Populus nigra Italica Leaves as a Valuable Tool for Mineralogical and Geochemical Interpretation of Inorganic Atmospheric Aerosols’ Genesis
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site
2.2. Sample Collection
2.3. Sample Preparation
2.4. Analytical Procedures
2.4.1. Mineralogical Characterization of Leaves and Soils
2.4.2. Chemical Composition of Soil
2.5. Statistical Analysis
3. Results
3.1. Size and Mineralogical Characteristics of Atmospheric Particles
3.2. Spatial Distribution of Atmospheric Particles
3.3. Mineralogical and Geochemical Characteristics of the Soil
4. Discussion
4.1. Atmospheric Particles
4.2. Soil Samples: Contamination and Reference to Regulation Limits
4.3. Coupled Mineralogical/Geochemical Atmosphere–Soil Connection
4.4. The Importance of Our Study in the Context of Human Health
4.5. The Novelty of This Study with Respect to Other Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dahlman, C. Technology, globalization, and international competitiveness: Challenges for developing countries. In Industry Development 21st Century (Hyderabad Orient Longman, Zed Books United Nations); O’Connor, M.K., Ed.; United Nations: New York, NY, USA, 2007; pp. 29–83. [Google Scholar] [CrossRef]
- Jarošíková, A.; Ettler, V.; Mihaljevič, M.; Kříbek, B.; Mapani, B. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications. J. Environ. Manag. 2017. [Google Scholar] [CrossRef] [PubMed]
- Bridge, G. The social regulation of resource access and environmental impact: Production, nature and contradiction in the US copper industry. Geoforum 2000. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, F. How industrial transfer processes impact on haze pollution in China: An analysis from the perspective of spatial effects. Int. J. Environ. Res. Public Health 2019, 16, 423. [Google Scholar] [CrossRef] [Green Version]
- Csavina, J.; Field, J.; Taylor, M.P.; Gao, S.; Landázuri, A.; Betterton, E.A.; Sáez, A.E. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci. Total Environ. 2012, 433, 58–73. [Google Scholar] [PubMed] [Green Version]
- Hueglin, C.; Gehrig, R.; Baltensperger, U.; Gysel, M.; Monn, C.; Vonmont, H. Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos. Environ. 2005. [Google Scholar] [CrossRef]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Belis, C.A.; Karagulian, F.; Larsen, B.R.; Hopke, P.K. Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos. Environ. 2013, 69, 94–108. [Google Scholar] [CrossRef]
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006. [Google Scholar] [CrossRef]
- Boev, I.; Sijakova-Ivanova, T.; Mirakovski, D. Scanning electron microprobe characterization of air filters from the Kavadarci town and Tikves valley. Geol. Maced. 2013, 27, 13–24. [Google Scholar]
- Grobéty, B.; Gieré, R.; Dietze, V.; Stille, P. Airborne particles in the urban environment. Elements 2010. [Google Scholar] [CrossRef] [Green Version]
- Campos-Ramos, A.; Aragón Piña, X.; Querol, A.A. Methodology for the characterization and identification by sem-eds of atmospheric particles from different pollutions emission. Microsc. Sci. Technol. Appl. Educ. 2010, 1, 329–333. [Google Scholar]
- Margiotta, S.; Lettino, A.; Speranza, A.; Summa, V. PM1 geochemical and mineralogical characterization using SEM-EDX to identify particle origin–Agri Valley pilot area (Basilicata, southern Italy). Nat. Hazards Earth Syst. Sci. 2015, 15, 1551–1561. [Google Scholar] [CrossRef] [Green Version]
- Pachauri, T.; Singla, V.; Satsangi, A.; Lakhani, A.; Maharaj Kumari, K. SEM-EDX characterization of individual coarse particles in Agra, India. Aerosol Air Qual. Res. 2013, 13, 523–536. [Google Scholar] [CrossRef]
- Widory, D.; Javoy, M. The carbon isotope composition of atmospheric CO2 in Paris. Earth Planet. Sci. Lett. 2003. [Google Scholar] [CrossRef]
- Rachwał, M.; Wawer, M.; Jabłońska, M.; Rogula-Kozłowska, W.; Rogula-Kopiec, P. Geochemical and Mineralogical Characteristics of Airborne Particulate Matter in Relation to Human Health Risk. Minerals 2020, 10, 866. [Google Scholar] [CrossRef]
- Górka, M.; Jędrysek, M.O. Mineralogical and oxygen isotope composition of inorganic dust-fall in Wrocław (SW Poland) urban area–test of a new monitoring tool. Geol. Q. 2011, 55, 71–80. [Google Scholar]
- Jiries, A.; El-Hasan, T.; Manasrah, W. Qualitative evaluation of the mineralogical and chemical composition of dry deposition in the central and southern highlands of Jordan. Chemosphere 2002. [Google Scholar] [CrossRef]
- Teper, E. Dust-particle migration around flotation tailings ponds: Pine needles as passive samplers. Environ. Monit. Assess. 2009. [Google Scholar] [CrossRef]
- Rybak, J.; Spówka, I.; Zwoździak, A.; Fortuna, M.; Trzepla-Nabagło, K. Evaluation Of The Usefulness Of Spider Webs As An Air Quality Monitoring Tool For Heavy Metals. Ecol. Chem. Eng. S 2015, 22, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Górka, M.; Bartz, W.; Rybak, J. The mineralogical interpretation of particulate matter deposited on Agelenidae and Pholcidae spider webs in the city of Wrocław (SW Poland): A preliminary case study. J. Aerosol Sci. 2018. [Google Scholar] [CrossRef]
- Yalaltdinova, A.; Kim, J.; Baranovskaya, N.; Rikhvanov, L. Populus nigra L. as a bioindicator of atmospheric trace element pollution and potential toxic impacts on human and ecosystem. Ecol. Indic. 2018. [Google Scholar] [CrossRef]
- Alfani, A.; Maisto, G.; Iovieno, P.; Rutigliano, F.A.; Bartoli, G. Leaf contamination by atmospheric pollutants as assessed by elemental analysis of leaf tissue, leaf surface deposit and soil. J. Plant Physiol. 1996. [Google Scholar] [CrossRef]
- Tomasevic, M.; Anicic, M. Trace element content in urban tree leaves and SEM-EDAX characterization of deposited particles. Facta Univ. Ser. Phys. Chem. Technol. 2010. [Google Scholar] [CrossRef]
- Sgrigna, G.; Baldacchini, C.; Esposito, R.; Calandrelli, R.; Tiwary, A.; Calfapietra, C. Characterization of leaf-level particulate matter for an industrial city using electron microscopy and X-ray microanalysis. Sci. Total Environ. 2016. [Google Scholar] [CrossRef] [PubMed]
- Sgrigna, G.; Baldacchini, C.; Dreveck, S.; Cheng, Z.; Calfapietra, C. Relationships between air particulate matter capture efficiency and leaf traits in twelve tree species from an Italian urban-industrial environment. Sci. Total Environ. 2020. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Chen, Q. Potential of thirteen urban greening plants to capture particulate matter on leaf surfaces across three levels of ambient atmospheric pollution. Int. J. Environ. Res. Public Health 2019, 16, 402. [Google Scholar] [CrossRef] [Green Version]
- Barbeş, L.; Bărbulescu, A.; Rădulescu, C.; Stihi, C.; Chelarescu, E.D. Determination of heavy metals in leaves and bark of Populus Nigra L by atomic absorption spectrometry. Rom. Rep. Phys. 2014, 66, 877–886. [Google Scholar]
- Berlizov, A.N.; Blum, O.B.; Filby, R.H.; Malyuk, I.A.; Tryshyn, V.V. Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions. Sci. Total Environ. 2007. [Google Scholar] [CrossRef] [PubMed]
- Djingova, R.; Ivanova, J.; Wagner, G.; Korhammer, S.; Markert, B. Distribution of lanthanoids, Be, Bi, Ga, Te, Tl, Th and U on the territory of Bulgaria using Populus nigra “Italica” as an indicator. Sci. Total Environ. 2001. [Google Scholar] [CrossRef]
- Jozwiak, M.A.; Jozwiak, M. Bioindication as challenge in modern environmental protection. Ecol. Chem. Eng. S 2015. [Google Scholar] [CrossRef] [Green Version]
- Worobiec, A.; Potgieter-Vermaak, S.; Brooker, A.; Darchuk, L.; Stefaniak, E.; Van Grieken, R. Interfaced SEM/EDX and micro-Raman Spectrometry for characterisation of heterogeneous environmental particles—Fundamental and practical challenges. Microchem. J. 2010. [Google Scholar] [CrossRef]
- Chae, Y.; An, Y.J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environ. Pollut. 2018, 240, 387–395. [Google Scholar] [CrossRef]
- Drever, J.I.; Stillings, L.L. The role of organic acids in mineral weathering. Colloids Surf. A Physicochem. Eng. Asp. 1997, 120, 167–181. [Google Scholar] [CrossRef]
- Kodirov, O.; Shukurov, N. Heavy metal distribution in soils near the Almalyk mining and smelting industrial area, Uzbekistan. Acta Geol. Sin. 2009. [Google Scholar] [CrossRef]
- Shukurov, N.; Kodirov, O.; Peitzsch, M.; Kersten, M.; Pen-Mouratov, S.; Steinberger, Y. Coupling geochemical, mineralogical and microbiological approaches to assess the health of contaminated soil around the Almalyk mining and smelter complex, Uzbekistan. Sci. Total Environ. 2014. [Google Scholar] [CrossRef]
- Shukurov, N.; Pen-Mouratov, S.; Steinberger, Y. The impact of the Almalyk Industrial Complex on soil chemical and biological properties. Environ. Pollut. 2005. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries; U.S. Geological Survey: Reston, VA, USA, 2015.
- Campos-M., M.; Campos-C., R. Applications of quartering method in soils and foods. Int. J. Eng. Res. Appl. 2017. [Google Scholar] [CrossRef]
- Rubio, R.; Ure, A.M. Approaches to sampling and sample pretreatments for metal speclation in soils and sediments. Int. J. Environ. Anal. Chem. 1993. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Particulate matter pollution capture by leaves of seventeen living wall species with special reference to rail-traffic at a metropolitan station. Urban For. Urban Green. 2017. [Google Scholar] [CrossRef]
- Merkus, H.G. Particle Size Measurements: Fundamentals, Practice, Quality; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Roduit, N. JMicroVision: Un Logiciel D’analyse D’images Pétrographiques Polyvalent; Uiniversité de Genève: Geneva, Switzerland, 2007. [Google Scholar]
- Reed, S.J.B. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology; Cambridge University Press: Cambridge, UK, 2005; ISBN 9780511610561. [Google Scholar]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock-Forming Minerals; Mineralogical Association of Canada: Ottawa, ON, Canada, 2013. [Google Scholar]
- Brown, M.B.; Forsythe, A.B. Robust tests for the equality of variances. J. Am. Stat. Assoc. 1974. [Google Scholar] [CrossRef]
- Argaç, D. Testing for homogeneity in a general one-way classification with fixed effects: Power simulations and comparative study. Comput. Stat. Data Anal. 2004. [Google Scholar] [CrossRef]
- Zar, J. Biostatistical Analysis, 4th ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1999. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. Assumptions of analysis of variance. In Biometry: The Principles and Practice of Statistics in Biological Research; W.H. Freeman and Company: New York, NY, USA, 1995; ISBN 0716724111. [Google Scholar]
- Dell Inc. Dell Statistica (Data Analysis Software System) Version 13 Software; Dell Inc.: Round Rock, TX, USA, 2015. [Google Scholar]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Particulate pollution capture by urban trees: Effect of species and windspeed. Glob. Chang. Biol. 2000. [Google Scholar] [CrossRef]
- Di Palma, A.; Capozzi, F.; Spagnuolo, V.; Giordano, S.; Adamo, P. Atmospheric particulate matter intercepted by moss-bags: Relations to moss trace element uptake and land use. Chemosphere 2017. [Google Scholar] [CrossRef] [PubMed]
- Keane, B.; Collier, M.H.; Shann, J.R.; Rogstad, S.H. Metal content of dandelion (Taraxacum officinale) leaves in relation to soil contamination and airborne particulate matter. Sci. Total Environ. 2001. [Google Scholar] [CrossRef]
- Chen, L.C.; Lippmann, M. Effects of metals within ambient air particulate matter (PM) on human health. Inhal. Toxicol. 2009, 21, 1–31. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011. [Google Scholar] [CrossRef] [Green Version]
- Ettler, V. Soil contamination near non-ferrous metal smelters: A review. Appl. Geochem. 2015, 64, 56–74. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency (EPA). Regional Screening Levels; U.S. Environmental Protection Agency: Washington, DC, USA, 2015.
- The World Copper Factbook. The International Copper Study Group (ICSG); The World Copper Factbook: Lisbon, Protugal, 2019. [Google Scholar]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Edwards, D.A. Delivery of biological agents by aerosols. AIChE J. 2002, 48, 2–6. [Google Scholar] [CrossRef]
- Larhrib, H.; Okpala, J. Drug Delivery Particles and Methods of Treating Particles to Improve their Drug Delivery Capabilities. U.S. Patent 20060057213A1, 16 March 2006. [Google Scholar]
Group | Anthropogenic Particles < 2.5 µm Mean ± SD | Anthropogenic Particles 2.5–10 µm Mean ± SD | Anthropogenic Particles > 10 µm Mean ± SD | Post hoc HSD–Tukey Test Anth. Part. < 2.5 µm p < 0.05 | |
---|---|---|---|---|---|
Group 1 | Group 2 | ||||
Group 1 (industry) | 91.5 ± 6.3 | 78.5 ± 8.1 | 73.0 ± 12.4 | ||
Group 2 (urban) | 65.0 ± 6.0 | 58.5 ± 7.5 | 47.0 ± 18.0 | 0.0099 | |
Group 3 (quarry) | 49.0 ± 0.0 | 44.0 ± 0.0 | 42.0 ± 0.0 | 0.0039 | 0.2439 |
Sample | Soil Sample G1 | Sample 1 <2.5 µm | Sample 1 2.5–10 µm | Sample 1 >10 µm | Soil Sample G2 | Sample 3 <2.5 µm | Sample 3 2.5–10 µm | Sample 3 >10 µm | Soil Sample G2 | Sample 6 <2.5 µm | Sample 6 2.5–10 µm |
---|---|---|---|---|---|---|---|---|---|---|---|
Sample 1 <2.5 µm | 0.143 | ||||||||||
Sample 1 2.5–10 µm | −0.062 | 0.758 | |||||||||
Sample 1 >10 µm | 0.055 | 0.635 | 0.740 | ||||||||
Soil sample G2 | 0.762 | 0.109 | 0.202 | −0.030 | |||||||
Sample 3 <2.5 µm | −0.388 | 0.324 | 0.362 | 0.499 | −0.481 | ||||||
Sample 3 2.5–10 µm | 0.315 | 0.613 | 0.706 | 0.747 | 0.198 | 0.458 | |||||
Sample 3 >10 µm | 0.122 | 0.353 | 0.516 | 0.515 | 0.082 | 0.326 | 0.729 | ||||
Soil sample G3 | 0.845 | 0.085 | 0.080 | −0.092 | 0.899 | −0.355 | 0.260 | 0.090 | |||
Sample 6 <2.5 µm | −0.351 | 0.608 | 0.541 | 0.607 | −0.417 | 0.910 | 0.512 | 0.413 | −0.357 | ||
Sample 6 2.5–10 µm | −0.083 | 0.656 | 0.617 | 0.734 | −0.221 | 0.672 | 0.680 | 0.574 | −0.223 | 0.846 | |
Sample 6 >10 µm | 0.014 | 0.547 | 0.609 | 0.839 | −0.137 | 0.774 | 0.834 | 0.491 | −0.076 | 0.770 | 0.812 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górka, M.; Bartz, W.; Skuridina, A.; Potysz, A. Populus nigra Italica Leaves as a Valuable Tool for Mineralogical and Geochemical Interpretation of Inorganic Atmospheric Aerosols’ Genesis. Atmosphere 2020, 11, 1126. https://doi.org/10.3390/atmos11101126
Górka M, Bartz W, Skuridina A, Potysz A. Populus nigra Italica Leaves as a Valuable Tool for Mineralogical and Geochemical Interpretation of Inorganic Atmospheric Aerosols’ Genesis. Atmosphere. 2020; 11(10):1126. https://doi.org/10.3390/atmos11101126
Chicago/Turabian StyleGórka, Maciej, Wojciech Bartz, Alisa Skuridina, and Anna Potysz. 2020. "Populus nigra Italica Leaves as a Valuable Tool for Mineralogical and Geochemical Interpretation of Inorganic Atmospheric Aerosols’ Genesis" Atmosphere 11, no. 10: 1126. https://doi.org/10.3390/atmos11101126
APA StyleGórka, M., Bartz, W., Skuridina, A., & Potysz, A. (2020). Populus nigra Italica Leaves as a Valuable Tool for Mineralogical and Geochemical Interpretation of Inorganic Atmospheric Aerosols’ Genesis. Atmosphere, 11(10), 1126. https://doi.org/10.3390/atmos11101126