Regional Distribution of Net Radiation over Different Ecohydrological Land Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ground Measurement and Instrumentation
2.3. Meteorological Data
2.4. Remote Sensing Data Preparation
2.5. SEBS Model Description
2.6. Statistical Evaluation
3. Results and Discussions
3.1. Hydrometeorological Conditions over Study Region
3.2. Estimation of Net Radiation (Rn) and Ground Validation
Comparisons of Monthly Variations in Rn Estimation over Different Landscapes
3.3. Spatial Distribution Pattern of Rn
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Katul, G.G.; Oren, R.; Manzoni, S.; Higgins, C.; Parlange, M.B. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef] [Green Version]
- Hwang, K.; Choi, M.; Lee, S.O.; Seo, J.W. Estimation of instantaneous and daily net radiation from MODIS data under clear sky conditions: A case study in East Asia. Irrig. Sci. 2013, 31, 1173–1184. [Google Scholar] [CrossRef]
- Rahman, M.M.; Zhang, W.C.; Wang, K. Assessment on surface energy imbalance and energy partitioning using ground and satellite data over a semi-arid agricultural region in north China. Agric. Water Manag. 2019, 213, 245–259. [Google Scholar] [CrossRef]
- Blad, B.L.; Walter-Shea, E.A.; Mesarch, M.A.; Hays, C.J.; Starks, P.J.; Deering, D.W.; Eck, T.F. Estimating Net Radiation with Remotely Sensed Data: Results from KUREX-91 and FIFE Studies. Remote Sens. Rev. 1998, 17, 55–71. [Google Scholar] [CrossRef]
- Benítez-Valenzuela, L.I.; Sanchez-Mejia, Z.M. Observations of turbulent heat fluxes variability in a semiarid coastal lagoon (Gulf Of California). Atmosphere 2020, 11, 626. [Google Scholar] [CrossRef]
- Rahman, M.; Zhang, W. Review on estimation methods of the Earth ’ s surface energy balance components from ground and satellite measurements. J. Earth Syst. Sci. 2019, 128, 84. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Xu, K.; Ma, Y.; Huang, Z.; Wang, X.; Ge, N. Evapotranspiration estimation using surface energy balance system model: A case study in the Nagqu River Basin. Atmosphere 2019, 10, 268. [Google Scholar] [CrossRef] [Green Version]
- Menenti, M.; Choudhury, B.J. Parameterization of land surface evaporation by means of location dependent potential evaporation and surface temperature range M. MENENTI. In Proceedings of the Exchange Processes at the Land Surface for a Range of Space and Time Scales, Yokohama, Japan, 13–16 July 1993; pp. 561–568. [Google Scholar]
- Roerink, G.J. S-SEBI: A Simple Remote Sensing Algorithm to Estimate the Surface Energy Balance. Pys. Chem. Earth 2000, 25, 147–157. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F.; Roerink, G.J.; van der Wal, T. A remote sensing surface energy balance algorithm for land (SEBAL), Part 1: Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration, METRIC …—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Allen, R.G.; Burnett, B.; Kramber, W.; Huntington, J.; Kjaersgaard, J.; Kilic, A.; Kelly, C.; Trezza, R. Automated calibration of the METRIC-Landsat evapotranspiration process. J. Am. Water Resour. Assoc. 2013, 49, 563–576. [Google Scholar] [CrossRef]
- Chehbouni, A.; Goodrich, D.C.; Moran, M.S.; Watts, C.J.; Kerr, Y.H.; Dedieu, G.; Kepner, W.G.; Shuttleworth, W.J.; Sorooshian, S. A preliminary synthesis of major scientific results during the SALSA program. Agric. For. Meteorol. 2000, 105, 311–323. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Cracknell, A.P.; Varotsos, C.A. Fifty years after the first artificial satellite: From Sputnik 1 to ENVISAT. Int. J. Remote Sens. 2007, 28, 2071–2072. [Google Scholar] [CrossRef]
- Huete, A.R. Remote Sensing for Environmental Monitoring. Environ. Monit. Charact. 2004, 11, 183–206. [Google Scholar] [CrossRef]
- Bisht, G.; Venturini, V.; Islam, S.; Jiang, L. Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days. Remote Sens. Environ. 2005, 97, 52–67. [Google Scholar] [CrossRef]
- Ryu, Y.; Kang, S.; Moon, S.K.; Kim, J. Evaluation of land surface radiation balance derived from moderate resolution imaging spectroradiometer (MODIS) over complex terrain and heterogeneous landscape on clear sky days. Agric. For. Meteorol. 2008, 148, 1538–1552. [Google Scholar] [CrossRef]
- Rahman, M.; Zhang, W. Validation of Satellite Derived Sensible Heat Flux for TERRA / MODIS Images over Three Different Landscapes Using Large Aperture Scintillometer and Eddy Covariance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3327–3337. [Google Scholar] [CrossRef]
- Flores-Rojas, J.L.; Cuxart, J.; Piñas-Laura, M.; Callañaupa, S.; Suárez-Salas, L.; Kumar, S.; Moya-Alvarez, A.S.; Silva, Y. Seasonal and diurnal cycles of surface boundary layer and energy balance in the central andes of peru, mantaro valley. Atmosphere 2019, 10, 779. [Google Scholar] [CrossRef] [Green Version]
- Renzullo, L.J.; Barrett, D.J.; Marks, A.S.; Hill, M.J.; Guerschman, J.P.; Mu, Q.; Running, S.W. Multi-sensor model-data fusion for estimation of hydrologic and energy flux parameters. Remote Sens. Environ. 2008, 112, 1306–1319. [Google Scholar] [CrossRef]
- Wie, J.; Hong, S.O.; Byon, J.Y.; Ha, J.C.; Moon, B.K. Sensitivity analysis of surface energy budget to albedo parameters in seoul metropolitan area using the unified model. Atmosphere 2020, 11, 120. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. An overview of the HEIFE experiment in the People ’ s Republic of China. In Proceedings of the Exchange Processes at the Land Surface for a Ranee of Space and lime Scal, Yokohama, Japan, 13–16 July 1993; pp. 379–403. [Google Scholar]
- Yaoming, M.; Menenti, M.; Feddes, R. Parameterization of Heat Fluxes at Heterogeneous Surfaces by Integrating Satellite Measurements with Surface Layer and Atmospheric Boundary Layer Observations. Adv. Atmos. Sci. 2010, 27, 328–336. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Li, Z.; Ma, M.; Wang, J.; Xiao, Q.; Liu, Q.; Che, T.; Chen, E.; Yan, G.; et al. Watershed Allied Telemetry Experimental Research. J. Geophys. Res. 2009, 114, D22103. [Google Scholar] [CrossRef] [Green Version]
- Xin, L.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y. Heihe watershed allied telemetry experimental research (Hiwater) Scientific Objectives and Experimental Design. Am. Meteorol. Soc. 2013, 1145–1160. [Google Scholar] [CrossRef]
- Rahman, H.; Dedieu, G. SMAC: A simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Int. J. Remote Sens. 1994, 15, 123–143. [Google Scholar] [CrossRef]
- Liang, S. Narrowband to broadband conversions of land surface albedo I Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Liang, S.; Shuey, C.J.; Russ, A.L.; Fang, H.; Chen, M.; Walthall, C.L.; Daughtry, C.S.T.; Hunt, R. Narrowband to broadband conversions of land surface albedo: II. Validation. Remote Sens. Environ. 2002, 84, 25–41. [Google Scholar]
- Zhang, X.; Liang, S.; Member, S.; Wang, K.; Li, L.; Gui, S. Analysis of Global Land Surface Shortwave Broadband Albedo From Multiple Data Sources. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 296–305. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Melnikova, I.N.; Cracknell, A.P.; Tzanis, C.; Vasilyev, A.V. New spectral functions of the near-ground albedo derived from aircraft diffraction spectrometer observations. Atmos. Chem. Phys. 2014, 14, 6953–6965. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, J.A.; Kharraz, J.E.L. Surface temperature and water vapour retrieval from MODIS data. Int. J. Remote Sens. 2003, 24, 5161–5182. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Raissouni, N. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. Int. J. Remote Sens. 2000, 21, 353–366. [Google Scholar] [CrossRef]
- Wang, L.; Parodi, G.N.; Su, Z. SEBS module beam: A practical tool for surface energy balance estimates from remote sensing data. In Proceedings of the “2nd MERIS / (A)ATSR User Workshop”, Frascati, Italy, 22–26 September 2008. [Google Scholar]
- Choudhury, B.J.; Monteith, J.L. A four-layer model for the heat budget of homogeneous land surfaces. Q. J. R. Meteorol. Soc. 1988, 114, 373–398. [Google Scholar] [CrossRef]
- Brutsaert, W. Aspects of Bulk Atmosph Eric Bou N Dary Layer Free-Convective. Rev. Geophys. 1999, 37, 439–451. [Google Scholar] [CrossRef]
- Jia, L.; Su, Z.; van den Hurk, B.; Menenti, M.; Moene, A.; De Bruin, H.A.R.; Yrisarry, J.J.B.; Ibanez, M.; Cuesta, A. Estimation of sensible heat flux using the Surface Energy Balance System (SEBS) and ATSR measurements. Phys. Chem. Earth 2003, 28, 75–88. [Google Scholar] [CrossRef]
- Su, Z.; Schmugge, T.; Kustas, W.P.; Massman, W.J. An Evaluation of Two Models for Estimation of the Roughness Height for Heat Transfer between the Land Surface and the Atmosphere. J. Appl. Meteorol. 2001, 40, 1933–1951. [Google Scholar] [CrossRef] [Green Version]
- Gibson, L.A.; Münch, Z.; Engelbrecht, J. Particular uncertainties encountered in using a pre-packaged SEBS model to derive evapotranspiration in a heterogeneous study area in South Africa. Hydrol. Earth Syst. Sci. 2011, 15, 295–310. [Google Scholar] [CrossRef] [Green Version]
- Liou, Y.A.; Kar, S.K. Evapotranspiration estimation with remote sensing and various surface energy balance algorithms-a review. Energies 2014, 7, 2821–2849. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J.L.; Unsworth, M.H. Principles of Environmental Physics Plants, Animals, and the Atmosphere, 4th ed.; Academic Press is an imprint of Elsevier: San Diego, CA, USA, 2013; ISBN 9780123869104. [Google Scholar]
- Kustas, W.P.; Daughtry, C.S.T. Estimation of the Soil Heat Flux/Net Radiation Ratio from Spectral Data. Agric. For. Meteorol. 1990, 49, 205–223. [Google Scholar] [CrossRef]
- Ma, W.; Ma, Y. Modeling the influence of land surface flux on the regional climate of the Tibetan Plateau. Theor. Appl. Clim. 2015. [Google Scholar] [CrossRef]
- Amatya, P.M.; Ma, Y.; Han, C. Mapping regional distribution of land surface heat fluxes on the southern side of the central Himalayas using TESEBS. Theor. Appl. Clim. 2015, 124, 835–846. [Google Scholar] [CrossRef]
- Ma, Y. Determination of Regional Surface Heat Fluxes over Heterogeneous Landscapes by Integrating Satellite Remote Sensing with Boundary Layer Observations Yaoming Ma; Wageningen Universiteit: Wageningen, The Netherlands, 2006; ISBN 9085044839. [Google Scholar]
- Van Der Kwast, J.; Timmermans, W.; Gieske, A.; Su, Z.; Olioso, A.; Jia, L.; Elbers, J.; Karssenberg, D.; De Jong, S. Evaluation of the Surface Energy Balance System (SEBS) applied to ASTER imagery with flux-measurements at the SPARC 2004 site (Barrax, Spain). Hydrol. Earth Syst. Sci 2009, 13, 1337–1347. [Google Scholar] [CrossRef] [Green Version]
- George, P. Remote Sensing of Energy Fluxes and Soil Moisture Content; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2014; ISBN 9781466505797. [Google Scholar]
- Amatya, P.M.; Ma, Y.; Han, C.; Wang, B.; Devkota, L.P. Estimation of net radiation flux distribution on the southern slopes of the central Himalayas using MODIS data. Atmos. Res. 2015, 154, 146–154. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Tang, S. Validation of the SEBS-derived sensible heat for FY3A/VIRR and TERRA/MODIS over an alpine grass region using LAS measurements. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 226–233. [Google Scholar] [CrossRef]
Day of Year | Upstream | Middlestream | Downstream | |||
---|---|---|---|---|---|---|
Bias (W/m2) | re (%) | Bias (W/m2) | re (%) | Bias (W/m2) | re (%) | |
124 | −42.52 | 9.50 | −131.8 | 25.84 | −166.7 | 31.39 |
138 | −75.72 | 12.64 | −6.00 | 1.11 | 23.62 | 4.04 |
145 | −47.87 | 7.49 | 3.69 | 0.65 | 33.42 | 6.30 |
152 | −160.2 | 35.72 | −110.9 | 20.48 | −54.98 | 9.44 |
161 | −63.1 | 9.87 | 35.55 | 5.58 | 89.68 | 17.39 |
177 | −35.08 | 6.09 | −133.9 | 19.39 | −111.8 | 19.22 |
190 | −26.49 | 4.07 | 30.99 | 4.56 | −12.41 | 1.97 |
205 | −47.94 | 7.64 | 43.74 | 6.82 | 51.35 | 8.37 |
209 | −6.83 | 1.24 | 77.92 | 10.97 | 95.72 | 16.55 |
216 | −64.34 | 10.02 | 62.06 | 9.83 | 22.38 | 3.73 |
229 | −18.2 | 3.16 | 91.66 | 17.42 | 32.65 | 6.05 |
234 | −45.53 | 7.75 | 82.44 | 14.16 | 24.36 | 4.39 |
248 | −3.37 | 0.58 | 117.19 | 21.72 | −13.03 | 2.38 |
257 | 14.7 | 2.82 | 75.40 | 13.50 | 48.85 | 9.26 |
268 | 104.33 | 21.35 | 179.36 | 37.31 | 155.85 | 34.01 |
Average | −34.54 | 9.33 | 27.82 | 13.95 | 14.59 | 11.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Zhang, W.; Arshad, A. Regional Distribution of Net Radiation over Different Ecohydrological Land Surfaces. Atmosphere 2020, 11, 1229. https://doi.org/10.3390/atmos11111229
Rahman MM, Zhang W, Arshad A. Regional Distribution of Net Radiation over Different Ecohydrological Land Surfaces. Atmosphere. 2020; 11(11):1229. https://doi.org/10.3390/atmos11111229
Chicago/Turabian StyleRahman, Md Masudur, Wanchang Zhang, and Arfan Arshad. 2020. "Regional Distribution of Net Radiation over Different Ecohydrological Land Surfaces" Atmosphere 11, no. 11: 1229. https://doi.org/10.3390/atmos11111229
APA StyleRahman, M. M., Zhang, W., & Arshad, A. (2020). Regional Distribution of Net Radiation over Different Ecohydrological Land Surfaces. Atmosphere, 11(11), 1229. https://doi.org/10.3390/atmos11111229