Drought in the Western United States: Its Connections with Large-Scale Oceanic Oscillations
Abstract
:1. Introduction
2. Data and Methods
3. Results and Discussion
3.1. The Spatiotemporal Pattern of Droughts Based on EOF Analysis
3.2. The Relation between Large-Scale Ocean Oscillations and Seasonal Droughts
3.3. Future Drought Scenarios Based on the Prediction of Ocean Oscillations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heim, R. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1165. [Google Scholar] [CrossRef]
- Hidalgo, H.G. Climate precursors of multidecadal drought variability in the Western United States. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Jiang, P.; Yu, Z.; Gautam, M.R. Pacific and atlantic ocean influence on the spatiotemporal variability of heavy precipitation in the Western United States. Glob. Planet. Chang. 2013, 109, 38–45. [Google Scholar]
- Jiang, P.; Gautam, M.R.; Zhu, J.; Yu, Z. How well do the gcms/rcms capture the multi-scale temporal variability of precipitation in the Wouthwestern United States? J. Hydrol. 2013, 479, 75–85. [Google Scholar] [CrossRef]
- Meko, D.; Stockton, C.W.; Boggess, W.R. The tree-ring record of severe sustained drought 1. J. Am. Water Resour. Assoc. 1995, 31, 789–801. [Google Scholar] [CrossRef]
- Laird, K.R.; Cumming, B.F.; Wunsam, S.; Rusak, J.A.; Oglesby, R.J.; Fritz, S.C.; Leavitt, P.R. Lake sediments record large-scale shifts in moisture regimes across the northern prairies of North America during the past two millennia. Proc. Natl. Acad. Sci. USA 2003, 100, 2483–2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neff, J.; Ballantyne, A.; Farmer, G.; Mahowald, N.; Conroy, J.; Landry, C.; Overpeck, J.; Painter, T.; Lawrence, C.; Reynolds, R. Increasing eolian dust deposition in the Western United States linked to human activity. Nature Geosci. 2008, 1, 189. [Google Scholar] [CrossRef]
- Stockton, C.W.; Meko, D.M. A long-term history of drought occurrence in Western United States as inferred from tree rings. Weatherwise 1975, 28, 244–249. [Google Scholar] [CrossRef]
- Cook, E.R.; Seager, R.; Cane, M.A.; Stahle, D.W. North American drought: Reconstructions, causes, and consequences. Earth-Sci. Rev. 2007, 81, 93–134. [Google Scholar] [CrossRef]
- Wehner, M.; Easterling, D.R.; Lawrimore, J.H.; Heim, R.R., Jr.; Vose, R.S.; Santer, B.D. Projections of future drought in the continental United States and Mexico. J. Hydrometeorol. 2011, 12, 1359–1377. [Google Scholar] [CrossRef]
- Cayan, D.R.; Das, T.; Pierce, D.W.; Barnett, T.P.; Tyree, M.; Gershunov, A. Future dryness in the Southwest US and the hydrology of the early 21st century drought. Proc. Natl. Acad. Sci. USA 2010, 107, 21271–21276. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Yu, Z.; Gautam, M.R.; Yuan, F.; Acharya, K. Changes of storm properties in the United States: Observations and multimodel ensemble projections. Glob. Planet. Chang. 2016, 142, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Hanjra, M.A.; Qureshi, M.E. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- Bakker, K. Water security: Research challenges and opportunities. Science 2012, 337, 914–915. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Yu, Z.; Yuan, F.; Acharya, K. The multi-scale temporal variability of extreme precipitation in the source region of the yellow river. Water 2019, 11, 92. [Google Scholar] [CrossRef]
- Namias, J. Some causes of United States drought. J. Clim. Appl. Meteorol. 1983, 22, 30–39. [Google Scholar] [CrossRef]
- Cayan, D.R.; Redmond, K.T.; Riddle, L.G. ENSO and hydrologic extremes in the Western United States. J. Clim. 1999, 12, 2881–2893. [Google Scholar] [CrossRef]
- Rajagopalan, B.; Cook, E.; Lall, U.; Ray, B.K. Spatiotemporal variability of ENSO and SST teleconnections to summer drought over the United States during the twentieth century. J. Clim. 2000, 13, 4244–4255. [Google Scholar] [CrossRef]
- Morgenstern, K.; Black, T.A.; Humphreys, E.R.; Griffis, T.J.; Drewitt, G.B.; Cai, T.; Nesic, Z.; Spittlehouse, D.L.; Livingston, N.J. Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas-fir forest during an El Niño/La Niña cycle. Agric. For. Meteorol. 2004, 123, 201–219. [Google Scholar] [CrossRef]
- Cole, J.E.; Overpeck, J.T.; Cook, E.R. Multiyear La Niña events and persistent drought in the contiguous United States. Geophys. Res. Lett. 2002, 29, 25-21–25-24. [Google Scholar] [CrossRef]
- Menking, K.M.; Anderson, R.Y. Contributions of La Niña and El Niño to middle holocene drought and late holocene moisture in the American Southwest. Geology 2003, 31, 937–940. [Google Scholar] [CrossRef]
- Redmond, K.; Cayan, D. El Niño/southern oscillation and western climate variability. In Proceedings of the Sixth AMS Conference on Climate Variations, Nashville, TN, USA, 23–28 January 1994; pp. 141–145. [Google Scholar]
- Trenberth, K.E. The definition of El Nino. Bull. Am. Meteorol. Soc. 1997, 78, 2771–2778. [Google Scholar] [CrossRef]
- McCabe, G.J.; Palecki, M.A.; Betancourt, J.L. Pacific and atlantic ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA 2004, 101, 4136–4141. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.P.; Comrie, A.C. A winter precipitation ‘dipole’ in the Western United States associated with multidecadal ENSO variability. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1080. [Google Scholar] [CrossRef]
- Cai, W.; Van Rensch, P. The 2011 southeast queensland extreme summer rainfall: A confirmation of a negative pacific decadal oscillation phase? Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Elison Timm, O.; Diaz, H.; Giambelluca, T.; Takahashi, M. Projection of changes in the frequency of heavy rain events over hawaii based on leading pacific climate modes. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Wise, E.K. Spatiotemporal variability of the precipitation dipole transition zone in the western United States. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Enfield, D.B.; Mestas-Nuñez, A.M.; Trimble, P.J. The atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental us. Geophys. Res. Lett. 2001, 28, 2077–2080. [Google Scholar] [CrossRef]
- Kerr, R.A. A north atlantic climate pacemaker for the centuries. Science 2000, 288, 1984–1985. [Google Scholar] [CrossRef]
- Seager, R.; Kushnir, Y.; Herweijer, C.; Naik, N.; Velez, J. Modeling of tropical forcing of persistent droughts and pluvials over western north america: 1856–2000. J. Clim. 2005, 18, 4065–4088. [Google Scholar] [CrossRef]
- Schubert, S.D.; Suarez, M.J.; Pegion, P.J.; Koster, R.D.; Bacmeister, J.T. Causes of long-term drought in the us great plains. J. Clim. 2004, 17, 485–503. [Google Scholar] [CrossRef]
- Mo, K.C.; Schemm, J.-K.E.; Yoo, S.-H. Influence of enso and the atlantic multidecadal oscillation on drought over the United States. J. Clim. 2009, 22, 5962–5982. [Google Scholar] [CrossRef]
- Schubert, S.; Gutzler, D.; Wang, H.; Dai, A.; Delworth, T.; Deser, C.; Findell, K.; Fu, R.; Higgins, W.; Hoerling, M. A us clivar project to assess and compare the responses of global climate models to drought-related sst forcing patterns: Overview and results. J. Clim. 2009, 22, 5251–5272. [Google Scholar] [CrossRef]
- Findell, K.L.; Delworth, T.L. Impact of common sea surface temperature anomalies on global drought and pluvial frequency. J. Clim. 2010, 23, 485–503. [Google Scholar] [CrossRef]
- Burgman, R.; Seager, R.; Clement, A.; Herweijer, C. Role of tropical pacific ssts in global medieval hydroclimate: A modeling study. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Wayne, C.P. Meteorological Drought. US Weather Bureau Research Paper; 1965; 58. Available online: https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf (accessed on 15 November 2018).
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–183. [Google Scholar]
- McKee, T.B. Drought monitoring with multiple time scales. In Proceedings of the 9th Conference on Applied Climatology, Boston, MA, USA, 15–20 January 1995. [Google Scholar]
- Van Rooy, M. A rainfall anomaly index independent of time and space. Notos 1965, 14, 6. [Google Scholar]
- Hayes, M.J.; Svoboda, M.D.; Wiihite, D.A.; Vanyarkho, O.V. Monitoring the 1996 drought using the standardized precipitation index. Bull. Am. Meteorol. Soc. 1999, 80, 429–438. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Wu, H.; Hayes, M.J.; Wilhite, D.A.; Svoboda, M.D. The effect of the length of record on the standardized precipitation index calculation. Int. J. Climatol. 2005, 25, 505–520. [Google Scholar] [CrossRef] [Green Version]
- CPC Hourly US Precipitation. Available online: http://www.esrl.noaa.gov/psd/data/gridded/data.cpc_hour.html (accessed on 12 January 2019).
- Higgins, R.W.; Shi, W.; Yarosh, E.; Joyce, R. Improved United States precipitation quality control system and analysis. NCEP/Clim. Predict. Center Atlas 2000, 7, 40. [Google Scholar]
- Chen, M.; Shi, W.; Xie, P.; Silva, V.B.; Kousky, V.E.; Wayne Higgins, R.; Janowiak, J.E. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Higgins, R.; Silva, V.; Kousky, V.; Shi, W. Comparison of daily precipitation statistics for the United States in observations and in the ncep climate forecast system. J. Clim. 2008, 21, 5993–6014. [Google Scholar] [CrossRef]
- Lorenz, E.N. Empirical Orthogonal Functions and Statistical Weather Prediction; Massachusetts Institute of Technology: Cambridge, MA, USA, 1956. [Google Scholar]
- NCL Graphics: EOFs. Available online: https://www.ncl.ucar.edu/Applications/eof.shtml (accessed on 12 January 2019).
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Kaplan, A.; Cane, M.A.; Kushnir, Y.; Clement, A.C.; Blumenthal, M.B.; Rajagopalan, B. Analyses of global sea surface temperature 1856–1991. J. Geophys. Res. Oceans 1998, 103, 18567–18589. [Google Scholar] [CrossRef]
- Kim, H.-M.; Webster, P.J.; Curry, J.A. Impact of shifting patterns of pacific ocean warming on north atlantic tropical cyclones. Science 2009, 325, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Pacific Decadal Oscillation (PDO). Available online: https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/PDO/ (accessed on 12 January 2019).
- AMO (Atlantic Multidecadal Oscillation) Index. Available online: https://www.esrl.noaa.gov/psd/data/timeseries/AMO/ (accessed on 12 January 2019).
- Jiang, P.; Yu, Z.; Gautam, M.R.; Acharya, K. The spatiotemporal characteristics of extreme precipitation events in the western United States. Water Resour. Manag. 2016, 30, 4807–4821. [Google Scholar] [CrossRef]
- Xiang, B.; Wang, B.; Li, T. A new paradigm for the predominance of standing central pacific warming after the late 1990s. Clim. Dyn. 2013, 41, 327–340. [Google Scholar] [CrossRef]
- Yeh, S.-W.; Kug, J.-S.; Dewitte, B.; Kwon, M.-H.; Kirtman, B.P.; Jin, F.-F. El niño in a changing climate. Nature 2009, 461, 511. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Hurwitz, M.M.; Oman, L.D.; Waugh, D.W. Contrasting effects of central pacific and eastern pacific el niño on stratospheric water vapor. Geophys. Res. Lett. 2013, 40, 4115–4120. [Google Scholar] [CrossRef]
- Yu, J.-Y.; Zou, Y. The enhanced drying effect of central-pacific el niño on us winter. Environ. Res. Lett. 2013, 8, 014019. [Google Scholar] [CrossRef]
- Schlesinger, M.E.; Ramankutty, N. An oscillation in the global climate system of period 65–70 years. Nature 1994, 367, 723. [Google Scholar] [CrossRef]
- Sutton, R.T.; Hodson, D.L. Atlantic ocean forcing of north american and european summer climate. Science 2005, 309, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Enfield, D.B.; Cid-Serrano, L. Projecting the risk of future climate shifts. Int. J. Climatol. J. R. Meteorol. Soc. 2006, 26, 885–895. [Google Scholar] [CrossRef] [Green Version]
- Mochizuki, T.; Ishii, M.; Kimoto, M.; Chikamoto, Y.; Watanabe, M.; Nozawa, T.; Sakamoto, T.T.; Shiogama, H.; Awaji, T.; Sugiura, N. Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc. Natl. Acad. Sci. USA 2010, 107, 1833–1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapp, S.L.; St. Jacques, J.M.; Barrow, E.M.; Sauchyn, D.J. Gcm projections for the pacific decadal oscillation under greenhouse forcing for the early 21st century. Int. J. Climatol. 2012, 32, 1423–1442. [Google Scholar] [CrossRef]
- Collins, M.; Frame, D.; Sinha, B.; Wilson, C. How far ahead could we predict el nino? Geophys. Res. Lett. 2002, 29, 130-131–130-134. [Google Scholar] [CrossRef]
- Mazzarella, A.; Giuliacci, A.; Liritzis, I. On the 60-month cycle of multivariate enso index. Theor. Appl. Climatol. 2010, 100, 23–27. [Google Scholar] [CrossRef]
- Mazzarella, A.; Giuliacci, A.; Scafetta, N. Quantifying the multivariate enso index (mei) coupling to CO2 concentration and to the length of day variations. Theor. Appl. Climatol. 2013, 111, 601–607. [Google Scholar] [CrossRef]
- Jin, F.F.; An, S.I.; Timmermann, A.; Zhao, J. Strong el niño events and nonlinear dynamical heating. Geophys. Res. Lett. 2003, 30, 20-21. [Google Scholar] [CrossRef]
- Timmermann, A.; Oberhuber, J.; Bacher, A.; Esch, M.; Latif, M.; Roeckner, E. Increased el niño frequency in a climate model forced by future greenhouse warming. Nature 1999, 398, 694. [Google Scholar] [CrossRef]
- Cai, W.; Wang, G.; Dewitte, B.; Wu, L.; Santoso, A.; Takahashi, K.; Yang, Y.; Carréric, A.; McPhaden, M.J. Increased variability of eastern pacific el niño under greenhouse warming. Nature 2018, 564, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012, 491, 435. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Van Beek, L.P.; Wanders, N.; Bierkens, M.F. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett. 2013, 8, 034036. [Google Scholar] [CrossRef] [Green Version]
- Wanders, N.; Wada, Y. Human and climate impacts on the 21st century hydrological drought. J. Hydrol. 2015, 526, 208–220. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, Q.; Chen, Y.D.; Tao, X.; Xu, C.Y.; Chen, X. A spatial assessment of hydrologic alteration caused by dam construction in the middle and lower yellow river, china. Hydrol. Process. Int. J. 2008, 22, 3829–3843. [Google Scholar] [CrossRef]
ENSO Event | Years |
---|---|
EPW | 1951, 1957, 1963, 1965, 1972, 1976, 1982, 1987, 1997 |
CPW | 1969, 1991, 1994, 2002, 2004, 2009 |
EPC | 1949, 1955, 1964, 1970, 1971, 1973, 1975, 1985, 1988, 1995, 1998, 1999, 2007 |
PDO−AMO Combinations | Years |
AMO+ PDO− | 1948–1963; 1999–2009 |
AMO− PDO− | 1964–1976 |
AMO− PDO+ | 1977–1994 |
AMO+ PDO+ | 1995–1998 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, P.; Yu, Z.; Acharya, K. Drought in the Western United States: Its Connections with Large-Scale Oceanic Oscillations. Atmosphere 2019, 10, 82. https://doi.org/10.3390/atmos10020082
Jiang P, Yu Z, Acharya K. Drought in the Western United States: Its Connections with Large-Scale Oceanic Oscillations. Atmosphere. 2019; 10(2):82. https://doi.org/10.3390/atmos10020082
Chicago/Turabian StyleJiang, Peng, Zhongbo Yu, and Kumud Acharya. 2019. "Drought in the Western United States: Its Connections with Large-Scale Oceanic Oscillations" Atmosphere 10, no. 2: 82. https://doi.org/10.3390/atmos10020082
APA StyleJiang, P., Yu, Z., & Acharya, K. (2019). Drought in the Western United States: Its Connections with Large-Scale Oceanic Oscillations. Atmosphere, 10(2), 82. https://doi.org/10.3390/atmos10020082