Skill of Mesoscale Models in Forecasting Springtime Macrophysical Cloud Properties at the Savannah River Site in the Southeastern US
Abstract
:1. Introduction
2. Methods
2.1. RAMS
2.2. WRF
2.3. Cloud Base Altitude and Cloud Fractions
2.4. Cloud Forecast Scoring
3. Results and Discussion
3.1. Fifteen-Minute Monthly Averaged Forecasts
3.2. Daily Averaged Forecasts
3.3. Forecast Scoring
3.4. Summary of Typical Forecast Errors
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xie, S.; Lin, W.; Rasch, P.J.; Ma, P.-L.; Neale, R.; Larson, V.E.; Qian, Y.; Bogenschutz, P.A.; Caldwell, P.; Cameron-Smith, P.; et al. Understanding Cloud and Convective Characteristics in Version 1 of the E3SM Atmosphere Model. J. Adv. Model. Earth Syst. 2018, 10, 2618–2644. [Google Scholar] [CrossRef] [Green Version]
- L’Ecuyer, T.S.; Hang, Y.; Matus, A.V.; Wang, Z. Reassessing the Effect of Cloud Type on Earth’s Energy Balance in the Age of Active Spaceborne Observations. Part I: Top of Atmosphere and Surface. J. Clim. 2019, 32, 6197–6217. [Google Scholar]
- Storer, R.L.; van den Heever, S.C. Microphysical Processes Evident in Aerosol Forcing of Tropical Deep Convective Clouds. J. Atmos. Sci. 2013, 70, 430–446. [Google Scholar] [CrossRef]
- Kaplan, M.L.; Vellore, R.K.; Marzette, P.J.; Lewis, J.M. The Role of Windward-Side Diabatic Heating in Sierra Nevada Spillover Precipitation. J. Hydrometeorol. 2012, 13, 1172–1194. [Google Scholar] [CrossRef]
- Hudson, J.G.; Noble, S.; Tabor, S. Cloud supersaturations from CCN spectra Hoppel minima. J. Geophys. Res. Atmos. 2015, 120, 3436–3452. [Google Scholar] [CrossRef]
- Los, A.; van Weele, M.; Duynkerke, P.G. Actinic fluxes in broken cloud fields. J. Geophys. Res. Atmos. 1997, 102, 4257–4266. [Google Scholar] [CrossRef]
- Mathiesen, P.; Collier, C.; Kleissl, J. A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting. Sol. Energy 2013, 92, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Norquist, D.C. Cloud Predictions Diagnosed from Global Weather Model Forecasts. Mon. Weather Rev. 2000, 128, 3538–3555. [Google Scholar] [CrossRef]
- Hogan, R.J.; Jakob, C.; Illingworth, A.J. Comparison of ECMWF Winter-Season Cloud Fraction with Radar-Derived Values. J. Appl. Meteorol. 2001, 40, 513–525. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, A.J.M.; Maat, N. Numerical Guidance Methods for Decision Support in Aviation Meteorological Forecasting. Weather Forecast. 2005, 20, 82–100. [Google Scholar] [CrossRef]
- Hogan, R.J.; O’Connor, E.J.; Illingworth, A.J. Verification of cloud-fraction forecasts. Q. J. R. Meteorol. Soc. 2009, 135, 1494–1511. [Google Scholar] [CrossRef]
- Inoue, M.; Fraser, A.D.; Adams, N.; Carpentier, S.; Phillips, H.E. An Assessment of Numerical Weather Prediction–Derived Low-Cloud-Base Height Forecasts. Weather Forecast. 2015, 30, 486–497. [Google Scholar] [CrossRef] [Green Version]
- Söhne, N.; Chaboureau, J.-P.; Guichard, F. Verification of Cloud Cover Forecast with Satellite Observation over West Africa. Mon. Weather Rev. 2008, 136, 4421–4434. [Google Scholar] [CrossRef]
- Mittermaier, M. A critical assessment of surface cloud observations and their use for verifying cloud forecasts. Q. J. R. Meteorol. Soc. 2012, 138, 1794–1807. [Google Scholar] [CrossRef]
- Pielke, R.A.; Cotton, W.R.; Walko, R.L.; Tremback, C.J.; Lyons, W.A.; Grasso, L.D.; Nicholls, M.E.; Moran, M.D.; Wesley, D.A.; Lee, T.J.; et al. A comprehensive meteorological modeling system—RAMS. Meteorol. Atmos. Phys. 1992, 49, 69–91. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. 2008. Available online: https://opensky.ucar.edu/islandora/object/technotes:500 (accessed on 12 August 2020).
- Buckley, R.L.; Weber, A.H.; Weber, J.H. Statistical comparison of Regional Atmospheric Modelling System forecasts with observations. Meteorol. Appl. 2004, 11, 67–82. [Google Scholar] [CrossRef]
- Jakob, C.; Pincus, R.; Hannay, C.; Xu, K.-M. Use of cloud radar observations for model evaluation: A probabilistic approach. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Hutchison, K.D.; Iisager, B.D.; Dipu, S.; Jiang, X.; Quaas, J.; Markwardt, R. A Methodology for Verifying Cloud Forecasts with VIIRS Imagery and Derived Cloud Products—A WRF Case Study. Atmosphere 2019, 10, 521. [Google Scholar] [CrossRef] [Green Version]
- NCEP. North American Mesoscale (NAM) Analysis and Forecast System. Available online: https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-mesoscale-forecast-system-nam (accessed on 12 August 2020).
- Van den Heever, S.C. Regional Atmospheric Modeling System (RAMS) Model Documentation. Available online: https://vandenheever.atmos.colostate.edu/vdhpage/rams/rams_docs.php (accessed on 12 August 2020).
- Saleeby, S. RAMSIN Model Namelist Parameters. Available online: https://vandenheever.atmos.colostate.edu/vdhpage/rams/docs/RAMS-Namelist.pdf (accessed on 12 August 2020).
- Sims, A.P.; Alapaty, K.; Raman, S. Sensitivities of Summertime Mesoscale Circulations in the Coastal Carolinas to Modifications of the Kain–Fritsch Cumulus Parameterization. Mon. Weather Rev. 2017, 145, 4381–4399. [Google Scholar] [CrossRef]
- Harrington, J.Y. The Effects of Radiative and Microphysical Processes on Simulated Warm and Transition Season Arctic Stratus. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 1997. Available online: http://www.meteo.psu.edu/~jyh10/pubs/dis.pdf (accessed on 12 August 2020).
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 1982, 20, 851–875. [Google Scholar] [CrossRef] [Green Version]
- Saleeby, S.M.; Cotton, W.R. A Large-Droplet Mode and Prognostic Number Concentration of Cloud Droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module Descriptions and Supercell Test Simulations. J. Appl. Meteorol. 2004, 43, 182–195. [Google Scholar] [CrossRef] [Green Version]
- Saleeby, S.M.; Cotton, W.R. A Binned Approach to Cloud-Droplet Riming Implemented in a Bulk Microphysics Model. J. Appl. Meteorol. Climatol. 2008, 47, 694–703. [Google Scholar] [CrossRef] [Green Version]
- DeMott, P.J.; Prenni, A.J.; Liu, X.; Kreidenweis, S.M.; Petters, M.D.; Twohy, C.H.; Richardson, M.S.; Eidhammer, T.; Rogers, D.C. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA 2010, 107, 11217–11222. [Google Scholar] [CrossRef] [Green Version]
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.; Peckham, S.E.; et al. The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bull. Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Tolman, H. Descriptions of the Major Modeling Systems Operated at NOAA/NWS/NCEP. 2014, p. 70. Available online: https://www.wmo.int/pages/prog/www/DPFS/documents/2013_USA.pdf (accessed on 12 August 2020).
- Wickham, J.; Homer, C.; Vogelmann, J.; McKerrow, A.; Mueller, R.; Herold, N.; Coulston, J. The Multi-Resolution Land Characteristics (MRLC) Consortium—20 Years of Development and Integration of USA National Land Cover Data. Remote Sens. 2014, 6, 7424–7441. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Grell, G.A.; Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38-1–38-4. [Google Scholar] [CrossRef] [Green Version]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Janjić, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Morris, V.R. Vaisala Ceilometer (VCEIL) Handbook; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research: Washington, DC, USA, 2012. Available online: https://www.arm.gov/publications/tech_reports/handbooks/vceil_handbook.pdf (accessed on 12 August 2020).
- Noble, S.R.; Hudson, J.G. MODIS comparisons with northeastern Pacific in situ stratocumulus microphysics. J. Geophys. Res. Atmos. 2015, 120, 8332–8344. [Google Scholar] [CrossRef]
- Feofilov, A.G.; Stubenrauch, C.J.; Delanoë, J. Ice water content vertical profiles of high-level clouds: Classification and impact on radiative fluxes. Atmos. Chem. Phys. 2015, 15, 12327–12344. [Google Scholar] [CrossRef] [Green Version]
- Hui-Ling, Y.; Hui, X.; Chun-Wei, G. Impacts of Two Ice Parameterization Schemes on the Cloud Microphysical Processes and Precipitation of a Severe Storm in Northern China. Atmos. Ocean. Sci. Lett. 2015, 8, 301–307. [Google Scholar]
- Igel, A.L.; Igel, M.R.; van den Heever, S.C. Make It a Double? Sobering Results from Simulations Using Single-Moment Microphysics Schemes. J. Atmos. Sci. 2015, 72, 910–925. [Google Scholar] [CrossRef] [Green Version]
m > c | m < c | m = c | <diff | =diff | |
---|---|---|---|---|---|
RAMS CBA | 49 | 31 | 46 | ||
WRF CBA | 15 | 62 | 28 | ||
RAMS CF | 29 | 58 | 3 | 47 | 8 |
WRF CF | 13 | 72 | 3 | 32 | 8 |
RAMS | WRF | ||||
---|---|---|---|---|---|
ceil. | cld | no cld | cld | no cld | |
cld | 2443 | 2440 | 2064 | 2637 | |
no cld | 985 | 4992 | 848 | 5069 |
All | 0–6 | 6–12 | 12–18 | 18–24 | 24–30 | |
---|---|---|---|---|---|---|
RAMS CBA | 0.59 ± 0.21 | 0.50 ± 0.34 | 0.55 ± 0.34 | 0.54 ± 0.31 | 0.58 ± 0.30 | 0.51 ± 0.33 |
WRF CBA | 0.58 ± 0.20 | 0.47 ± 0.34 | 0.59 ± 0.34 | 0.50 ± 0.30 | 0.54 ± 0.29 | 0.49 ± 0.34 |
RAMS CBAo | 0.20 ± 0.12 | 0.21 ± 0.14 | 0.20 ± 0.15 | 0.19 ± 0.14 | 0.19 ± 0.13 | 0.26 ± 0.15 |
WRF CBAo | 0.20 ± 0.15 | 0.23 ± 0.25 | 0.24 ± 0.20 | 0.15 ± 0.14 | 0.14 ± 0.13 | 0.28 ± 0.21 |
RAMS CF | 0.41 ± 0.19 | 0.33 ± 0.29 | 0.40 ± 0.31 | 0.34 ± 0.28 | 0.36 ± 0.25 | 0.31 ± 0.27 |
WRF CF | 0.40 ± 0.18 | 0.32 ± 0.29 | 0.44 ± 0.32 | 0.33 ± 0.25 | 0.30 ± 0.22 | 0.33 ± 0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noble, S.; Viner, B.; Buckley, R.; Chiswell, S. Skill of Mesoscale Models in Forecasting Springtime Macrophysical Cloud Properties at the Savannah River Site in the Southeastern US. Atmosphere 2020, 11, 1202. https://doi.org/10.3390/atmos11111202
Noble S, Viner B, Buckley R, Chiswell S. Skill of Mesoscale Models in Forecasting Springtime Macrophysical Cloud Properties at the Savannah River Site in the Southeastern US. Atmosphere. 2020; 11(11):1202. https://doi.org/10.3390/atmos11111202
Chicago/Turabian StyleNoble, Stephen, Brian Viner, Robert Buckley, and Steven Chiswell. 2020. "Skill of Mesoscale Models in Forecasting Springtime Macrophysical Cloud Properties at the Savannah River Site in the Southeastern US" Atmosphere 11, no. 11: 1202. https://doi.org/10.3390/atmos11111202
APA StyleNoble, S., Viner, B., Buckley, R., & Chiswell, S. (2020). Skill of Mesoscale Models in Forecasting Springtime Macrophysical Cloud Properties at the Savannah River Site in the Southeastern US. Atmosphere, 11(11), 1202. https://doi.org/10.3390/atmos11111202