A Multiscale Tiered Approach to Quantify Contributions: A Case Study of PM2.5 in South Korea During 2010–2017
Abstract
:1. Introduction
2. Data and Methodology
2.1. Observations
2.2. The Modeling Domain and Study Period
2.3. Air Quality Simulation
2.3.1. Model Description
2.3.2. Meteorological and Emission Input Data
2.3.3. Model Setup
2.4. The Sensitivity Modeling Approaches
2.5. Receptor Definition
3. Results and Discussion
3.1. Performance Evaluation of the WRF Simulation
3.2. Performance Evaluation of the Air Quality Modeling
3.3. Spatial Distribution of the PM2.5 Concentrations and Contributions
3.4. The Chinese Contribution to the PM2.5 Concentrations in the Two Government Tiers
3.5. Monthly Variation in the Chinese Contribution
3.6. Dependency of the Chinese Contribution on Receptor Definition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Annual Report of Air Quality in Korea 2018; National Institute of Environmental Research: Incheon, Korea, 2019.
- Yoo, C.; Lee, D.-G.; Lee, Y.-M.; Lee, M.-H.; Hong, J.-H.; Lee, S.-J. Methodology of Application to Air Quality Model to Evaluate the Results of the Enforcement Plan in Seoul Metropolitan Area. JESI 2011, 20, 1647–1661. [Google Scholar]
- Kim, E.; Bae, C.; Yoo, C.; Kim, B.-U.; Kim, H.C.; Kim, S. Evaluation of the Effectiveness of Emission Control Measures to Improve PM2.5 Concentration in South Korea. J. Korean Soc. Atmos. Environ. 2018, 34, 469–485. [Google Scholar] [CrossRef]
- Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5 and Regional Haze; U.S. Environmental Protection Agency: Washington, DC, USA, 2007.
- Choi, J.; Park, R.J.; Lee, H.-M.; Lee, S.; Jo, D.S.; Jeong, J.I.; Henze, D.K.; Woo, J.-H.; Ban, S.-J.; Lee, M.-D.; et al. Impacts of local vs. Trans-boundary emissions from different sectors on PM2.5 exposure in South Korea during the KORUS-AQ campaign. Atmos. Environ. 2019, 203, 196–205. [Google Scholar] [CrossRef]
- Kim, H.C.; Kim, E.; Bae, C.; Cho, J.H.; Kim, B.-U.; Kim, S. Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: Seasonal variation and sensitivity to meteorology and emissions inventory. Atmos. Chem. Phys. 2017, 17, 10315–10332. [Google Scholar] [CrossRef] [Green Version]
- Uno, I.; Osada, K.; Yumimoto, K.; Wang, Z.; Itahashi, S.; Pan, X.; Hara, Y.; Yamamoto, S.; Nishizawa, T. Importance of Long-Range Nitrate Transport Based on Long-Term Observation and Modeling of Dust and Pollutants over East Asia. Aerosol Air Qual. Res. 2017, 17, 3052–3064. [Google Scholar] [CrossRef]
- Itahashi, S.; Uno, I.; Kim, S. Source Contributions of Sulfate Aerosol over East Asia Estimated by CMAQ-DDM. Environ. Sci. Technol. 2012, 46, 6733–6741. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Kim, S.; Lim, Y.-H.; Bae, H.-J.; Hong, Y.-C. Spatial and Temporal Trends of Number of Deaths Attributable to Ambient PM2.5 in the Korea. J. Korean Med. Sci. 2018, 33, 193. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, S.-H.; Kim, H.C. Detection of Strong NOX Emissions from Fine-scale Reconstruction of the OMI Tropospheric NO2 Product. Remote Sens 2019, 11, 1861. [Google Scholar] [CrossRef] [Green Version]
- Cohan, D.S.; Hu, Y.; Russell, A.G. Dependence of ozone sensitivity analysis on grid resolution. Atmos. Environ. 2006, 40, 126–135. [Google Scholar] [CrossRef]
- Jiang, X.; Yoo, E. The importance of spatial resolutions of Community Multiscale Air Quality (CMAQ) models on health impact assessment. Sci. Total Environ. 2018, 627, 1528–1543. [Google Scholar] [CrossRef]
- Kim, H.C.; Kim, S.; Kim, B.-U.; Jin, C.-S.; Hong, S.; Park, R.; Son, S.-W.; Bae, C.; Bae, M.; Song, C.-K.; et al. Recent increase of surface particulate matter concentrations in the Seoul Metropolitan Area, Korea. Sci. Rep. 2017, 7, 4710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, L.; Yan, Z.; Sun, Z.; Miao, S.; Yao, Y. Increasing persistent haze in Beijing: Potential impacts of weakening East Asian winter monsoons associated with northwestern Pacific sea surface temperature trends. Atmos. Chem. Phys. 2018, 18, 3173–3183. [Google Scholar] [CrossRef] [Green Version]
- Byun, D.; Schere, K.L. Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Skamarock, W.; Klemp, J.; Dudhia, J.; Gill, D.; Barker, M.; Duda, K.; Huang, Y.; Wang, W.; Powers, J. A Description of the Advanced Research WRF Version 3; National Center for Atmospheric Research: Boulder, CO, USA, 2008; pp. 1–113. [Google Scholar]
- Guenther, C.C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Benjey, W.; Houyoux, M.; Susick, J. Implementation of the SMOKE emission data processor and smoke tool input data processor in models-3. In Proceedings of the Emission Inventory Conference, Denver, CO, USA, 1–4 May 2001. [Google Scholar]
- NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999; Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory: Boulder CO, USA, 2000.
- Lee, D.; Lee, Y.-M.; Jang, K.-W.; Yoo, C.; Kang, K.-H.; Lee, J.-H.; Jung, S.-W.; Park, J.-M.; Lee, S.-B.; Han, J.-S.; et al. Korean National Emissions Inventory System and 2007 Air Pollutant Emissions. Asian J. Atmos. Environ. 2011, 5, 278–291. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhang, Q.; Kurokawa, J.; Woo, J.-H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A Mosaic Asian Anthropogenic emissioni nventory Under The International Collaboration Framework of The MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef] [Green Version]
- Carter, W.P.L. Implementation of the SAPRC-99 Chemical Mechanism into the Models-3 Framework; Report to the United States Environmental Protection Agency; United States Environmental Protection Agency: Washington, DC, USA, 2000; p. 29.
- Tan, J.; Zhang, Y.; Ma, W.; Yu, Q.; Wang, J.; Chen, L. Impact of spatial resolution on air quality simulation: A case study in a highly industrialized area in Shanghai, China. Atmos. Pollut. Res. 2015, 6, 322–333. [Google Scholar] [CrossRef] [Green Version]
- Fountoukis, C.; Koraj, D.; Denier van der Gon, H.A.C.; Charalampidis, P.E.; Pilinis, C.; Pandis, S.N. Impact of grid resolution on the predicted fine PM by a regional 3-D chemical transport model. Atmos. Environ. 2013, 68, 24–32. [Google Scholar] [CrossRef]
- Kim, S.; Bae, C.; Yoo, C.; Kim, B.-U.; Kim, H.C.; Moon, N. PM2.5 Simulations for the Seoul Metropolitan Area: (II) Estimation of Self-Contributions and Emission-to-PM2.5 Conversion Rates for Each Source Category. J. Korean Soc. Atmos. Environ. 2017, 33, 377–392. [Google Scholar] [CrossRef]
- Koo, B.; Wilson, G.M.; Morris, R.E.; Dunker, A.M.; Yarwood, G. Comparison of Source Apportionment and Sensitivity Analysis in a Particulate Matter Air Quality Model. Environ. Sci. Technol. 2009, 43, 6669–6675. [Google Scholar] [CrossRef]
- Bartnicki, J. Computing Source-Receptor Matrices with the EMEP Eulerian Acid Deposition Model; Norwegian Met. Inst.: Oslo, Norway, 1999. [Google Scholar]
- Modeling Guidance for Demonstrating Air Quality Goals for Ozone, PM2.5, and Regional Haze; U.S. Environmental Protection Agency: Washington, DC, USA, 2018.
- Emery, C.; Liu, Z.; Russell, A.G.; Odman, M.T.; Yarwood, G.; Kumar, N. Recommendations on statistics and benchmarks to assess photochemical model performance. J. Air Waste Manag. Assoc. 2017, 67, 582–598. [Google Scholar] [CrossRef] [Green Version]
- Bae, C.; Kim, B.-U.; Kim, H.C.; Yoo, C.; Kim, S. Long-Range Transport Influence on Key Chemical Components of PM2.5 in the Seoul Metropolitan Area, South Korea, during the Years 2012–2016. Atmosphere 2020, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, T.W.; Holland, L.A. Synoptic and Local Weather Conditions Associated with PM2.5 Concentration in Carlisle, Pennsylvania. Middle States Geographer. 2010, 43, 72–84. [Google Scholar]
- Kim, J.-H.; Choi, D.-R.; Koo, Y.-S.; Lee, J.-B.; Park, H.-J. Analysis of Domestic and Foreign Contributions using DDM in CMAQ during Particulate Matter Episode Period of February 2014 in Seoul. J. Korean Soc. Atmos. Environ. 2016, 32, 82–99. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, O.; Kim, B.-U.; Kim, H.C. Impact of Emissions from Major Point Sources in Chungcheongnam-do on Surface Fine Particulate Matter Concentration in the Surrounding Area. J. Korean Soc. Atmos. Environ. 2017, 33, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Itahashi, S.; Uno, I.; Osada, K.; Kamiguchi, Y.; Yamamoto, S.; Tamura, K.; Wang, Z.; Kurosaki, Y.; Kanaya, Y. Nitrate transboundary heavy pollution over East Asia in winter. Atmos. Chem. Phys. 2017, 17, 3823–3843. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.-U.; Bae, C.; Kim, H.C.; Kim, E.; Kim, S. Spatially and chemically resolved source apportionment analysis: Case study of high particulate matter event. Atmos. Environ. 2017, 162, 55–70. [Google Scholar] [CrossRef]
- Liu, H. Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations. J. Geophys. Res. 2003, 108, 8786. [Google Scholar] [CrossRef] [Green Version]
- Baek, S.; Kim, H.; Chang, H. Optimal Hybrid Renewable Power System for an Emerging Island of South Korea: The Case of Yeongjong Island. Sustainability 2015, 7, 13985–14001. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.-H.; Baik, J.-J.; Kim, J.-H.; Gong, D.-Y.; Sui, C.-H. Interdecadal Changes in Summertime Typhoon Tracks. J. Clim. 2004, 17, 10. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, H.; Li, J. Impacts of Asian summer monsoon on seasonal and interannual variations of aerosols over eastern China. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Julien, P.Y. ENSO impacts on temperature over South Korea: ENSO impacts on temperature over South Korea. Int. J. Climatol. 2016, 36, 3651–3663. [Google Scholar] [CrossRef]
WRF Version 3.4.1 | CMAQ Version 4.7.1 | ||
---|---|---|---|
Micro Physics | WSM 6-class | Aerosol Module | AERO5 |
Cumulus Scheme | Kain-Fritsch | Chemical Mechanism | SAPRAC 99 |
Long-Wave Radiation | RRTM | Advection Scheme | YAMO |
Short-Wave Radiation | Goddard | Horizontal Diffusion | Multiscale |
PBL Scheme | YSU | Vertical Diffusion | Eddy |
Cloud Scheme | RADM |
Simulation | Horizontal Grid Resolution | Description |
---|---|---|
Traditional | 27-km | - One single domain. - Base and sensitivity runs are conducted with the same modeling domain. |
In this study | 27- and 9-km | - Two nested modeling domains. - Simulations on the mother model domain (i.e., 27-km) to prepare boundary conditions for the simulations on the daughter model domain (i.e., 9-km) for both the base and sensitivity runs. - Simulations on the daughter model domain to estimate the foreign contribution on a finer model grid. |
Variable | Period | Observed Mean | Simulated Mean | Bias | NMB (%) | NME (%) | Correlation (R) | RMSE |
---|---|---|---|---|---|---|---|---|
2-m temperature (°C) | Period Mean | 14.5 | 14.1 | −0.4 | −2.8 | 4.2 | 1.00 | 0.7 |
Spring | 13.8 | 13.3 | −0.6 | −4.0 | 5.7 | 0.99 | 1.0 | |
Summer | 25.4 | 24.6 | −0.8 | −3.2 | 3.4 | 0.95 | 1.0 | |
Autumn | 15.6 | 15.3 | −0.4 | −2.3 | 4.0 | 0.99 | 0.8 | |
Winter | 1.7 | 1.8 | 0.1 | 1.3 | 27.5 | 0.99 | 0.7 | |
10-m wind speed (m/s) | Period Mean | 2.8 | 3.3 | 0.5 | 18.2 | 18.9 | 0.83 | 0.7 |
Spring | 3.0 | 3.4 | 0.4 | 14.8 | 17.1 | 0.78 | 0.7 | |
Summer | 2.6 | 2.8 | 0.2 | 7.6 | 12.2 | 0.76 | 0.6 | |
Autumn | 2.6 | 3.2 | 0.6 | 21.6 | 22.2 | 0.86 | 0.7 | |
Winter | 2.8 | 3.6 | 0.8 | 27.9 | 28.7 | 0.86 | 0.9 |
Site | Simulation | Data Items | Observed Mean (μg/m3) | Simulated Mean (μg/m3) | Bias (μg/m3) | NMB (%) | NME (%) | Correlation (R) | RMS μg/m3) |
---|---|---|---|---|---|---|---|---|---|
Site average | 27-km | 95 | 24.7 | 18.5 | −6.3 | −25.4 | 26.1 | 0.77 | 7.6 |
9-km | 20.0 | −4.8 | −19.2 | 20.3 | 0.79 | 6.2 | |||
Baengnyeong | 27-km | 95 | 22.4 | 16.3 | −6.2 | −27.5 | 29.7 | 0.66 | 8.0 |
9-km | 16.2 | −6.3 | −27.9 | 30.1 | 0.64 | 8.2 | |||
Seoul Metropolitan Area | 27-km | 95 | 29.7 | 27.6 | −2.2 | −7.2 | 18.0 | 0.68 | 7.0 |
9-km | 28.2 | −1.5 | −5.2 | 15.8 | 0.76 | 6.2 | |||
Jungbu | 27-km | 83 | 30.4 | 20.9 | −9.5 | −31.2 | 34.5 | 0.69 | 12.4 |
9-km | 22.7 | −7.7 | −25.4 | 30.0 | 0.69 | 11.1 | |||
Honam | 27-km | 94 | 25.9 | 18.2 | −7.7 | −29.8 | 31.1 | 0.71 | 9.3 |
9-km | 20.6 | −5.3 | −20.5 | 23.0 | 0.74 | 7.2 | |||
Yeoungnam | 27-km | 57 | 22.6 | 19.3 | -3.3 | -14.5 | 19.5 | 0.63 | 5.7 |
9-km | 21.2 | −1.3 | −5.9 | 16.0 | 0.64 | 4.8 | |||
Jeju | 27-km | 69 | 15.9 | 9.8 | −6.2 | −38.7 | 39.3 | 0.68 | 7.6 |
9-km | 12.4 | −3.5 | −22.3 | 26.6 | 0.69 | 5.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, M.; Kim, B.-U.; Kim, H.C.; Kim, S. A Multiscale Tiered Approach to Quantify Contributions: A Case Study of PM2.5 in South Korea During 2010–2017. Atmosphere 2020, 11, 141. https://doi.org/10.3390/atmos11020141
Bae M, Kim B-U, Kim HC, Kim S. A Multiscale Tiered Approach to Quantify Contributions: A Case Study of PM2.5 in South Korea During 2010–2017. Atmosphere. 2020; 11(2):141. https://doi.org/10.3390/atmos11020141
Chicago/Turabian StyleBae, Minah, Byeong-Uk Kim, Hyun Cheol Kim, and Soontae Kim. 2020. "A Multiscale Tiered Approach to Quantify Contributions: A Case Study of PM2.5 in South Korea During 2010–2017" Atmosphere 11, no. 2: 141. https://doi.org/10.3390/atmos11020141
APA StyleBae, M., Kim, B. -U., Kim, H. C., & Kim, S. (2020). A Multiscale Tiered Approach to Quantify Contributions: A Case Study of PM2.5 in South Korea During 2010–2017. Atmosphere, 11(2), 141. https://doi.org/10.3390/atmos11020141