; Hrušovská, H.; Jędrzejkiewicz, B.; Piotrowska, A. Relationship Between Vitamin D Receptor Gene BsmI Polymorphism and 25-Hydroxyvitamin D Total Levels in Slovak Postmenopausal Women with Reduced Bone Mineral Density. Genes 2025, 16, 337. https://doi.org/10.3390/genes16030337
Mydlárová Blaščáková M, Lőrinczová Z, Anderková L, Czerwińska-Ledwig O, Mikulová Ľ, Hrušovská H, Jędrzejkiewicz B, Piotrowska A. Relationship Between Vitamin D Receptor Gene BsmI Polymorphism and 25-Hydroxyvitamin D Total Levels in Slovak Postmenopausal Women with Reduced Bone Mineral Density. Genes. 2025; 16(3):337. https://doi.org/10.3390/genes16030337
Chicago/Turabian StyleMydlárová Blaščáková, Marta, Zuzana Lőrinczová, Lenka Anderková, Olga Czerwińska-Ledwig, Ľudmila Mikulová, Hedviga Hrušovská, Bernadeta Jędrzejkiewicz, and Anna Piotrowska. 2025. "Relationship Between Vitamin D Receptor Gene BsmI Polymorphism and 25-Hydroxyvitamin D Total Levels in Slovak Postmenopausal Women with Reduced Bone Mineral Density" Genes 16, no. 3: 337. https://doi.org/10.3390/genes16030337
APA StyleMydlárová Blaščáková, M., Lőrinczová, Z., Anderková, L., Czerwińska-Ledwig, O., Mikulová, Ľ., Hrušovská, H., Jędrzejkiewicz, B., & Piotrowska, A. (2025). Relationship Between Vitamin D Receptor Gene BsmI Polymorphism and 25-Hydroxyvitamin D Total Levels in Slovak Postmenopausal Women with Reduced Bone Mineral Density. Genes, 16(3), 337. https://doi.org/10.3390/genes16030337