Interaction Between Dietary Fiber Intake and MTNR1B rs10830963 Polymorphism on Glycemic Profiles in Young Brazilian Adults
Abstract
:1. Introduction
2. Methods
2.1. Participants and Anthropometric and Sociodemographic Measurements
2.2. Biochemical Measurements
2.3. Dietary Intake
2.4. Genotyping
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. HEARTS: Technical Package for Cardiovascular Disease Management in Primary Health Care; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- World Health Organization. Obesity: Preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ. Tech. Rep. Ser. 2000, 894, 1–253. [Google Scholar]
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; Available online: https://www.diabetesatlas.org (accessed on 17 February 2025).
- Airhihenbuwa, C.O.; Tseng, T.S.; Sutton, V.D.; Price, L. Global perspectives on improving chronic disease prevention and management in diverse settings. Prev. Chronic Dis. 2021, 18, E33. [Google Scholar] [CrossRef] [PubMed]
- GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef]
- GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
- Alsulami, S.; Nyakotey, D.A.; Dudek, K.; Bawah, A.M.; Lovegrove, J.A.; Annan, R.A.; Ellahi, B.; Vimaleswaran, K.S. Interaction between Metabolic Genetic Risk Score and Dietary Fatty Acid Intake on Central Obesity in a Ghanaian Population. Nutrients 2020, 12, 1906. [Google Scholar] [CrossRef]
- Zheng, J.S.; Arnett, D.K.; Lee, Y.C.; Shen, J.; Parnell, L.D.; Smith, C.E.; Richardson, K.; Li, D.; Borecki, I.B.; Ordovás, J.M.; et al. Genome-wide contribution of genotype by environment interaction to variation of diabetes-related traits. PLoS ONE 2013, 8, e77442. [Google Scholar] [CrossRef]
- Qi, L.; Cornelis, M.C.; Zhang, C.; van Dam, R.M.; Hu, F.B. Genetic Predisposition, Western Dietary Pattern, and the Risk of Type 2 Diabetes in Men. Am. J. Clin. Nutr. 2009, 89, 1453–1458. [Google Scholar] [CrossRef]
- Cornelis, M.C.; Hu, F.B. Gene-Environment Interactions in the Development of Type 2 Diabetes: Recent Progress and Continuing Challenges. Annu. Rev. Nutr. 2012, 32, 245–259. [Google Scholar] [CrossRef]
- Staiger, H.; Machicao, F.; Schäfer, S.A.; Kirchhoff, K.; Kantartzis, K.; Guthoff, M.; Silbernagel, G.; Stefan, N.; Häring, H.U.; Fritsche, A. Polymorphisms within the Novel Type 2 Diabetes Risk Locus MTNR1B Determine Beta-Cell Function. PLoS ONE 2008, 3, e3962. [Google Scholar] [CrossRef]
- Vejrazkova, D.; Vankova, M.; Vcelak, J.; Krejci, H.; Anderlova, K.; Tura, A.; Pacini, G.; Sumova, A.; Sladek, M.; Bendlova, B. The rs10830963 Polymorphism of the MTNR1B Gene: Association with Abnormal Glucose, Insulin and C-Peptide Kinetics. Front. Endocrinol. 2022, 13, 868364. [Google Scholar] [CrossRef]
- Shen, L.L.; Jin, Y. Effects of MTNR1B Genetic Variants on the Risk of Type 2 Diabetes Mellitus: A Meta-Analysis. Mol. Genet. Genom. Med. 2019, 7, e611. [Google Scholar] [CrossRef] [PubMed]
- de Luis Román, D.A.; Primo, D.; Aller, R.; Izaola, O. Association of the rs10830963 Polymorphism in MTNR1B with Fasting Glucose, Serum Adipokine Levels and Components of Metabolic Syndrome in Adult Obese Subjects. Nutr. Hosp. 2019, 36, 60–65. [Google Scholar] [CrossRef] [PubMed]
- DiCorpo, D.; Gaynor, S.M.; Russell, E.M.; Westerman, K.E.; Raffield, L.M.; Majarian, T.D.; Wu, P.; Sarnowski, C.; Highland, H.M.; Jackson, A.; et al. Whole Genome Sequence Association Analysis of Fasting Glucose and Fasting Insulin Levels in Diverse Cohorts from the NHLBI TOPMed Program. Commun. Biol. 2022, 5, 756. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Wang, H.; Zhang, Y.Y. Melatonin Receptor 1B Gene rs10830963 C/G Polymorphism Associated with Type 2 Diabetes Mellitus: An Updated Meta-Analysis of 13,752 Participants. Heliyon 2022, 8, e11786. [Google Scholar] [CrossRef]
- Heianza, Y.; Zhou, T.; Wang, X.; Furtado, J.D.; Appel, L.J.; Sacks, F.M.; Qi, L. MTNR1B genotype and effects of carbohydrate quantity and dietary glycaemic index on glycaemic response to an oral glucose load: The OmniCarb trial. Diabetologia 2024, 67, 506–515. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Pesquisa de Orçamentos Familiares 2017–2018: Análise do Consumo Alimentar Pessoal no Brasil; IBGE: Rio de Janeiro, Brazil, 2020. (In Portuguese) [Google Scholar]
- Ministério da Saúde. VIGITEL Brasil 2023: Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por Inquérito Telefônico; Ministério da Saúde: Brasília, Brazil, 2024. (In Portuguese) [Google Scholar]
- Junior, J.P.; Frigeri, H.R.; Dos Santos-Weiss, I.C.; de Souza, E.M.; Rego, F.G.; Picheth, G.; Alberton, D. The MTNR1B Gene Polymorphism rs10830963 is Associated with Gestational Diabetes in a Brazilian Population. Gene 2015, 568, 114–115. [Google Scholar] [CrossRef]
- Alsulami, S.; Cruvinel, N.T.; da Silva, N.R.; Antoneli, A.C.; Lovegrove, J.A.; Horst, M.A.; Vimaleswaran, K.S. Effect of Dietary Fat Intake and Genetic Risk on Glucose and Insulin-Related Traits in Brazilian Young Adults. J. Diabetes Metab. Disord. 2021, 20, 1337–1347. [Google Scholar] [CrossRef]
- Alathari, B.E.; Cruvinel, N.T.; da Silva, N.R.; Chandrabose, M.; Lovegrove, J.A.; Horst, M.A.; Vimaleswaran, K.S. Impact of Genetic Risk Score and Dietary Protein Intake on Vitamin D Status in Young Adults from Brazil. Nutrients 2022, 14, 1015. [Google Scholar] [CrossRef]
- Wuni, R.; Amerah, H.; Ammache, S.; Cruvinel, N.T.; da Silva, N.R.; Kuhnle, G.G.C.; Horst, M.A.; Vimaleswaran, K.S. Interaction between genetic risk score and dietary fat intake on lipid-related traits in Brazilian young adults. Br. J. Nutr. 2024, 132, 575–589. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Yang, Y.J.; Kim, M.K.; Hwang, S.H.; Ahn, Y.; Shim, J.E.; Kim, D.H. Relative Validities of 3-Day Food Records and the Food Frequency Questionnaire. Nutr. Res. Pract. 2010, 4, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Steinfeldt, L.; Anand, J.; Murayi, T. Food Reporting Patterns in the USDA Automated Multiple-Pass Method. Procedia Food Sci. 2013, 2, 145–156. [Google Scholar] [CrossRef]
- Majeed, U.; Darwish, E.; Rehman, S.U.; Zhang, X. Kompetitive Allele Specific PCR (KASP): A Singleplex Genotyping Platform and Its Application. J. Agric. Sci. 2019, 11, 11–20. [Google Scholar] [CrossRef]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for Total Energy Intake in Epidemiologic Studies. Am. J. Clin. Nutr. 1997, 65 (Suppl. S4), 1220S–1228S, Discussion 1229S–1231S. [Google Scholar] [CrossRef]
- Sorlí, J.V.; Barragán, R.; Coltell, O.; Portolés, O.; Pascual, E.C.; Ortega-Azorín, C.; González, J.I.; Estruch, R.; Saiz, C.; Pérez-Fidalgo, A.; et al. Chronological age interacts with the circadian melatonin receptor 1B gene variation, determining fasting glucose concentrations in Mediterranean populations. Additional analyses on type-2 diabetes risk. Nutrients 2020, 12, 3323. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academy Press: Washington, DC, USA, 2005. [Google Scholar] [CrossRef]
- Xia, Q.; Chen, Z.X.; Wang, Y.C.; Ma, Y.S.; Zhang, F.; Che, W.; Fu, D.; Wang, X.F. Association between the melatonin receptor 1B gene polymorphism on the risk of type 2 diabetes, impaired glucose regulation: A meta-analysis. PLoS ONE 2012, 7, e50107. [Google Scholar] [CrossRef]
- Kelliny, C.; Ekelund, U.; Andersen, L.B.; Brage, S.; Loos, R.J.; Wareham, N.J.; Langenberg, C. Common genetic determinants of glucose homeostasis in healthy children: The European Youth Heart Study. Diabetes 2009, 58, 2939–2945. [Google Scholar] [CrossRef]
- Barker, A.; Sharp, S.J.; Timpson, N.J.; Bouatia-Naji, N.; Warrington, N.M.; Kanoni, S.; Beilin, L.J.; Brage, S.; Deloukas, P.; Evans, D.M.; et al. Association of genetic Loci with glucose levels in childhood and adolescence: A meta-analysis of over 6000 children. Diabetes 2011, 60, 1805–1812. [Google Scholar] [CrossRef]
- Lyssenko, V.; Nagorny, C.L.; Erdos, M.R.; Wierup, N.; Jonsson, A.; Spégel, P.; Bugliani, M.; Saxena, R.; Fex, M.; Pulizzi, N.; et al. Common Variant in MTNR1B Associated with Increased Risk of Type 2 Diabetes and Impaired Early Insulin Secretion. Nat. Genet. 2009, 41, 82–88. [Google Scholar] [CrossRef]
- Prokopenko, I.; Langenberg, C.; Florez, J.C.; Saxena, R.; Soranzo, N.; Thorleifsson, G.; Loos, R.J.; Manning, A.K.; Jackson, A.U.; Aulchenko, Y.; et al. Variants in MTNR1B Influence Fasting Glucose Levels. Nat. Genet. 2009, 41, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Sparsø, T.; Bonnefond, A.; Andersson, E.; Bouatia-Naji, N.; Holmkvist, J.; Wegner, L.; Grarup, N.; Gjesing, A.P.; Banasik, K.; Cavalcanti-Proença, C.; et al. G-allele of intronic rs10830963 in MTNR1B confers increased risk of impaired fasting glycemia and type 2 diabetes through an impaired glucose-stimulated insulin release: Studies involving 19,605 Europeans. Diabetes 2009, 58, 1450–1456. [Google Scholar] [CrossRef] [PubMed]
- Hindy, G.; Sonestedt, E.; Ericson, U.; Jing, X.J.; Zhou, Y.; Hansson, O.; Renström, E.; Wirfält, E.; Orho-Melander, M. Role of TCF7L2 risk variant and dietary fibre intake on incident type 2 diabetes. Diabetologia 2012, 55, 2646–2654. [Google Scholar] [CrossRef] [PubMed]
- Karamitri, A.; Jockers, R. Melatonin in type 2 diabetes mellitus and obesity. Nat. Rev. Endocrinol. 2019, 15, 105–125. [Google Scholar] [CrossRef] [PubMed]
- Karamitri, A.; Renault, N.; Clement, N.; Guillaume, J.L.; Jockers, R. Minireview: Toward the establishment of a link between melatonin and glucose homeostasis: Association of melatonin MT2 receptor variants with type 2 diabetes. Mol. Endocrinol. 2013, 27, 1217–1233. [Google Scholar] [CrossRef]
- Tuomi, T.; Nagorny, C.L.F.; Singh, P.; Bennet, H.; Yu, Q.; Alenkvist, I.; Isomaa, B.; Östman, B.; Söderström, J.; Pesonen, A.K.; et al. Increased Melatonin Signaling Is a Risk Factor for Type 2 Diabetes. Cell Metab. 2016, 23, 1067–1077. [Google Scholar] [CrossRef]
- Walford, G.A.; Green, T.; Neale, B.; Isakova, T.; Rotter, J.I.; Grant, S.F.; Fox, C.S.; Pankow, J.S.; Wilson, J.G.; Meigs, J.B.; et al. Common genetic variants differentially influence the transition from clinically defined states of fasting glucose metabolism. Diabetologia 2012, 55, 331–339. [Google Scholar] [CrossRef]
- Weickert, M.O.; Pfeiffer, A.F.H. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J. Nutr. 2018, 148, 7–12. [Google Scholar] [CrossRef]
- Vassy, J.L.; Durant, N.H.; Kabagambe, E.K.; Carnethon, M.R.; Rasmussen-Torvik, L.J.; Fornage, M.; Lewis, C.E.; Siscovick, D.S.; Meigs, J.B. A genotype risk score predicts type 2 diabetes from young adulthood: The CARDIA study. Diabetologia 2012, 55, 2604–2612. [Google Scholar] [CrossRef]
- Chen, J.; Spracklen, C.N.; Marenne, G.; Varshney, A.; Corbin, L.J.; Luan, J.; Willems, S.M.; Wu, Y.; Zhang, X.; Horikoshi, M.; et al. The trans-ancestral genomic architecture of glycemic traits. Nat. Genet. 2021, 53, 840–860. [Google Scholar] [CrossRef]
- Rönn, T.; Wen, J.; Yang, Z.; Lu, B.; Du, Y.; Groop, L.; Hu, R.; Ling, C. A common variant in MTNR1B, encoding melatonin receptor 1B, is associated with type 2 diabetes and fasting plasma glucose in Han Chinese individuals. Diabetologia 2009, 52, 830–833. [Google Scholar] [CrossRef]
- Lascar, N.; Brown, J.; Pattison, H.; Barnett, A.H.; Bailey, C.J.; Bellary, S. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018, 6, 69–80. [Google Scholar] [CrossRef]
Characteristics of Study Participants | MTNR1B (rs10830963) | p | |
---|---|---|---|
CC (N = 136) | CG + GG (N = 64) | ||
Age (years) | 21.3 ± 1.6 | 21.5 ± 1.8 | 0.504 |
BMI (kg/m2) | 23.4 ± 4.5 | 23.3 ± 4.3 | 0.910 |
WC (cm) | 74.8 ± 12.4 | 74.0 ± 15.7 | 0.738 |
Body fat mass (%) | 33.6 ± 11.2 | 34.7 ± 9.5 | 0.771 |
Lean body mass (%) | 63.6 ± 10.6 | 62.6 ± 9.0 | 0.787 |
Total energy intake (kcal) | 1836.2 ± 587.0 | 1809.9 ± 624.0 | 0.570 |
Total protein (g) | 77.1 ± 28.6 | 78.2 ± 29.6 | 0.974 |
Total carbohydrate (g) | 234.8 ± 84.2 | 235.9 ± 90.2 | 0.920 |
Total fat (g) | 65.5 ± 23.5 | 61.5 ± 22.3 | 0.216 |
Dietary fiber (g) | 14.7 ± 8.3 | 15.08 ± 9.1 | 0.848 |
β | p | |
---|---|---|
Fasting insulin (μUI/mL) | 1.57 | 0.003 |
Fasting glucose (mg/dL) | 0.57 | 0.573 |
Insulin/glucose ratio | 0.02 | 0.004 |
HbA1c (%) | −0.01 | 0.723 |
HOMA-IR | 0.35 | 0.003 |
HOMA-β | 22.82 | 0.018 |
Energy | Protein | Carbohydrate | Fat | Fiber | |
---|---|---|---|---|---|
pinteraction | pinteraction | pinteraction | pinteraction | pinteraction | |
Fasting insulin (μUI/mL) | 0.717 | 0.523 | 0.638 | 0.888 | 0.011 |
Fasting glucose (mg/dL) | 0.164 | 0.538 | 0.584 | 0.798 | 0.254 |
Insulin/glucose ratio | 0.376 | 0.603 | 0.623 | 0.828 | 0.016 |
HbA1c (%) | 0.604 | 0.347 | 0.369 | 0.519 | 0.517 |
HOMA-IR | 0.985 | 0.525 | 0.713 | 0.960 | 0.010 |
HOMA-β | 0.059 | 0.720 | 0.658 | 0.776 | 0.093 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, A.C.d.S.; Cruvinel, N.T.; Silva, N.R.d.; Mendes, M.M.; Duarte, A.C.S.; Coelho, A.S.G.; Vimaleswaran, K.S.; Horst, M.A. Interaction Between Dietary Fiber Intake and MTNR1B rs10830963 Polymorphism on Glycemic Profiles in Young Brazilian Adults. Genes 2025, 16, 497. https://doi.org/10.3390/genes16050497
Lima ACdS, Cruvinel NT, Silva NRd, Mendes MM, Duarte ACS, Coelho ASG, Vimaleswaran KS, Horst MA. Interaction Between Dietary Fiber Intake and MTNR1B rs10830963 Polymorphism on Glycemic Profiles in Young Brazilian Adults. Genes. 2025; 16(5):497. https://doi.org/10.3390/genes16050497
Chicago/Turabian StyleLima, Ana Carolina da Silva, Nathália Teixeira Cruvinel, Nara Rubia da Silva, Marcela Moraes Mendes, Amélia Cristina Stival Duarte, Alexandre Siqueira Guedes Coelho, Karani S. Vimaleswaran, and Maria Aderuza Horst. 2025. "Interaction Between Dietary Fiber Intake and MTNR1B rs10830963 Polymorphism on Glycemic Profiles in Young Brazilian Adults" Genes 16, no. 5: 497. https://doi.org/10.3390/genes16050497
APA StyleLima, A. C. d. S., Cruvinel, N. T., Silva, N. R. d., Mendes, M. M., Duarte, A. C. S., Coelho, A. S. G., Vimaleswaran, K. S., & Horst, M. A. (2025). Interaction Between Dietary Fiber Intake and MTNR1B rs10830963 Polymorphism on Glycemic Profiles in Young Brazilian Adults. Genes, 16(5), 497. https://doi.org/10.3390/genes16050497