Example of Intrafamilial Clinical Polymorphism in a Family with Osteogenesis Imperfecta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Informed Consent
2.3. DNA Extraction
2.4. Sequencing
2.5. Methods of Medical Instrumental Examination
3. Results
4. Discussion
4.1. Clinical Polymorphism
4.2. Most Common Signs of OI in the Family
4.3. The Variant NM_000088.3(COL1A1):c.1243C>T p.(Arg415*)
4.4. Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mortier, G.R.; Cohn, D.H.; Cormier-Daire, V.; Hall, C.; Krakow, D.; Mundlos, S.; Nishimura, G.; Robertson, S.; Sangiorgi, L.; Savarirayan, R.; et al. Nosology and classification of genetic skeletal disorders: 2019 revision. Am. J. Med. Genet. Part A 2019, 179, 2393–2419. [Google Scholar] [CrossRef] [PubMed]
- Orioli, I.M.; Castilla, E.E., Jr.; Barbosa-Neto, J.G. The birth prevalence rates for the skeletal dysplasias. J. Med. Genet. 1986, 23, 328–332. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- E Andersen, P.; Hauge, M. Congenital generalised bone dysplasias: A clinical, radiological, and epidemiological survey. J. Med Genet. 1989, 26, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Marini, J.C.; Forlino, A.; Bächinger, H.P.; Bishop, N.J.; Byers, P.H.; De Paepe, A.; Fassier, F.; Fratzl-Zelman, N.; Kozloff, K.M.; Krakow, D.; et al. Osteogenesis imperfecta. Nat. Rev. Dis. Prim. 2017, 3, 17052. [Google Scholar] [CrossRef]
- Orphanet. Available online: https://www.orpha.net/en/disease/detail/666 (accessed on 27 January 2025).
- Steiner, R.D.; Basel, D. COL1A1/2 Osteogenesis Imperfecta. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar] [PubMed]
- The Union of Pediatricians of Russia. Available online: https://www.pediatr-russia.ru/information/events/program/%D0%9D%D0%B5%D1%81%D0%BE%D0%B2%D0%B5%D1%80%D1%88_%D0%BE%D1%81%D1%82%D0%B5%D0%BE%D0%B3%D0%B5%D0%BD%D0%B5%D0%B7_17.04.22-1.pdf (accessed on 27 January 2025).
- Brittle Bone Disorders Consortium. Available online: https://bbd.rarediseasesnetwork.org/resources/researchers-clinicians (accessed on 27 January 2025).
- Lin, X.; Hu, J.; Zhou, B.; Zhang, Q.; Jiang, Y.; Wang, O.; Xia, W.; Xing, X.; Li, M. Genotype–phenotype relationship and comparison between eastern and western patients with osteogenesis imperfecta. J. Endocrinol. Investig. 2023, 47, 67–77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- HGMD. Available online: http://www.hgmd.cf.ac.uk/ (accessed on 27 January 2025).
- Lindahl, K.; Åström, E.; Rubin, C.-J.; Grigelioniene, G.; Malmgren, B.; Ljunggren, Ö.; Kindmark, A. Genetic epidemiology, prevalence, and genotype–phenotype correlations in the Swedish population with osteogenesis imperfecta. Eur. J. Hum. Genet. 2015, 23, 1042–1050, Erratum in Eur. J Hum Genet. 2015, 23, 1112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Panigrahi, I.; Qureshi, Y.; Kornak, U. Over-Representation of Recessive Osteogenesis Imperfecta in Asian Indian Children. J. Pediatr. Genet. 2020, 11, 81–86. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- OMIM—Online Mendelian Inheritance in Man. Available online: https://www.omim.org/, (accessed on 9 March 2025).
- Jovanovic, M.; Guterman-Ram, G.; Marini, J.C. Osteogenesis Imperfecta: Mechanisms and Signaling Pathways Connecting Classical and Rare OI Types. Endocr. Rev. 2022, 43, 61–90. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roschger, P.; Fratzl-Zelman, N.; Misof, B.M.; Glorieux, F.H.; Klaushofer, K.; Rauch, F. Evidence that Abnormal High Bone Mineralization in Growing Children with Osteogenesis Imperfecta is not Associated with Specific Collagen Mutations. Calcif. Tissue Int. 2008, 82, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Zinchenko, R.; Tebieva, I.; Gabisova, Y.; Shukan, E.; Khokhova, A.; Marakhonov, A.; Kutsev, S. Orphan diseases in the republic of North Ossetia–Alania: Structure, population genetic features, issues and prospects. Bull. Russ. State Med. Univ. 2024, 3, 43–51. [Google Scholar] [CrossRef]
- Rudenskaya, G.E.; Marakhonov, A.V.; Shchagina, O.A.; Lozier, E.R.; Dadali, E.L.; Akimova, I.A.; Petrova, N.V.; Konovalov, F.A. Ataxia with Oculomotor Apraxia Type 4 with PNKP Common “Portuguese” and Novel Mutations in Two Belarusian Families. J. Pediatr. Genet. 2019, 8, 58–62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Genome Aggregation Database (gnomAD v2.1.1). Available online: https://gnomad.broadinstitute.org/ (accessed on 3 March 2025).
- NMD Prediction Tool. Available online: https://nmdpredictions.shinyapps.io/shiny/ (accessed on 28 March 2025).
- Morlino, S.; Micale, L.; Ritelli, M.; Rohrbach, M.; Zoppi, N.; Vandersteen, A.; Mackay, S.; Agolini, E.; Cocciadiferro, D.; Sasaki, E.; et al. COL1-related overlap disorder: A novel connective tissue disorder incorporating the osteogenesis imperfecta/Ehlers-Danlos syndrome overlap. Clin. Genet. 2019, 97, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Willing, M.C.; Deschenes, S.P.; Slayton, R.L.; Roberts, E.J. Premature chain termination is a unifying mechanism for COL1A1 null alleles in osteogenesis imperfecta type I cell strains. Am. J. Hum. Genet. 1996, 59, 799–809. [Google Scholar] [PubMed] [PubMed Central]
- Hruskova, L.; Fijalkowski, I.; Van Hul, W.; Marik, I.; Mortier, G.; Martasek, P.; Mazura, I. Eight mutations including 5 novel ones in the COL1A1 gene in Czech patients with osteogenesis imperfecta. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2016, 160, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Venable, E.; Knight, D.R.T.; Thoreson, E.K.; Baudhuin, L.M. COL1A1 and COL1A2 variants in Ehlers-Danlos syndrome phenotypes and COL1-related overlap disorder. Am. J. Med. Genet. C Semin. Med. Genet. 2023, 193, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Liu, Y.; Wu, J.; Zhang, J.; Hu, H.-Y.; Yan, Y.-S.; Chen, W.-Q.; Yang, S.-F.; Sun, L.-J.; Sun, Y.-Q.; et al. Prenatal Cases Reflect the Complexity of the COL1A1/2 Associated Osteogenesis Imperfecta. Genes 2022, 13, 1578. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Folkestad, L. Mortality and morbidity in patients with osteogenesis imperfecta in Denmark. Dan. Med. J. 2018, 65, B5454. [Google Scholar] [PubMed]
- van Dijk, F.S.; Semler, O.; Etich, J.; Köhler, A.; Jimenez-Estrada, J.A.; Bravenboer, N.; Claeys, L.; Riesebos, E.; Gegic, S.; Piersma, S.R.; et al. Interaction between KDELR2 and HSP47 as a Key Determinant in Osteogenesis Imperfecta Caused by Bi-allelic Variants in KDELR2. Am. J. Hum. Genet. 2020, 107, 989–999. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mirigian, L.S.; Makareeva, E.; Mertz, E.L.; Omari, S.; Roberts-Pilgrim, A.M.; Oestreich, A.K.; Phillips, C.L.; Leikin, S. Osteoblast Malfunction Caused by Cell Stress Response to Procollagen Misfolding in α2(I)-G610C Mouse Model of Osteogenesis Imperfecta. J. Bone Miner. Res. 2016, 31, 1608–1616. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Botor, M.; Auguściak-Duma, A.; Lesiak, M.; Sieroń, Ł.; Dziedzic-Kowalska, A.; Witecka, J.; Asman, M.; Madetko-Talowska, A.; Bik-Multanowski, M.; Galicka, A.; et al. Analysis of miRNAs in Osteogenesis imperfecta Caused by Mutations in COL1A1 and COL1A2: Insights into Molecular Mechanisms and Potential Therapeutic Targets. Pharmaceuticals 2023, 16, 1414. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Skalny, A.V.; Aschner, M.; Silina, E.V.; Stupin, V.A.; Zaitsev, O.N.; Sotnikova, T.I.; Tazina, S.I.; Zhang, F.; Guo, X.; Tinkov, A.A. The Role of Trace Elements and Minerals in Osteoporosis: A Review of Epidemiological and Laboratory Findings. Biomolecules 2023, 13, 1006. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marom, R.; Rabenhorst, B.M.; Morello, R. Management of Endocrine Disease: Osteogenesis imperfecta: An update on clinical features and therapies. Eur. J. Endocrinol. 2020, 183, R95–R106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhytnik, L.; Maasalu, K.; Reimand, T.; Duy, B.H.; Kõks, S.; Märtson, A. Inter- and Intrafamilial Phenotypic Variability in Individuals with Collagen-Related Osteogenesis Imperfecta. Clin. Transl. Sci. 2020, 13, 960–971. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Takeda, R.; Yamaguchi, T.; Hayashi, S.; Sano, S.; Kawame, H.; Kanki, S.; Taketani, T.; Yoshimura, H.; Nakamura, Y.; Kosho, T. Clinical and molecular features of patients with COL1-related disorders: Implications for the wider spectrum and the risk of vascular complications. Am. J. Med Genet. Part A 2022, 188, 2560–2575. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malfait, F.; Francomano, C.; Byers, P.; Belmont, J.; Berglund, B.; Black, J.; Bloom, L.; Bowen, J.M.; Brady, A.F.; Burrows, N.P.; et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am. J. Med. Genet. Part C Semin. Med. Genet. 2017, 175, 8–26. [Google Scholar] [CrossRef] [PubMed]
- Forlino, A.; Marini, J.C. Osteogenesis imperfecta. Lancet 2016, 387, 1657–1671. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stasek, S.; Zaucke, F.; Hoyer-Kuhn, H.; Etich, J.; Reincke, S.; Arndt, I.; Rehberg, M.; Semler, O. Osteogenesis imperfecta: Shifting paradigms in pathophysiology and care in children. J. Pediatr. Endocrinol. Metab. 2024, 38, 1–15. [Google Scholar] [CrossRef] [PubMed]
Patient ID | Age (Years Old) | Sex, Age and Age, Gender Standards for Height and Weight (cm, kg) | Height/Weight, Failure to Thrive (FTT)/Hypotrophy | Fractures (N) | Deformity, Grade and Site | Connective Tissue Dysplasia | Dentinogenesis Imperfecta (DI) | Sclerae Tints | Bone Mineral Density |
---|---|---|---|---|---|---|---|---|---|
V.I | 9 | Male (131–142, 25.2–32.6) | 146/26, Tall stature/Norm | N = 21 | Moderate, forearm | Dolichostenomelia | Norm | Blue sclerae | (−1.8 SD according to the Z-score) |
V.2 | 3 | Female (92–99, 12.7–16.2) | 89/12 FTT/Hypotrophy | Without fractures | Without deformities | Joint hypermobility | Norm | Dark blue sclerae | (−2.0 SD according to the Z-score) |
IV.1 | 9 | Male (131–142, 25.2–32.6) | 120/26 FTT/Norm | N = 10 | Without deformities | Scoliosis (2 grade, right side), flatfeet | DI (extensive dental caries) | Blue sclerae | (−2.5 SD according to the Z-score) |
IV.2 | 1.5 | Female (84–90, 11–14.2) | 69/9 FTT/Hypotrophy | Without fractures | Without deformities | Recurred dislocation of shoulder and elbow joints | Delayed eruption | Dark blue sclerae | n/t |
IV.3 | 29 | Male (164–185) | 145 FTT | N = 20 | Moderate, forearm | Norm | Norm | Dark blue sclerae | n/t |
IV.4 | 8 | Female (121–132, 22.1–29.5) | 110/19 FTT/Hypotrophy | N = 6 | Moderate, cnemis | Scoliosis (2 grade, right side), flatfeet | Norm | Dark blue sclerae | (−3.1 SD according to the Z-score) |
IV.5 | 1 | Female (70–78, 8–11.5) | Norm/Norm | Without fractures | Without deformities | Norm | Delayed eruption | Dark blue sclerae | n/t |
IV.6 | 3 | Female (97–194, 13.8–17.2) | 86/14 FTT/Norm | Without fractures | Without deformities | Joint hypermobility | Norm | Dark blue sclerae | n/t |
IV.7 | 6 | Female (116–125, 19–24.5) | 101/14 FTT/Hypotrophy | N = 4 | Without deformities | Recurred dislocation of shoulder joint | Norm | Dark blue sclerae | n/t |
III.1 | 44 | Male (164–185) | 158 FTT | N = 15 | Slight, forearm, cnemis, knee joints | Norm | Prosthodontics from 30 y.o, DI | Dark blue with grayish tint sclerae | n/t |
III.2 | 54 | Male (164–185) | 156 FTT | N = 30 | Moderate, forearm | Norm | Prosthodontics from 18 y.o, DI | Dark blue sclerae | n/t |
III.3 | 28 | Female (158–180) | 144 FTT | N = 7 | Moderate, forearm | Norm | Norm | Dark blue sclerae | n/t |
III.4 | 24 | Female (158–180) | 151 FTT | N = 5 | Without deformities | Norm | Norm | Blue sclerae | n/t |
II.1 (*) | Deceased | Male | Short stature | N = 20, n/t | Moderate, cnemis | n/t | Early loss of a tooth | n/t | n/t |
II.2 (*) | Deceased | Male | Short stature | N = 10, n/t | n/t | n/t | Early loss of a tooth | n/t | n/t |
Sign of Osteogenesis Imperfecta | Number and Share of the Patients with Clinical Feature (Group I) | Number and Share of the Patients with Clinical Feature (Group II) | Number and Share of the Patients with Clinical Feature (Group III) | Total Number and Share of the Patients with Clinical Feature in the Family |
---|---|---|---|---|
Blue sclerae | 4/4 | 4/4 | 5/5 | 13/13 (100%) |
Failure to thrive (FTT)/short stature | 3/4 | 3/4 | 5/5 | 11/13 (85%) |
Dentinogenesis imperfecta | 2/4 | 1/4 | 2/5 | 5/13 (38%) |
Fractures | 0/4 | 4/4 | 5/5 | 9/13 (69%) |
Deformations | 0/4 | 2/4 | 5/5 | 7/13 (54%) |
Recurred dislocation of joints | 1/4 | 1/4 | 0/5 | 2/13 (15%) |
Scoliosis | 0/4 | 2/4 | 0/5 | 2/13 (15%) |
Joint hypermobility | 2/4 | 0/4 | 0/5 | 2/13 (15%) |
Dolichostenomelia | 0/4 | 1/4 | 0/5 | 1/13 (8%) |
Conductive deafness | 0/4 | 0/4 | 1/5 | 1/13 (8%) |
Patients | Sex | Years | Height | Skeletal Anomalies | Non-Skeletal Anomalies | Other Features (Connective Tissue Dysplasia) |
---|---|---|---|---|---|---|
Patient with Osteogenesis imperfecta I [21] | unknown | unknown | Short stature (Each affected individual met the clinical criteria for type I) | Recurrent fractures on minor trauma | Blue sclerae | n/t |
Patient with Osteogenesis imperfecta IA [22] | M | 22 | Normal stature | Lower incidence of fractures | n/t | n/t |
Patient with Osteogenesis imperfecta III [12] | M | 3 | Short stature | Recurrent fractures on minor trauma | n/t | n/t |
Patient with Ehlers–Danlos syndrome [20] | F | 23 | Normal | 1 long bone fracture, long bone deformity, joint pain, flatfeet | Blue sclerae | Neonatal hypotonia, soft, doughy skin, piezogenic papules |
Index patient from this study | M | 9 | Short stature | 10 long bone fractures, low bone density | Blue sclerae DI (extensive dental caries) | Mitral regurgitation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galkina, V.A.; Vasilyeva, T.A.; Tebieva, I.S.; Getoeva, Z.K.; Marakhonov, A.V.; Kadyshev, V.V.; Kutsev, S.I.; Zinchenko, R.A. Example of Intrafamilial Clinical Polymorphism in a Family with Osteogenesis Imperfecta. Genes 2025, 16, 475. https://doi.org/10.3390/genes16050475
Galkina VA, Vasilyeva TA, Tebieva IS, Getoeva ZK, Marakhonov AV, Kadyshev VV, Kutsev SI, Zinchenko RA. Example of Intrafamilial Clinical Polymorphism in a Family with Osteogenesis Imperfecta. Genes. 2025; 16(5):475. https://doi.org/10.3390/genes16050475
Chicago/Turabian StyleGalkina, Varvara A., Tatyana A. Vasilyeva, Inna S. Tebieva, Zolina K. Getoeva, Andrey V. Marakhonov, Vitaly V. Kadyshev, Sergey I. Kutsev, and Rena A. Zinchenko. 2025. "Example of Intrafamilial Clinical Polymorphism in a Family with Osteogenesis Imperfecta" Genes 16, no. 5: 475. https://doi.org/10.3390/genes16050475
APA StyleGalkina, V. A., Vasilyeva, T. A., Tebieva, I. S., Getoeva, Z. K., Marakhonov, A. V., Kadyshev, V. V., Kutsev, S. I., & Zinchenko, R. A. (2025). Example of Intrafamilial Clinical Polymorphism in a Family with Osteogenesis Imperfecta. Genes, 16(5), 475. https://doi.org/10.3390/genes16050475