Genomics May Be the Key to Understanding Endurance Training Pillars
Abstract
:1. Introduction
2. The Genetic Basis of the Three Classical Endurance Pillars
2.1. VO2max and Its Heritability
2.2. Anaerobic Threshold and Metabolic Adaptations
2.3. Economy of Movement and Neuromuscular Efficiency
3. Physiological Resilience: The “Fourth Dimension” of Endurance
4. Additional Factors Shaping Endurance Performance
4.1. Sleep and Recovery
4.2. Caffeine
4.3. Resilience to Training and Overtraining Prevention
5. Practical Applications and Ethical Considerations
5.1. Personalization of Endurance Training
5.2. Ethical and Practical Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
VO2max | Maximal Oxygen Uptake |
AT | Anaerobic Threshold |
EM | Economy of Movement |
FatMax | Maximum Fat Oxidation |
MCT1 | Monocarboxylate Transporter 1 |
BDNF | Brain-Derived Neurotrophic Factor |
ACE | Angiotensin-Converting Enzyme |
HIF1A | Hypoxia-Inducible Factor 1 α |
VEGFA | Vascular Endothelial Growth Factor A |
PPARGC1A | Peroxisome Proliferator-Activated Receptor γ Coactivator 1 α |
PPARδ | Peroxisome Proliferator-Activated Receptor Delta |
MMP3 | Matrix Metallopeptidase 3 |
COL5A1 | Collagen Type V α 1 |
IL6 | Interleukin 6 |
TNFα | Tumor Necrosis Factor α |
COMT | Catechol-O-Methyltransferase |
CYP1A2 | Cytochrome P450 1A2 |
References
- Burns, G.T.; Kozloff, K.M.; Zernicke, R.F. Biomechanics of elite performers: Economy and efficiency of movement. Kinesiol. Rev. 2019, 8, 39–47. [Google Scholar] [CrossRef]
- Barnes, K.R.; Kilding, A.E. Running economy: Measurement, norms, and determining factors. Sports Med. Open. 2015, 1, 8. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.R., Jr.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K. Anaerobic threshold: Its concept and role in endurance sport. Malays. J. Med. Sci. 2004, 11, 24–36. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438148/ (accessed on 6 February 2025). [PubMed] [PubMed Central]
- Stöggl, T.L.; Sperlich, B. The training intensity distribution among well-trained and elite endurance athletes. Front. Physiol. 2015, 6, 295. [Google Scholar] [CrossRef]
- Mickelson, T.C.; Hagerman, F.C. Anaerobic threshold measurements of elite oarsmen. Med. Sci. Sports Exerc. 1982, 14, 440–444. [Google Scholar] [CrossRef]
- Achten, J.; Jeukendrup, A.E. Optimizing fat oxidation through exercise and diet. Nutrition 2004, 20, 716–727. [Google Scholar] [CrossRef]
- Jeukendrup, A.E.; Achten, J. Fatmax: A new concept to optimize fat oxidation during exercise? Eur. J. Sport. Sci. 2001, 1, 1–5. [Google Scholar] [CrossRef]
- Bircher, S.; Knechtle, B. Relationship between fat oxidation and lactate threshold in athletes and obese women and men. J. Sports Sci. Med. 2004, 3, 174–181. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3905300/ (accessed on 6 February 2025). [PubMed Central]
- Jones, A.M. The fourth dimension: Physiological resilience as an independent determinant of endurance exercise performance. J. Physiol. 2024, 602, 4113–4128. [Google Scholar] [CrossRef]
- Bouchard, C.; An, P.; Rice, T.; Skinner, J.S.; Wilmore, J.H.; Gagnon, J.; Pérusse, L.; Leon, A.S.; Rao, D.C. Familial aggregation of VO₂max response to exercise training: Results from the HERITAGE Family Study. J. Appl. Physiol. 1999, 87, 1003–1008. [Google Scholar] [CrossRef]
- Lee, J.; Zhang, X.L. Physiological determinants of VO2max and the methods to evaluate it: A critical review. Sci. Sports 2021, 36, 259–271. [Google Scholar] [CrossRef]
- Åstrand, P.O.; Saltin, B. Maximal oxygen uptake and heart rate in various types of muscular activity. J. Appl. Physiol. 1961, 16, 977–981. [Google Scholar] [CrossRef]
- Poole, D.C.; Rossiter, H.B.; Brooks, G.A.; Bruce Gladden, L.B. What Wasserman wrought: A celebratory review of 50 years of research arising from the concept of an ‘anaerobic threshold’. J. Physiol. 2021, 599, 1005. [Google Scholar] [CrossRef]
- Alvarez, R.; Terrados, N.; Ortolano, R.; Iglesias-Cubero, G.; Reguero, J.R.; Batalla, A.; Cortina, A.; Fernández-García, B.; Rodríguez, C.; Braga, S.; et al. Genetic variation in the renin-angiotensin system and athletic performance. Eur. J. Appl. Physiol. 2000, 82, 117–120. [Google Scholar] [CrossRef]
- Pereira-Barretto, A.C. Short editorial: Ser49Gly beta1-adrenergic receptor genetic polymorphism as a death predictor in Brazilian patients with heart failure. Arq. Bras. de Cardiol. 2020, 114, 625–626. [Google Scholar] [CrossRef] [PubMed]
- Hellsten, Y.; Gliemann, L. Peripheral limitations for performance: Muscle capillarization. Scand. J. Med. Sci. Sports 2024, 34, e14442. [Google Scholar] [CrossRef]
- Varillas-Delgado, D.; Tellería Orriols, J.J.; Del Coso, J. Genetic profile in genes associated with cardiorespiratory fitness in elite spanish male endurance athletes. Genes 2021, 12, 1230. [Google Scholar] [CrossRef]
- İpekoğlu, G.; Apaydın, N.; Çetin, T.; Eren, A.N.; Topçu, P.; Yücelsoy, B.; Civelek, G.; Sakar, M. Examining the relationship between genetic polymorphisms (BDKRB2, GNB3, HIF1A, MCT1, NOS3) and endurance athlete status. Eur. J. Appl. Physiol. 2024, 124, 1943–1958. [Google Scholar] [CrossRef]
- Saunders, C.J.; Xenophontos, S.L.; Cariolou, M.A.; Anastassiades, L.C.; Noakes, T.D.; Collins, M. The bradykinin β2 receptor (BDKRB2) and endothelial nitric oxide synthase 3 (NOS3) genes and endurance performance during Ironman Triathlons. Human Mol. Genet. 2006, 15, 979–987. [Google Scholar] [CrossRef]
- Semenova, E.A.; Hall, E.C.R.; Ahmetov, I.I. Genes and Athletic Performance: The 2023 Update. Genes 2023, 14, 1235. [Google Scholar] [CrossRef]
- Svedahl, K.; MacIntosh, B.R. Anaerobic threshold: The concept and methods of measurement. Can. J. Appl. Physiol. 2003, 28, 299–323. [Google Scholar] [CrossRef] [PubMed]
- Dubouchaud, H.; Butterfield, G.E.; Wolfel, E.E.; Bergman, B.C.; Brooks, G.A. Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2000, 278, E571–E579. [Google Scholar] [CrossRef] [PubMed]
- Fedotovskaya, O.N.; Mustafina, L.J.; Popov, D.V.; Vinogradova, O.L.; Ahmetov, I.I. A common polymorphism of the MCT1 gene and athletic performance. Int. J. Sports Physiol. Perform. 2014, 9, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Keith, S.P.; Jacobs, I.; McLellan, T.M. Adaptations to training at the individual anaerobic threshold. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 65, 316–323. [Google Scholar] [CrossRef]
- Petr, M.; Maciejewska-Skrendo, A.; Zajac, A.; Chycki, J.; Stastny, P. Association of elite sports status with gene variants of peroxisome proliferator activated receptors and their transcriptional coactivator. Int. J. Mol. Sci. 2020, 21, 162. [Google Scholar] [CrossRef]
- Wang, Y.X.; Zhang, C.L.; Yu, R.T.; Cho, H.K.; Nelson, M.C.; Bayuga-Ocampo, C.R.; Ham, J.; Kang, H.; Evans, R.M. Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol. 2004, 2, e294. [Google Scholar] [CrossRef]
- Fan, W.; Waizenegger, W.; Lin, C.S.; Sorrentino, V.; He, M.X.; Wall, C.E.; Li, H.; Liddle, C.; Yu, R.T.; Atkins, A.R.; et al. PPARδ Promotes Running Endurance by Preserving Glucose. Cell Metab. 2017, 25, 1186–1193.e4. [Google Scholar] [CrossRef]
- Eynon, N.; Meckel, Y.; Alves, A.J.; Yamin, C.; Sagiv, M.; Goldhammer, E.; Sagiv, M. Is there an interaction between PPARD T294C and PPARGC1A Gly482Ser polymorphisms and human endurance performance?: Experimental Physiology. Exp. Physiol. 2009, 94, 1147–1152. [Google Scholar] [CrossRef]
- Lopez-Leon, S.; Tuvblad, C.; Forero, D.A. Sports genetics: The PPARA gene and athletes’ high ability in endurance sports. A systematic review and meta-analysis. Biol. Sport 2016, 33, 3–6. [Google Scholar] [CrossRef]
- Joyner, M.J. Physiological limits to endurance exercise performance: Influence of sex. J. Physiol. 2017, 595, 2949–2954. [Google Scholar] [CrossRef] [PubMed]
- Koh, J.H.; Hancock, C.R.; Han, D.H.; Holloszy, J.O.; Nair, K.S.; Dasari, S. AMPK and PPARβ positive feedback loop regulates endurance exercise training-mediated GLUT4 expression in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2019, 316, E931–E939. [Google Scholar] [CrossRef]
- Joyner, M.J.; Coyle, E.F. Endurance exercise performance: The physiology of champions. J. Physiol. 2008, 586, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.W.; Martin, P.E.; Krahenbuhl, G.S. Factors affecting running economy. Sports Med. 1989, 7, 310–330. [Google Scholar] [CrossRef] [PubMed]
- Saunders, P.U.; Pyne, D.B.; Telford, R.D.; Hawley, J.A. Factors affecting running economy in trained distance runners. Sports Med. 2004, 34, 465–485. [Google Scholar] [CrossRef]
- Tøien, T.; Nielsen, J.L.; Berg, O.K.; Brobakken, M.F.; Nyberg, S.K.; Espedal, L.; Malmo, T.; Frandsen, U.; Aagaard, P.; Wang, E. The impact of life-long strength versus endurance training on muscle fiber morphology and phenotype composition in older men. J. Appl. Physiol. 2023, 135, 1360–1371. [Google Scholar] [CrossRef]
- Trappe, S.; Harber, M.; Creer, A.; Gallagher, P.; Slivka, D.; Minchev, K.; Whitsett, D. Single muscle fiber adaptations with marathon training. J. Appl. Physiol. 2006, 101, 721–727. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Vinogradova, O.L.; Williams, A.G. Gene polymorphisms and fiber-type composition of human skeletal muscle. Int. J. Sport. Nutr. Exerc. Metab. 2012, 22, 292–303. [Google Scholar] [CrossRef]
- Fuku, N.; Kumagai, H.; Ahmetov, I.I. Genetics of muscle fiber composition. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Elsevier: Amsterdam, The Netherlands, 2019; pp. 295–314. [Google Scholar] [CrossRef]
- North, K.N.; Yang, N.; Wattanasirichaigoon, D.; Mills, M.; Easteal, S.; Beggs, A.H. A common nonsense mutation results in α-actinin-3 deficiency in the general population. Nat. Genet. 1999, 21, 353–354. [Google Scholar] [CrossRef]
- Vincent, B.; De Bock, K.; Ramaekers, M.; Van Den Eede, E.; Van Leemputte, M.; Hespel, P.; Thomis, M.A. ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol. Genomics 2007, 32, 58–63. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. ACTN3: More than just a gene for speed. Front. Physiol. 2017, 8, 1080. [Google Scholar] [CrossRef] [PubMed]
- Moreno, V.; Areces, F.; Ruiz-Vicente, D.; Ordovás, J.M.; Del Coso, J. Influence of the ACTN3 R577X genotype on the injury epidemiology of marathon runners. PLoS ONE 2020, 15, e0227548. [Google Scholar] [CrossRef]
- Del Coso, J.; Valero, M.; Salinero, J.J.; Lara, B.; Díaz, G.; Gallo-Salazar, C.; Ruiz-Vicente, D.; Areces, F.; Puente, C.; Carril, J.C.; et al. ACTN3 genotype influences exercise-induced muscle damage during a marathon competition. Eur. J. Appl. Physiol. 2017, 117, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Bonacci, J.; Vleck, V.; Saunders, P.U.; Blanch, P.; Vicenzino, B. Rating of perceived exertion during cycling is associated with subsequent running economy in triathletes. J. Sci. Med. Sport 2013, 16, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Macarthur, D.G.; Wolde, B.; Onywera, V.O.; Boit, M.K.; Lau, S.Y.M.A.; Wilson, R.H.; Scott, R.A.; Pitsiladis, Y.P.; North, K. The ACTN3 R577X polymorphism in east and west African athletes. Med. Sci. Sports Exerc. 2007, 39, 1985–1988. [Google Scholar] [CrossRef]
- Jones, A.M.; Kirby, B.S.; Clark, I.E.; Rice, H.M.; Fulkerson, E.; Wylie, L.J.; Wilkerson, D.P.; Vanhatalo, A.; Wilkins, B.W. Physiological demands of running at 2-hour marathon race pace. J. Appl. Physiol. 2021, 130, 369–379. [Google Scholar] [CrossRef]
- Ingjer, F. Capillary supply and mitochondrial content of different skeletal muscle fiber types in untrained and endurance-trained men: A histochemical and ultrastructural study. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 40, 197–209. [Google Scholar] [CrossRef]
- Brown, J.C.; Miller, C.J.; Posthumus, M.; Schwellnus, M.P.; Collins, M. The COL5A1 gene, ultra-marathon running performance, and range of motion. Int. J. Sports Physiol. Perform. 2011, 6, 485–496. [Google Scholar] [CrossRef]
- Posthumus, M.; Schwellnus, M.P.; Collins, M. The COL5A1 gene: A novel marker of endurance running performance. Med. Sci. Sports Exerc. 2011, 43, 584–589. [Google Scholar] [CrossRef]
- Guo, R.; Ji, Z.; Gao, S.; Aizezi, A.; Fan, Y.; Wang, Z.; Ning, K. Association of COL5A1 gene polymorphisms and musculoskeletal soft tissue injuries: A meta-analysis based on 21 observational studies. J. Orthop. Surg. Res. 2022, 17, 129. [Google Scholar] [CrossRef]
- Maunder, E.; Seiler, S.; Mildenhall, M.J.; Kilding, A.E.; Plews, D.J. The Importance of ‘Durability’ in the Physiological Profiling of Endurance Athletes. Sports Med. 2021, 51, 1619–1628. [Google Scholar] [CrossRef] [PubMed]
- Furrer, R.; Hawley, J.A.; Handschin, C. Themolecular athlete: Exercise physiology frommechanisms to medals. Physiol. Rev. 2023, 103, 1693–1787. [Google Scholar] [CrossRef]
- Karnik, M.S.; Wang, L.; Barch, D.M.; Morris, J.C.; Csernansky, J.G. BDNF polymorphism rs6265 and hippocampal structure and memory performance in healthy control subjects. Psychiatry Res. 2010, 178, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Correia, P.R.; Scorza, F.A.; Da Silva, S.G.; Pansani, A.; Toscano-Silva, M.; De Almeida, A.C.; Arida, R.M. Increased basal plasma brain-derived neurotrophic factor levels in sprint runners. Neurosci. Bull. 2011, 27, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Seifert, T.; Brassard, P.; Wissenberg, M.; Rasmussen, P.; Nordby, P.; Stallknecht, B.; Adser, H.; Jakobsen, A.H.; Pilegaard, H.; Nielsen, H.B.; et al. Endurance training enhances BDNF release from the human brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R372–R377. [Google Scholar] [CrossRef]
- Tartar, J.L.; Cabrera, D.; Knafo, S.; Thomas, J.D.; Antonio, J.; Peacock, C.A. The “Warrior” COMT Val/Met genotype occurs in greater frequencies in mixed martial arts fighters relative to controls. J. Sports Sci. Med. 2020, 19, 38–42. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039020/ (accessed on 12 March 2025). [PubMed Central]
- McCormick, A.; Meijen, C.; Marcora, S. Psychological Determinants of Whole-Body Endurance Performance. Sports Med. 2015, 45, 997–1015. [Google Scholar] [CrossRef]
- Meijin, C.; Brick, N.E.; McCormick, A.; Lane, A.M.; Marchant, D.C.; Marcora, S.M.; Micklewright, D.; Robinson, D.T. Psychological Strategies to Resist Slowing Down or Stopping during Endurance. Sport Exerc. Psychol. Rev. 2023, 18, 4–37. [Google Scholar] [CrossRef]
- Samuels, C. Sleep, Recovery, and Performance: The New Frontier in High-Performance Athletics. Phys. Med. Rehabilitation Clin. North Am. 2009, 20, 149–159. [Google Scholar] [CrossRef]
- Truong, C.; Ruffino, C.; Gaveau, J.; White, O.; Hilt, P.M.; Papaxanthis, C. Time of day and sleep effects on motor acquisition and consolidation. Npj Sci. Learn. 2023, 8, 30. [Google Scholar] [CrossRef]
- Anderson, A.; Murray, G.; Herlihy, M.; Weiss, C.; King, J.; Hutchinson, E.; Albert, N.; Ingram, K.K. Circadian effects on performance and effort in collegiate swimmers. J. Circadian Rhythm. 2018, 16, 8. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 2017, 18, 164–179. [Google Scholar] [CrossRef]
- Kusumoto, H.; Ta, C.; Brown, S.M.; Mulcahey, M.K. Factors contributing to diurnal variation in athletic performance and methods to reduce within-day performance variation: A systematic review. J. Strength. Cond. Res. 2020, 36, 2502–2508. [Google Scholar] [CrossRef]
- Lastella, M.; Miller, D.J.; Quilelli, M.; Roberts, S.; Aisbett, B.; Condo, D. The Impact of Chronotype on the Sleep and Training Responses of Elite Female Australian Footballers. Clocks Sleep 2021, 3, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Roden, L.; Rudner, T.; Rae, D. Impact of chronotype on athletic performance: Current perspectives. ChronoPhysiol. Ther. 2017, 7, 1–6. [Google Scholar] [CrossRef]
- Vitale, J.A.; Roveda, E.; Montaruli, A.; Galasso, L.; Weydahl, A.; Caumo, A.; Carandente, F. Chronotype influences activity circadian rhythm and sleep: Differences in sleep quality between weekdays and weekend. Chronobiol. Int. 2015, 32, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Škrlec, I.; Talapko, J.; Džijan, S.; Cesar, V.; Lazić, N.; Lepeduš, H. The association between circadian clock gene polymorphisms and metabolic syndrome: A systematic review and meta-analysis. Biology 2022, 11, 20. [Google Scholar] [CrossRef]
- Nobari, H.; Azarian, S.; Saedmocheshi, S.; Valdés-Badilla, P.; García Calvo, T. Narrative review: The role of circadian rhythm on sports performance, hormonal regulation, immune system function, and injury prevention in athletes. Heliyon 2023, 9, e19636. [Google Scholar] [CrossRef]
- Garner, J.M.; Chambers, J.; Barnes, A.K.; Datta, S. Changes in brain-derived neurotrophic factor expression influence sleep-wake activity and homeostatic regulation of rapid eye movement sleep. Sleep 2018, 41, zsx194. [Google Scholar] [CrossRef]
- Grant, L.K.; Cain, S.W.; Chang, A.M.; Saxena, R.; Czeisler, C.A.; Anderson, C. Impaired cognitive flexibility during sleep deprivation among carriers of the Brain Derived Neurotrophic Factor (BDNF) Val66Met allele. Behav. Brain Res. 2018, 338, 51–55. [Google Scholar] [CrossRef]
- Humińska-Lisowska, K.; Chmielowiec, K.; Chmielowiec, J.; Strońska-Pluta, A.; Bojarczuk, A.; Dzitkowska-Zabielska, M.; Łubkowska, B.; Spieszny, M.; Surała, O.; Grzywacz, A. Association Between the rs4680 Polymorphism of the COMT Gene and Personality Traits among Combat Sports Athletes. J. Hum. Kinet. 2023, 89, 89–99. [Google Scholar] [CrossRef]
- Srivastava, K.; Ochuba, O.; Sandhu, J.K.; Alkayyali, T.; Ruo, S.W.; Waqar, A.; Jain, A.; Joseph, C.; Poudel, S. Effect of Catechol-O-Methyltransferase Genotype Polymorphism on Neurological and Psychiatric Disorders: Progressing Towards Personalized Medicine. Cureus 2021, 13, e18311. [Google Scholar] [CrossRef]
- Monti, J.M.; Monti, D. The involvement of dopamine in the modulation of sleep and waking. Sleep Med. Rev. 2007, 11, 113–133. [Google Scholar] [CrossRef] [PubMed]
- Satterfield, B.C.; Hinson, J.M.; Whitney, P.; Schmidt, M.A.; Wisor, J.P.; Van Dongen, H.P.A. Catechol-O-methyltransferase (COMT) genotype affects cognitive control during total sleep deprivation. Cortex 2018, 99, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Casale, C.E.; Goel, N. Genetic markers of differential vulnerability to sleep loss in adults. Genes 2021, 12, 1317. [Google Scholar] [CrossRef]
- Cornelis, M.C.; Kacprowski, T.; Menni, C.; Gustafsson, S.; Pivin, E.; Adamski, J.; Artati, A.; Eap, C.B.; Ehret, G.; Friedrich, N.; et al. Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior. Human. Mol. Genet. 2016, 25, 5472–5482. [Google Scholar] [CrossRef]
- Guest, N.; Corey, P.; Vescovi, J.; El-Sohemy, A. Caffeine, CYP1A2 genotype, and endurance performance in athletes. Med. Sci. Sports Exerc. 2018, 50, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Guest, N.S.; Corey, P.; Tyrrell, P.N.; El-Sohemy, A. Effect of caffeine on endurance performance in athletes may depend on HTR2A and CYP1A2 genotypes. J. Strength. Cond. Res. 2022, 36, 2486–2492. [Google Scholar] [CrossRef]
- Spineli, H.; Dos Santos, M.; Almeida, D.; Gitaí, D.; Silva-Cavalcante, M.; Balikian, P.; Ataide-Silva, T.; Marinho, A.; Sousa, F.; de Araujo, G. ACE gene polymorphisms (rs4340) II and DI are more responsive to the ergogenic effect of caffeine than DD on aerobic power, heart rate, and perceived exertion in a homogeneous Brazilian group of adolescent athletes. Braz. J. Med. Biol. Res. 2024, 57, e13217. [Google Scholar] [CrossRef]
- Petersen, A.M.W.; Pedersen, B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef]
- Nash, D.; Hughes, M.G.; Butcher, L.; Aicheler, R.; Smith, P.; Cullen, T.; Webb, R. IL-6 signaling in acute exercise and chronic training: Potential consequences for health and athletic performance. Scand. J. Med. Sci. Sports 2023, 33, 4–19. [Google Scholar] [CrossRef] [PubMed]
- Yamin, C.; Duarte, J.A.R.; Oliveira, J.M.F.; Amir, O.; Sagiv, M.; Eynon, N.; Sagiv, M.; Amir, R.E. IL6 (-174) and TNFA (-308) promoter polymorphisms are associated with systemic creatine kinase response to eccentric exercise. Eur. J. Appl. Physiol. 2008, 104, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Kotowska, J.; Jówko, E.; Cieśliński, I.; Gromisz, W.; Sadowski, J. IL-6 and HSPA1A Gene Polymorphisms May Influence the Levels of the Inflammatory and Oxidative Stress Parameters and Their Response to a Chronic Swimming Training. Int. J. Environ. Res. Public Health 2022, 19, 8127. [Google Scholar] [CrossRef]
- Lorenz, K.; Mastalerz, A.; Cywińska, A.; Garbacz, A.; Maculewicz, E. Polymorphism of Genes Encoding Inflammatory Interleukins and the Risk of Anterior Cruciate Ligament Injury: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2024, 25, 4976. [Google Scholar] [CrossRef]
- Lopes, L.R.; de Miranda, V.A.R.; Guimarães, J.A.M.; de Araujo Souza, G.G.; Wainchtock, V.S.; Grangeiro Neto, J.A.; de Araújo Goes, R.; Perini, J.A. Association of TNF-α -308G > A polymorphism with susceptibility to tendinopathy in athletes: A case–control study. BMC Sports Sci. Med. Rehabil. 2021, 13, 51. [Google Scholar] [CrossRef]
- Hernando, B.; Gil-Barrachina, M.; Tomás-Bort, E.; Martinez-Navarro, I.; Collado-Boira, E.; Hernando, C. The effect of long-term ultra-endurance exercise and SOD2 genotype on telomere shortening with age. J. Appl. Physiol. 2020, 129, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Bulbul, A.; Ari, E.; Apaydin, N.; Ipekoglu, G. The impact of genetic polymorphisms on anterior cruciate ligament injuries in athletes: A meta-analytical approach. Biology 2023, 12, 1526. [Google Scholar] [CrossRef]
- Posthumus, M.; September, A.V.; O’cuinneagain, D.; Van Der Merwe, W.; Schwellnus, M.P.; Collins, M. The COL5A1 gene is associated with increased risk of Anterior cruciate ligament ruptures in female participants. Am. J. Sports Med. 2009, 37, 2234–2240. [Google Scholar] [CrossRef]
- Raleigh, S.M.; Van Der Merwe, L.; Ribbans, W.J.; Smith, R.K.W.; Schwellnus, M.P.; Collins, M. Variants within the MMP3 gene are associated with Achilles tendinopathy: Possible interaction with the COL5A1 gene. Br. J. Sports Med. 2009, 43, 514–520. [Google Scholar] [CrossRef]
- Baumert, P.; Lake, M.J.; Stewart, C.E.; Drust, B.; Erskine, R.M. Genetic variation and exercise-induced muscle damage: Implications for athletic performance, injury and ageing. Eur. J. Appl. Physiol. 2016, 116, 1595–1625. [Google Scholar] [CrossRef]
- Lim, T.; Santiago, C.; Pareja-Galeano, H.; Iturriaga, T.; Sosa-Pedreschi, A.; Fuku, N.; Pérez-Ruiz, M.; Yvert, T. Genetic variations associated with non-contact muscle injuries in sport: A systematic review. Scand. J. Med. Sci. Sports 2021, 31, 2014–2032. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bottura, R.M.; Dentillo, D.B. Genomics May Be the Key to Understanding Endurance Training Pillars. Genes 2025, 16, 338. https://doi.org/10.3390/genes16030338
Bottura RM, Dentillo DB. Genomics May Be the Key to Understanding Endurance Training Pillars. Genes. 2025; 16(3):338. https://doi.org/10.3390/genes16030338
Chicago/Turabian StyleBottura, Ricardo Muller, and Daniel Blasioli Dentillo. 2025. "Genomics May Be the Key to Understanding Endurance Training Pillars" Genes 16, no. 3: 338. https://doi.org/10.3390/genes16030338
APA StyleBottura, R. M., & Dentillo, D. B. (2025). Genomics May Be the Key to Understanding Endurance Training Pillars. Genes, 16(3), 338. https://doi.org/10.3390/genes16030338