Climate Profiles in Brazilian Microregions
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Grade of Membership Method
3. Results
3.1. General Characteristics of Pure Profiles
3.2. Mixed and Amorphous Profiles
3.3. Spatial Analysis of Profiles
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alvares, C.A.; Stape, J.-L.; Sentelhas, P.C.; Gonçalves, J.L.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Köppen, W. Climatologia; Fondo de Cultura Económica: Ciudad de México, Mexico, 1948. [Google Scholar]
- Woodbury, M.A.; Clive, J.; Garson, A., Jr. Mathematical typology: A grade of membership technique for obtaining disease definition. Comput. Biomed. Res. 1978, 11, 277–298. [Google Scholar] [CrossRef]
- Talbot, L.M.; Talbot, B.G.; Peterson, R.E.; Tolley, H.D.; Mecham, H.D. Application of Fuzzy Grade-of-Membership clustering to analysis of remote sensing data. J. Clim. 1999, 12, 200–219. [Google Scholar] [CrossRef]
- De Moura, M.N.; Felippe, M.F. Aplicação do método Grade of Membership na classificação do grau de naturalização das águas na bacia do Rio Doce. Rev. Espinhaço UFVJM 2015, 68, 58–68. Available online: http://www.revistaespinhaco.com/index.php/journal/article/view/82 (accessed on 6 October 2020).
- White, A.E.; Dey, K.K.; Mohan, D.; Stephens, M.; Price, T.D. Regional influences on community structure across the tropical-temperate divide. Nat. Commun. 2019, 10, 2646. [Google Scholar] [CrossRef]
- Santos, E.B.; Lucio, P.S.; Silva, C.M.S.E. Precipitation regionalization of the Brazilian Amazon. Atmos. Sci. Lett. 2014, 16, 185–192. [Google Scholar] [CrossRef]
- Oliveira, P.T.; Silva, C.M.S.E.; Lima, K.C. Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil. Theor. Appl. Clim. 2016, 130, 77–90. [Google Scholar] [CrossRef]
- Rao, V.B.; Franchito, S.H.; Santo, C.M.E.; Gan, M.A. An update on the rainfall characteristics of Brazil: Seasonal variations and trends in 1979–2011. Int. J. Clim. 2015, 36, 291–302. [Google Scholar] [CrossRef]
- Kousky, V.E.; Gan, M.A. Upper tropospheric cyclonic vortices in the tropical South Atlantic. Tellus 1981, 33, 538–551. [Google Scholar] [CrossRef]
- Teixeira, M.D.S.; Satyamurty, P. Trends in the frequency of intense precipitation events in Southern and Southeastern Brazil during 1960–2004. J. Clim. 2011, 24, 1913–1921. [Google Scholar] [CrossRef]
- Giddens, A. A Política da Mudança Climática; Zahar: Rio de Janeiro, Brazil, 2010; 314p. [Google Scholar]
- Confalonieri, U.; Menne, B.; Akhtar, R.; Ebi, K.L.; Hauengue, M.; Kovats, R.S.; Revich, B.; Woodward, A. Human health. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 391–431. [Google Scholar]
- Gramelsberger, G.; Feichter, J. (Eds.) Climate Change and Policy; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Rodrigues, D.T.; Gonçalves, W.A.; Spyrides, M.H.C.; Silva, C.M.S.E. Spatial and temporal assessment of the extreme and daily precipitation of the Tropical Rainfall Measuring Mission satellite in Northeast Brazil. Int. J. Remote. Sens. 2019, 41, 549–572. [Google Scholar] [CrossRef]
- De Aguiar, J.T.; Junior, M.L.; Junior, M.L. Reliability and discrepancies of rainfall and temperatures from remote sensing and Brazilian ground weather stations. Remote. Sens. Appl. Soc. Environ. 2020, 18, 100301. [Google Scholar] [CrossRef]
- Xavier, A.C.; Scanlon, B.R.; King, C.W. Conjunto de Dados de Variáveis Meteorológicas Diárias no Brasil (1980–2013); CLIMA Policy Brief #2; Centro Clima/COPPE/UFRJ: Rio de Janeiro, Brazil, 2016; 4p, Available online: https://www.dropbox.com/sh/awb2ghit03kf39c/AAD69uHiLxVN6IoAwIyXLQ3Pa?dl=0 (accessed on 20 March 2018).
- Vieira, S.A.; Osorio, D.M.M.; de Quevedo, D.M.; Adam, K.N.; Pereira, M.A.F. Metodologia de imputação de dados hidrometeorológicos para análise de séries históricas—Bacia do Rio dos Sinos, RS, Brasil. Rev. Bras. Climatol. 2018, 23, 189–204. [Google Scholar]
- Davison, A.; Hinkley, D. Bootstrap Methods and their application. J. Am. Stat. Assoc. 1997, 94. [Google Scholar] [CrossRef]
- Guedes, G.R.; Siviero, P.C.L.; Machado, C.J.; Pinto, J.; Rodarte, M.M.S. Grade of Membership: Basic Concepts and Empirical Application for Windows, Linux, Stata and R, 1st ed.; Series on Population and Economics (CEDEPLAR); UFMG Press: Belo Hozionte, Brazil, 2016. [Google Scholar]
- IBGE. Divisão Regional do Brasil em Regiões Geográficas Imediatas e Regiões Geográficas Intermediárias: 2017; Coordenação de Geografia, IBGE: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Manton, K.G.; Woodbury, M.A.; Tolley, H.D. Statistical Application Using Fuzzy Sets; John Wiley & Sons: Nova York, NY, USA, 1994. [Google Scholar]
- De Assis, H.M.; Machado, C.J.; Rodrigues, R.N. Perfis de mortalidade neonatal precoce: Um estudo para uma Maternidade Pública de Belo Horizonte (MG), 2001–2006. Rev. Bras. Epidemiol. 2008, 11, 675–686. [Google Scholar] [CrossRef]
- Barbosa, L.D.M.; Noronha, K.; Camargos, M.C.S.; Machado, C.J. Perfis de integração social entre idosos institucionalizados não frágeis no município de Natal, Rio Grande do Norte, Brasil. Ciênc. Saúde Colet. 2020, 25, 2017–2030. [Google Scholar] [CrossRef]
- Guedes, G.R.; Caetano, A.J.; Machado, C.J.; Brondízio, E.S. Identificabilidade e estabilidade dos parâmetros no método Grade of Membership (GoM): Considerações metodológicas e práticas. Rev. Bras. Estud. Popul. 2010, 27, 21–33. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Guedes, G.R.; Siviero, P.C.L.; Caetano, A.J.; Machado, C.J.; Brondizio, E. Incorporando a Variabilidade no Processo de Identificação do Modelo de Máximo Global no Grade of Membership (GoM): Considerações Metodológicas; Revista Brasileira de Estudos de População: Rio de Janeiro, Brazil, 2010. [Google Scholar]
- Lacerda, M.A.; Miranda-Ribeiro, P.; Caetano, A.J.; Machado, C.J. Mensuração e perfis de demanda insatisfeita por contracepção nos municípios de Belo Horizonte e Recife, 2002. Rev. Bras. Estud. Popul. 2013, 22, 113–129. [Google Scholar]
- Sawyer, D.O.; Leite, I.D.C.; Alexandrino, R. Perfis de utilização de serviços de saúde no Brasil. Ciênc. Saúde Colet. 2002, 7, 757–776. [Google Scholar] [CrossRef]
- Pinto, J.S.; Caetano, A.J. A Heterogeneidade da Vulnerabilidade Social das Juventudes: Uma Perspectiva Empírica Através do Método Grade of Membership. Mediaç. Rev. Ciênc. Soc. 2013, 18, 166–184. [Google Scholar] [CrossRef][Green Version]
- Montgomery, D.C.; Runger George, C. Estatística Aplicada e Probabilidade Para Engenheiros, 5th ed.; Livros Técnicos e Científicos: Rio De Janeiro, Brazil, 2013. [Google Scholar]
- Vieira, S. Análise de Variância: ANOVA; Editora Atlas AS: São Paulo, Brazil, 2006. [Google Scholar]
- Utida, G.; Cruz, F.W.; Etourneau, J.; Bouloubassi, I.; Schefuß, E.; Vuille, M.; Novello, V.F.; Prado, L.F.; Sifeddine, A.; Klein, V.; et al. Tropical South Atlantic influence on Northeastern Brazil precipitation and ITCZ displacement during the past 2300 years. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fritzsons, E.; Mantovani, L.E.; Wrege, M.S. Relação entre altitude e temperatura: Uma contribuição ao zoneamento climático no estado de Santa Catarina, Brasil. Rev. Bras. Climatol. 2016, 18, 80–92. [Google Scholar]
- Gomes, E.P.; Blanco, C.J.C.; Pessoa, F. Identification of homogeneous precipitation regions via Fuzzy c-means in the hydrographic region of Tocantins–Araguaia of Brazilian Amazonia. Appl. Water Sci. 2018, 9, 6. [Google Scholar] [CrossRef]
- Palharini, R.S.A.; Vila, D.A. Araú Climatological Behavior of Precipitating Clouds in the Northeast Region of Brazil. Adv. Meteorol. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Reboita, M.S.; Krusche, N.; Ambrizzi, T.; Da Rocha, R.P. Entendendo o tempo e o clima na América do Sul. Terrae Didat. 2015, 8, 34–50. [Google Scholar] [CrossRef]
- Carvalho, L.M.V.; Jones, C.; Liebmann, B. The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Clim. 2004, 17, 88–108. [Google Scholar] [CrossRef]
- Grimm, A.M. Interannual climate variability in South America: Impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stoch. Environ. Res. Risk Assess. 2010, 25, 537–554. [Google Scholar] [CrossRef]
- Vieira, S.D.O.; Satyamurty, P.; Andreoli, R.V. On the South Atlantic Convergence Zone affecting southern Amazonia in austral summer. Atmos. Sci. Lett. 2012, 14, 1–6. [Google Scholar] [CrossRef]
- Wrege, M.S.; Fritzsons, E.; Caramori, P.H.; Ricce, W.D.S.; Radin, B.; Steinmetz, S.; Júnior, C.R. Regiões com similaridade de comportamento hídrico no Sul do Brasil. Raega Curitiba 2016, 38, 365. [Google Scholar] [CrossRef]
- Targino, A.C.; Harrison, R.M.; Krecl, P.; Glantz, P.; De Lima, C.H.; Beddows, D. Surface ozone climatology of South Eastern Brazil and the impact of biomass burning events. J. Environ. Manag. 2019, 252, 109645. [Google Scholar] [CrossRef]
- Wrege, M.S.; Steinmetz, S.; Reisser Júnior, C.; de ALMEIDA, I.R. Atlas Climático da Região Sul do Brasil: Estados do Paraná, Santa Catarina e Rio Grande do Sul; Embrapa Clima Temperado: Pelotas, Brazil; Embrapa Florestas: Colombo, Sri Lanka, 2011; 336p. [Google Scholar]
Categories | Observed Frequencies | Estimated Probabilities λkjl(E) | Ratio (E/O) | |||||
---|---|---|---|---|---|---|---|---|
Absolute | Relative (O) | Profile P1 | Profile P2 | Profile P3 | K1 | K2 | K3 | |
Accumulated Precipitation | ||||||||
low | 138.0 | 0.251 | 0.0 | 1.0 | 0.0 | 0.0 | 4.0 | 0.0 |
moderate | 275.0 | 0.50 | 1.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
high | 137.0 | 0.249 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 4.0 |
Average of Minimum Temperature | ||||||||
low | 137.0 | 0.249 | 0.3 | 0.0 | 0.5 | 1.1 | 0.0 | 1.9 |
moderate | 275.0 | 0.500 | 0.7 | 0.5 | 0.0 | 1.5 | 1.1 | 0.0 |
high | 138.0 | 0.251 | 0.0 | 0.5 | 0.5 | 0.0 | 1.9 | 2.1 |
Average of Maximum Temperature | ||||||||
low | 137.0 | 0.249 | 0.3 | 0.0 | 0.5 | 1.0 | 0.0 | 1.9 |
moderate | 276.0 | 0.502 | 0.8 | 0.6 | 0.0 | 1.5 | 1.1 | 0.0 |
high | 137.0 | 0.249 | 0.0 | 0.4 | 0.5 | 0.0 | 1.7 | 2.1 |
Average of Wind Speed | ||||||||
low | 139.0 | 0.253 | 0.3 | 0.0 | 0.5 | 1.0 | 0.0 | 2.0 |
moderate | 273.0 | 0.496 | 0.8 | 0.0 | 0.5 | 1.5 | 0.0 | 1.0 |
high | 138.0 | 0.251 | 0.0 | 1.0 | 0.0 | 0.0 | 4.0 | 0.0 |
Average of Relative Humidity of the Air | ||||||||
low | 138.0 | 0.251 | 0.0 | 1.0 | 0.0 | 0.0 | 4.0 | 0.0 |
moderate | 275.0 | 0.500 | 1.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
high | 137.0 | 0.249 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 4.0 |
Profile Predominance | Frequency | % |
---|---|---|
Predominant 1 (P1) | 117 | 21.3% |
Mixed, predominance of P1 with characteristic of P2 (PM12) | 85 | 15.5% |
Mixed, predominance of P1 with characteristic of P3 (PM13) | 39 | 7.1% |
Microregions with characteristics of P1 | 241 | 43.8% |
Predominant 2 (P2) | 56 | 10.2% |
Mixed, predominance of P2 with characteristic of P1 (PM21) | 72 | 13.1% |
Microregions with characteristics of P2 | 128 | 23.3% |
Predominant 3 (P3) | 63 | 11.5% |
Mixed, predominance of P3 with characteristic of P1 (PM31) | 100 | 18.2% |
Microregions with characteristics of P3 | 163 | 29.6% |
Amorphous | 18 | 3.3% |
Profiles\Variables | Minimum Temperature | Maximum Temperature | Precipitation | Wind Speed | Relative Humidity | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
predominant 1 (P1) | 16.4 e | 1.7 | 27.4 d | 1.8 | 1439.9 c | 132.1 | 1.3 de | 0.2 | 74.1 d | 2.1 |
mixed 1.2 (PM12) | 19.1 d | 1.7 | 29.7 c | 0.9 | 1340.9 d | 207 | 1.6 c | 0.6 | 71.9 e | 8.6 |
mixed 1.3 (PM13) | 19.8 cd | 2.1 | 30.9 b | 2.6 | 1521.2 c | 183.3 | 1.2 ef | 0.3 | 75.3 cd | 2.9 |
predominant 2 (P2) | 21.5 a | 1.1 | 32.3 a | 1.1 | 713.2 f | 110.1 | 2.4 a | 0.2 | 65.7 f | 3 |
mixed 2.1 (PM21) | 20.5 bc | 1.3 | 30.6 b | 1.4 | 878.7 e | 208.9 | 2.1 b | 0.5 | 71.4 ef | 7.1 |
predominant 3—NORTH (P3-N) | 22.1 a | 1 | 32.3 a | 0.4 | 2111.5 a | 296.8 | 0.9 f | 0.2 | 81.1 a | 2.7 |
mixed 31 NORTH (PM31—N) | 22.2 a | 1.2 | 31.9 a | 0.5 | 2131.9 a | 482.6 | 1.2 ef | 0.4 | 81.3 a | 11.4 |
predominant 3—SOUTH (P3-S) | 14.1 f | 1.2 | 24.3 e | 1.2 | 1776.0 b | 121.8 | 1.4 cde | 0.2 | 80.1 ab | 1.6 |
mixed 31—SOUTH (PM31-S) | 14.5 f | 1 | 25.1 e | 1.2 | 1743.2 b | 208.9 | 1.5 cd | 0.3 | 77.4 bc | 2.6 |
Amorphous | 21.3 ab | 1.8 | 31.3 ab | 2.5 | 1342.5 cd | 248.3 | 1.8 c | 0.7 | 74.2 d | 7.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silveira Marinho, K.F.; Barbosa Andrade, L.d.M.; Constantino Spyrides, M.H.; Santos e Silva, C.M.; de Oliveira, C.P.; Guedes Bezerra, B.; Rodrigues Mutti, P. Climate Profiles in Brazilian Microregions. Atmosphere 2020, 11, 1217. https://doi.org/10.3390/atmos11111217
Silveira Marinho KF, Barbosa Andrade LdM, Constantino Spyrides MH, Santos e Silva CM, de Oliveira CP, Guedes Bezerra B, Rodrigues Mutti P. Climate Profiles in Brazilian Microregions. Atmosphere. 2020; 11(11):1217. https://doi.org/10.3390/atmos11111217
Chicago/Turabian StyleSilveira Marinho, Kalline Fabiana, Lara de Melo Barbosa Andrade, Maria Helena Constantino Spyrides, Claudio Moisés Santos e Silva, Cristiano Prestrelo de Oliveira, Bergson Guedes Bezerra, and Pedro Rodrigues Mutti. 2020. "Climate Profiles in Brazilian Microregions" Atmosphere 11, no. 11: 1217. https://doi.org/10.3390/atmos11111217
APA StyleSilveira Marinho, K. F., Barbosa Andrade, L. d. M., Constantino Spyrides, M. H., Santos e Silva, C. M., de Oliveira, C. P., Guedes Bezerra, B., & Rodrigues Mutti, P. (2020). Climate Profiles in Brazilian Microregions. Atmosphere, 11(11), 1217. https://doi.org/10.3390/atmos11111217