Intrafamilial Phenotypic Variability of the FGFR1 p.Cys277Tyr Variant: A Case Report and Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Next-Generation Sequencing (NGS) Analysis
2.2. Sanger Sequencing
3. Results
3.1. Clinical Report
3.2. Genetic Analyses
4. Discussion
Variant | Gender | Inheritance | Diagnosis | SHFM | CL/P | Isolated Anosmia/Hyposmia | References |
---|---|---|---|---|---|---|---|
NC_000008.10:g.38320713_38329024del | M | Maternal | SHFM + CHH | Both hands, Both feet | Yes | No | [16] |
c.289G>A p.(Gly97Ser) | M | N.E. | SHFM + CHH | Right hand | No | No | [16] |
c.787_789del p.(Ala263del) | M (fetus) | Paternal * | SHFM | Both hands, Right foot | No | No | [15] |
c.830G>A p.(Cys277Tyr) | M (II.1) | Paternal * | SHFM | Both feet | No | No | Our report |
M (II.3) | CL, minor digital anomalies | No | Yes | No | |||
M (I.1) | Isolated hyposmia | No | No | Yes | |||
F | Maternal | KS | No | No | No | [9] | |
M | N.E. | KS | No | No | No | [28] | |
c.1042G>A p.(Gly348Arg) | M | N.E. | CHH | Both feet | Yes | No | [17] |
c.1107G>A p.(Met369Ile) | F | Maternal * | CLP | No | Yes | No | [27] |
c.1286T>A p.(Val429Glu) | M | N.E. * | KS | Both hands, Both feet | No | No | [17] |
c.1399G>A p.(Glu467Lys) | M | N.E. | CLP | No | Yes | No | [27] |
c.1435G>A p.(Gly485Arg) | M | Maternal * | CHH | Right foot | Yes | No | [17] |
c.1663+1G>T | F | N.E. | CHH | Left hand | No | No | [16] |
c.1780C>T p.(Gln594Ter) | M | N.E. | CHH | Both feet | No | No | [17] |
c.1825C>T p.(Arg609Ter) | F | Paternal * | CLP | No | Yes | Yes | [27] |
c.2009G>A p.(Glu670Ala) | M | N.E. * | CHH | Both feet | Yes | No | [17] |
c.2062G>T p.(Val688Leu) | M | Maternal * | KS | Left foot | Yes | No | [17] |
c.2135T>C p.(Leu712Pro) | M | N.E. | KS | Both feet | No | No | [17] |
c.2231G>C p.(Arg744Thr) | M | N.E. | CHH + SHFM | Both hands, Both feet | No | No | [16] |
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czeizel, A.E.; Vitéz, M.; Kodaj, I.; Lenz, W. An epidemiological study of isolated split hand/foot in Hungary, 1975–1984. J. Med. Genet. 1993, 30, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.M.; Evans, J.A. Genotype-phenotype correlations in mappedsplit hand foot malformation (SHFM) patients. Am. J. Med. Genet. Part A 2006, 140, 1419–1427. [Google Scholar] [CrossRef]
- Sowińska-Seidler, A.; Socha, M.; Jamsheer, A. Split-hand/footmalformation—Molecular cause and implications in genetic counseling. J. Appl. Genet. 2014, 55, 105–115. [Google Scholar] [CrossRef]
- Cova, G.; Glaser, J.; Schöpflin, R.; Ali, S.; Prada-Medina, C.A.; Franke, M.; Falcone, R.; Federer, M.; Ponzi, E.; Ficarella, R.; et al. Combinatorial effects on gene expression at the Lbx1/Fgf8 locus resolve Split-Hand/Foot Malformation type 3. Nat. Commun. 2023, 14, 1475. [Google Scholar] [CrossRef] [PubMed]
- Umair, M.; Hayat, A. Nonsyndromic split-hand/foot malformation: Recent classification. Mol. Syndromol. 2020, 10, 243–254. [Google Scholar] [CrossRef]
- Bianchi, F.; Calzolari, E.; Ciulli, L.; Cordier, S.; Gualandi, F.; Pierini, A.; Mossey, P. Environment and genetics in the etiology of cleft lip and cleft palate with reference to the role of folic acid. Epidemiol. Prev. 2000, 24, 21–27. [Google Scholar]
- Biedziak, B.; Dąbrowska, J.; Szponar-Żurowska, A.; Bukowska-Olech, E.; Jamsheer, A.; Mojs, E.; Mulle, J.; Płoski, R.; Mostowska, A. Identification of a new familial case of 3q29 deletion syndrome associated with cleft lip and palate via whole-exome sequencing. Am. J. Med. Genet. A 2023, 191, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Stuppia, L.; Capogreco, M.; Marzo, G.; La Rovere, D.; Antonucci, I.; Gatta, V.; Palka, G.; Mortellaro, C.; Tetè, S. Genetics of syndromic and nonsyndromic cleft lip and palate. J. Craniofac. Surg. 2011, 22, 1722–1726. [Google Scholar] [CrossRef]
- Dodé, C.; Levilliers, J.; Dupont, J.M.; De Paepe, A.; Le Dû, N.; Soussi-Yanicostas, N.; Coimbra, R.S.; Delmaghani, S.; Compain-Nouaille, S.; Baverel, F.; et al. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat. Genet. 2003, 33, 463–465. [Google Scholar] [CrossRef]
- Kress, W.; Petersen, B.; Collmann, H.; Grimm, T. An unusual FGFR1 mutation (fibroblast growth factor receptor 1 mutation) in a girl with non-syndromic trigonocephaly. Cytogenet. Cell Genet. 2000, 91, 138–140. [Google Scholar] [CrossRef]
- Muenke, M.; Schell, U.; Hehr, A.; Robin, N.H.; Losken, H.W.; Schinzel, A.; Pulleyn, L.J.; Rutland, P.; Reardon, W.; Malcolm, S.; et al. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nat. Genet. 1994, 8, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Roscioli, T.; Flanagan, S.; Kumar, P.; Masel, J.; Gattas, M.; Hyland, V.J.; Glass, I.A. Clinical findings in a patient with FGFR1 P252R mutation and comparison with the literature. Am. J. Med. Genet. 2000, 93, 22–28. [Google Scholar] [CrossRef]
- Simonis, N.; Migeotte, I.; Lambert, N.; Perazzolo, C.; de Silva, D.C.; Dimitrov, B.; Heinrichs, C.; Janssens, S.; Kerr, B.; Mortier, G.; et al. FGFR1 mutations cause Hartsfield syndrome, the unique association of holoprosencephaly and ectrodactyly. J. Med. Genet. 2013, 50, 585–592. [Google Scholar] [CrossRef] [PubMed]
- White, K.E.; Cabral, J.M.; Davis, S.I.; Fishburn, T.; Evans, W.E.; Ichikawa, S.; Fields, J.; Yu, X.; Shaw, N.J.; McLellan, N.J.; et al. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am. J. Hum. Genet. 2005, 76, 361–367. [Google Scholar] [CrossRef]
- Papasozomenou, P.; Papoulidis, I.; Mikos, T.; Zafrakas, M. Split Hand Foot Malformation Syndrome: A Novel Heterozygous FGFR1 Mutation Detected by Next Generation Sequencing. Curr. Genom. 2019, 20, 226–230. [Google Scholar] [CrossRef]
- Ohtaka, K.; Fujisawa, Y.; Takada, F.; Hasegawa, Y.; Miyoshi, T.; Hasegawa, T.; Miyoshi, H.; Kameda, H.; Kurokawa-Seo, M.; Fukami, M.; et al. FGFR1 Analyses in Four Patients with Hypogonadotropic Hypogonadism with Split-Hand/Foot Malformation: Implications for the Promoter Region. Hum. Mutat. 2017, 38, 503–506. [Google Scholar] [CrossRef]
- Villanueva, C.; Jacobson-Dickman, E.; Xu, C.; Manouvrier, S.; Dwyer, A.A.; Sykiotis, G.P.; Beenken, A.; Liu, Y.; Tommiska, J.; Hu, Y.; et al. Congenital hypogonadotropic hypogonadism with split hand/foot malformation: A clinical entity with a high frequency of FGFR1 mutations. Genet Med. 2015, 17, 651–659. [Google Scholar] [CrossRef]
- Courage, C.; Jackson, C.B.; Owczarek-Lipska, M.; Jamsheer, A.; Sowińska-Seidler, A.; Piotrowicz, M.; Jakubowski, L.; Dallèves, F.; Riesch, E.; Neidhardt, J.; et al. Novel synonymous and missense variants in FGFR1 causing Hartsfield syndrome. Am. J. Med. Genet. A 2019, 179, 2447–2453. [Google Scholar] [CrossRef] [PubMed]
- Li, C.L.; Xu, X.L.; Nelson, D.K.; Williams, T.; Kuehn, M.R.; Deng, C.X. FGFR1 function at the earliest stages of mouse limb development plays an indispensable role in subsequent autopod morphogenesis. Development 2005, 132, 4755–4764. [Google Scholar] [CrossRef]
- Mason, I. Initiation to endpoint: The multiple roles of fibroblast growth factors in neural development. Nat. Rev. Neurosci. 2007, 8, 583–596. [Google Scholar] [CrossRef]
- Bukowska-Olech, E.; Popiel, D.; Koczyk, G.; Sowińska-Seidler, A.; Socha, M.; Wojciechowicz, B.; Dawidziuk, A.; Larysz, D.; Jamsheer, A. Adapting SureSelect enrichment protocol to the Ion Torrent S5 platform in molecular diagnostics of craniosynostosis. Sci. Rep. 2020, 10, 4159. [Google Scholar] [CrossRef] [PubMed]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The human genomic variant search engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef]
- Dhamija, R.; Babovic-Vuksanovic, D. FGFR1-Related Hartsfield Syndrome; University of Washington: Seattle, WA, USA, 2016. [Google Scholar]
- Tsai, P.S.; Moenter, S.M.; Postigo, H.R.; El Majdoubi, M.; Pak, T.R.; Gill, J.C.; Paruthiyil, S.; Werner, S.; Weiner, R.I. Targeted expression of a dominant negative fibroblast growth factor (FGF) receptor in gonadotropin-releasing hormone (GnRH) neurons reduces FGF responsiveness and the size of GnRH neuronal population. Mol. Endocrinol. 2005, 19, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Pitteloud, N.; Acierno, J.S., Jr.; Meysing, A.; Eliseenkova, A.V.; Ma, J.; Ibrahimi, O.A.; Metzger, D.L.; Hayes, F.J.; Dwyer, A.A.; Hughes, V.A.; et al. Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc. Natl. Acad. Sci. USA 2006, 103, 6281–6286. [Google Scholar] [CrossRef]
- Wang, C.; Chang, J.Y.; Yang, C.; Huang, Y.; Liu, J.; You, P.; McKeehan, W.L.; Wang, F.; Li, X. Type 1 fibroblast growth factor receptor in cranial neural crest cell-derived mesenchyme is required for palatogenesis. J. Biol. Chem. 2013, 288, 22174–22183. [Google Scholar] [CrossRef] [PubMed]
- Riley, B.M.; Mansilla, M.A.; Ma, J.; Daack-Hirsch, S.; Maher, B.S.; Raffensperger, L.M.; Russo, E.T.; Vieira, A.R.; Dodé, C.; Mohammadi, M.; et al. Impaired FGF signaling contributes to cleft lip and palate. Proc. Natl. Acad. Sci. USA 2007, 104, 4512–4517. [Google Scholar] [CrossRef]
- Salenave, S.; Chanson, P.; Bry, H.; Pugeat, M.; Cabrol, S.; Carel, J.C.; Murat, A.; Lecomte, P.; Brailly, S.; Hardelin, J.P.; et al. Kallmann’s syndrome: A comparison of the reproductive phenotypes in men carrying KAL1 and FGFR1/KAL2 mutations. J. Clin. Endocrinol. Metab. 2008, 93, 758–763. [Google Scholar] [CrossRef]
- Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil Steril. 2011, 96, 1424–1430.e6. [Google Scholar] [CrossRef]
- Gach, A.; Pinkier, I.; Wysocka, U.; Sałacińska, K.; Salachna, D.; Szarras-Czapnik, M.; Pietrzyk, A.; Sakowicz, A.; Nykel, A.; Rutkowska, L.; et al. New findings in oligogenic inheritance of congenital hypogonadotropic hypogonadism. Arch. Med. Sci. 2020, 18, 353–364. [Google Scholar] [CrossRef]
- Pitteloud, N.; Quinton, R.; Pearce, S.; Raivio, T.; Acierno, J.; Dwyer, A.; Plummer, L.; Hughes, V.; Seminara, S.; Cheng, Y.Z.; et al. Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism. J. Clin. Investig. 2007, 117, 457–463. [Google Scholar] [CrossRef]
- Falardeau, J.; Chung, W.C.; Beenken, A.; Raivio, T.; Plummer, L.; Sidis, Y.; Jacobson-Dickman, E.E.; Eliseenkova, A.V.; Ma, J.; Dwyer, A.; et al. Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J. Clin. Investig. 2008, 118, 2822–2831. [Google Scholar] [CrossRef] [PubMed]
- Känsäkoski, J.; Fagerholm, R.; Laitinen, E.M.; Vaaralahti, K.; Hackman, P.; Pitteloud, N.; Raivio, T.; Tommiska, J. Mutation screening of SEMA3A and SEMA7A in patients with congenital hypogonadotropic hypogonadism. Pediatr. Res. 2014, 75, 641–644. [Google Scholar] [CrossRef] [PubMed]
Gene | FGFR1 |
---|---|
Genomic position (hg19) | Chr8:38282133 |
Reference sequence number | NM_023110.3 |
Nucleotide change | c.830G>A |
Protein change | p.Cys277Tyr |
Inheritance | Paternal |
Location | Exon 7 |
ACMG Classification | Pathogenic (PP3) |
CADD | 33 |
SIFT | 0 |
REVEL | 0.962 |
MutationTaster | Disease-causing |
PolyPhen | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szoszkiewicz, A.; Sowińska-Seidler, A.; Gruca-Stryjak, K.; Jamsheer, A. Intrafamilial Phenotypic Variability of the FGFR1 p.Cys277Tyr Variant: A Case Report and Review of the Literature. Genes 2025, 16, 495. https://doi.org/10.3390/genes16050495
Szoszkiewicz A, Sowińska-Seidler A, Gruca-Stryjak K, Jamsheer A. Intrafamilial Phenotypic Variability of the FGFR1 p.Cys277Tyr Variant: A Case Report and Review of the Literature. Genes. 2025; 16(5):495. https://doi.org/10.3390/genes16050495
Chicago/Turabian StyleSzoszkiewicz, Anna, Anna Sowińska-Seidler, Karolina Gruca-Stryjak, and Aleksander Jamsheer. 2025. "Intrafamilial Phenotypic Variability of the FGFR1 p.Cys277Tyr Variant: A Case Report and Review of the Literature" Genes 16, no. 5: 495. https://doi.org/10.3390/genes16050495
APA StyleSzoszkiewicz, A., Sowińska-Seidler, A., Gruca-Stryjak, K., & Jamsheer, A. (2025). Intrafamilial Phenotypic Variability of the FGFR1 p.Cys277Tyr Variant: A Case Report and Review of the Literature. Genes, 16(5), 495. https://doi.org/10.3390/genes16050495