Health Risk Assessment of the Levels of BTEX in Ambient Air of One Urban Site Located in Leon, Guanajuato, Mexico during Two Climatic Seasons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monitoring Site
2.2. Sampling Methodology
2.3. Analysis of the Samples by Gas Chromatography–Flame Ionization Detection (BTEX Determination)
2.4. Statistical Analysis
2.5. Meteorological Conditions
2.6. Air Criteria Pollutants
2.7. Health Risk Assessment
3. Results
3.1. Diurnal and Seasonal Variation of BTEX and Meteorological Parameters at the Study Site
3.2. Toluene to Benzene and p-Xylene to Ethylbenzene Ratios
3.3. Effect of Meteorology on BTEX Concentrations
- According to the Emissions Inventory of criteria air pollutants in Leon for 2017 [49], CO, VOCs, and NOx showed the highest emissions with 148,047, 35,292, and 34,077 t/year, respectively.
- The highest contribution to CO levels in Leon came from mobile sources (134,670 t/year), with vehicles (including taxis) being the main contributors [50].
3.4. Health Risk Assessment
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Du, Z.; Mo, J.; Zhang, Y. Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China. Environ. Int. 2014, 73, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, J.; Amano, S.; Sasaki, Y.; Korenaga, T. Investigation and estimation of emission sources of 54 volatile organic compounds in ambient air in Tokyo. Atmos. Environ. 2007, 42, 2383–2393. [Google Scholar] [CrossRef]
- Hoque, R.R.; Khillare, P.S.; Agarwal, T.; Shridhar, V.; Balachandran, S. Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India. Sci. Total Environ. 2008, 392, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mu, Y.; Liu, J.; Mellouki, A. Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China. J. Environ. Sci. 2012, 24, 124–130. [Google Scholar] [CrossRef]
- Chameides, W.L.; Fehsenfeld, F.; Rodgers, M.O.; Cardellino, C.; Martinez, J.; Parrish, D.; Lonneman, W.; Lawson, D.R.; Rasmussen, R.A.; Zimmerman, P.; et al. Ozone precursor relationships in the ambient atmosphere. J. Geophys. Res. 1992, 97, 6037–6056. [Google Scholar] [CrossRef]
- Monod, A.; Sive, B.C.; Avino, P.; Chen, T.; Blake, D.R.; Rowland, F.S. Monoaromatic compounds in ambient air of various cities: A focus on correlations between the xylenes and ethylbenzene. Atmos. Environ. 2001, 35, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Avino, P.; Manigrasso, M. Ten-year measurements of gaseous pollutants in urban air by an open-path analyzer. Atmos. Environ. 2008, 42, 4138–4148. [Google Scholar] [CrossRef]
- The International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; The International Agency for Research on Cancer: Benzene, France, 2018. [Google Scholar]
- National Institute of Geography and Informatics Statistics (INEGI). Intercensal Survey 2015. Available online: https://www.inegi.org.mx/programas/intercensal/2015/default.html#Documentacion (accessed on 11 January 2019).
- Aromatic Hydrocarbons Determination in Air (Benzene, Toluene, Ethylbenzene, p-Xylene, 1,2,4-Trimethyl-Benzene): Adsorption in Activated Carbon/Gas Chromatography Method; INSHT Method MTA/MA-030/A92; Social and Occupational Affairs Office: Madrid, Spain, 1992. Available online: http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/MetodosAnalisis/Ficheros/MA/MA_032_A98.pdf (accessed on 15 May 2018).
- Statistical Software and Data Analysis Add-on for Excel (XLSTAT). 2016. Available online: https://www.xlstat.com/en/ (accessed on 15 August 2018).
- Abdul-Wahab, S.A.; Bakheit, C.S.; Al-Alawi, S.M. Principal component and multiple regression analysis in modeling of ground-level ozone and factors affecting its concentrations. Environ. Model. Softw. 2005, 20, 1263–1271. [Google Scholar] [CrossRef]
- Wind Rose Plots for Meteorological Data (WRPLOTView), Version 8.0.2 2018 from Lakes Environmental. Available online: https://www.weblakes.com/products/wrplot/index.html (accessed on 30 January 2020).
- Subsistema Estatal de Información de Calidad del Aire (SEICA). Subsecretaría del Medio Ambiente y Ordenamiento Territorial del Estado de Guanajuato. Datos históricos 2018. Available online: https://smaot.guanajuato.gob.mx/sitio/seica/historicos/leon (accessed on 30 January 2020).
- Zhang, Z.; Wang, X.; Zhang, Y.; Lü, S.; Huang, Z.; Huang, X.; Wang, X. Ambient air benzene at background sites in China’s most developed coastal regions: Exposure levels, source implications and health risks. Sci. Total Environ. 2015, 511, 792–800. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency, USEPA. Child–Specific Exposure Factors Handbook. National Center for Environmental Assessment; Office of Research and Development: Washington, DC, USA, 2008.
- United States Environmental Protection Agency, USEPA. A Minimal Risk Levels List; Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2009. [Google Scholar]
- United States Environmental Protection Agency (US EPA) IRIS. Integrated Risk Information System. Benzene; National Center for Environmental Assessment, Office of Research and Development: Washington, DC, USA, 2013. Available online: http://www.epa.gov/iris/subst/0276.htm (accessed on 15 September 2018).
- United States Environmental Protection Agency (US EPA). Integrated Risk Information System (IRIS) Carcinogenic Effects of Benzene: An Update (EPA/600/P-97/001F); United States Environmental Protection Agency (US EPA): Washington, DC, USA, 1998. Available online: http://www.epa.gov/iris/supdocs/0276index.html (accessed on 1 October 2018).
- Toxicological Profile for Benzene; Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2005. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp3.pdf (accessed on 2 October 2018).
- Toxicological Review of Toluene: In support of Summary Information Integrated Risk Information System (IRIS); EPA/635/R-05/004; United States Environmental Protection Agency (US EPA): Washington, DC, USA, 2005. Available online: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0118tr.pdf (accessed on 25 October 2018).
- Toxicological Profile for Ethylbenzene; Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2005. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp110.pdf (accessed on 21 October 2018).
- Toxicological Review of Xylenes: In support of Summary Information Integrated Risk Information System (IRIS); EPA/635/R-03/001; United States Environmental Protection Agency (US EPA): Washington, DC, USA, 2003. Available online: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0270tr.pdf (accessed on 25 October 2018).
- Rad, H.D.; Babaei, A.; Gourdarzi, G.; Angali, K.A.; Ramezani, Z.; Mohammadi, M. Levels and sources of BTEX in ambient air of Ahvaz metropolitan city. Air Qual. Atmos. Health 2014, 7, 515–524. [Google Scholar] [CrossRef]
- Esplugues, A.; Ballester, F.; Estarlich, M.; Llop, S.; Fuentes, V.; Mantilla, E.; Iñiguez, C. Indoor and outdoor air concentrations of BTEX and determinants in a cohort of one-year old children in Valencia, Spain. Sci. Total Environ. 2010, 409, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Marc, M.; Namiesnik, J.; Zabiegala, B. BTEX concentration levels in urban air in the area of the Tri-City agglomeration (Gdansk, Gdynia, Sopot), Poland. Air Qual. Atmos. Health 2014, 7, 489–504. [Google Scholar] [CrossRef]
- Nguyen, V.T.L.H.; Hien, T.T.; Dung, N.T.; Yoneda, M.; Vinh, T.H. Preliminary assessment of BTEX concentrations indoor and outdoor air in residential homes in Hanoi, Vietnam. Vietnam J. Sic. Technol. 2017, 55, 78–84. [Google Scholar]
- Kerchich, Y.; Kerbachi, R. Measurement of BTEX (benzene, toluene, ethylbenzene, and xylene) levels at urban and semirural areas of Algiers City using passive air samplers. A&WMA 2012, 62, 1370–1379. [Google Scholar]
- Dutta, C.; Som, D.; Chatterjee, A.; Mukherjee, A.; Jana, T.; Sen, S. Mixing ratios of carbonyls and BTEX in ambient air of Kolkata, India and their associated health risk. Environ. Monit Assess. 2009, 148, 97–107. [Google Scholar] [CrossRef]
- Hajizadeh, Y.; Mokhtari, M.; Faraji, M.; Mohammadi, A.; Nemati, S.; Ghanbari, R.; Abdolahnejad, A.; Fard, R.F.; Nikoonahad, A.; Jafari, N.; et al. Trends of BTEX in the central urban area of Iran: A preliminary study of photochemical ozone pollution and health risk assessment. Atmos. Pollut. Res. 2018, 9, 220–229. [Google Scholar] [CrossRef]
- Ceron, J.G.; Ramirez, E.; Ceron, R.M.; Carballo, C.; Aguilar, C.; Lopez, U.; Ramirez, A.; Garcias, Y.; Naal, D.; Campero, A.; et al. Diurnal and Seasonal Variation of BTX in Ambient air of One Urban Site in Carmen City, Campeche, Mexico. J. Environ. Prot. 2013, 4, 40–49. [Google Scholar] [CrossRef]
- Caselli, M.; Gennaro, G.; Marzocca, A.; Trizio, L.; Tutino, L. Assessment of the impact of the vehicular traffic on BTEX concentration in ring roads in urban areas of Bari (Italy). Chemosphere 2020, 81, 306–311. [Google Scholar] [CrossRef]
- Bravo, H.; Sosa, R.; Sanchez, P.; Bueno, B.; Gonzales, L. Concentrations of benzene and toluene in the atmosphere of the southwestern area at the Mexico City Metropolitan Zone. Atmos. Environ. 2002, 36, 3843–3849. [Google Scholar] [CrossRef]
- Menchaca, L.; Mercado, R.; Mendoza, A. Diurnal and seasonal variation of volatile organic compounds in the atmosphere of Monterrey, Mexico. Atmos. Pollut. Res. 2015, 6, 1073–1081. [Google Scholar] [CrossRef]
- Garg, A.; Gupta, N.C. A comprehensive study on spatio-temporal distribution health risk assessment and ozone formation potential of BTEX emissions in ambient air of Delhi, India. Sci. Total Environ. 2019, 659, 1090–1099. [Google Scholar] [CrossRef] [PubMed]
- Truc, V.; Oanh, N. Roadside BTEX and other gaseous air pollutants in relation to emission sources. Atmos. Environ. 2007, 41, 7685–7697. [Google Scholar] [CrossRef]
- Yurdakul, S.; Civan, M.; Kuntasal, O.; Dogan, G.; Pekey, H.; Tuncel, G. Temporal variations of VOC concentrations in Bursa atmosphere. Atmos. Pollut. Res. 2018, 9, 189–206. [Google Scholar] [CrossRef]
- Alghamdi, M.; Khoder, M.; Abdelmaksoud, A.; Harrison, R.; Hussein, T.; Lihavainen, H.; Al-Jeelani, H.; Goknil, M.; Shabbaj, I.; Almehmadi, F. Seasonal and diurnal variations of BTEX and their potential for ozone formation in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Air Qual. Atmos. Health 2014, 7, 467–480. [Google Scholar] [CrossRef]
- Tiwari, V.; Hanai, Y.; Masunaga, S. Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama, Japan. Air Qual. Atmos. Health 2010, 3, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Jia, C.; Batterman, S.; Godwin, C. VOCs in industrial, urban and suburban neighborhoods: Part 1: Indoor and outdoor concentrations, variation, and risk drivers. Atmos. Environ. 2008, 42, 2083–2100. [Google Scholar] [CrossRef]
- Mokhtari, M.; Miri, M.; Mohammadi, A.; Khorsandi, H.; Hajizadeh, Y.; Abdolahnejad, A. Assessment of air quality index and health impact of PM10, PM2.5 and SO2 in Yazd, Iran. J. Mazandaran Univ. Med. Sci. 2015, 25, 14–23. [Google Scholar]
- Na, K.; Moon, K.C.; Kim, Y.P. Source contribution to aromatic VOC concentration and ozone formation potential in the atmosphere of Seoul. Atmos. Environ. 2005, 39, 5517–5524. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, A.; Singh, B.P.; Anandam, K.; Singh, M.; Mina, U.; Kumar, K.; Jain, V.K. Spatial and Temporal variability of VOCs and its source estimation during rush/non-rush hours in ambient air of Delhi, India. Air Qual. Atmos. Health 2016, 9, 483–493. [Google Scholar] [CrossRef]
- Liu, P.W.; Yao, Y.C.; Tsai, J.H.; Hsu, Y.C. Source impacts by volatile organic compounds in an industrial city of southern Taiwan. Sci. Total Environ. 2008, 398, 154–163. [Google Scholar] [CrossRef]
- Na, K.; Kim, Y.P. Seasonal characteristics of ambient volatile organic compounds in Seoul. Atmos. Environ. 2001, 35, 2603–2614. [Google Scholar] [CrossRef]
- Ohura, T.; Amagai, T.; Fusaya, M. Regional assessment of ambient volatile organic compounds in an industrial harbor area, Shizuoka, Japan. Atmos. Environ. 2006, 40, 238–248. [Google Scholar] [CrossRef]
- Inventario de Emisiones de Contaminantes Criterio y Precursores del Estado de Guanajuato. Actualización 2016. Secretaría de Medio Ambiente y Ordenamiento Territorial; Dirección General de la Gestión de la Calidad del Aire: Guanajuato, Mexico, 2016. Available online: https://smaot.guanajuato.gob.mx/sitio/calidad-del-aire/4/Inventario-de-Emisiones-de-Contaminantes-Criterio (accessed on 30 January 2020).
- Rappenglück, B.; Fabian, P.; Rappenglück, B.; Fabian, P. An Analysis of simultaneous GC-Measurements of BTEX-aromatics at three selected sites in the Greater Munich area. J. Appl. Meteorol. 1999, 38, 1448–1462. [Google Scholar] [CrossRef]
- Inventario de Emisiones de Contaminantes Criterio. León. 2017. Dirección General de Gestión Ambiental; Gobierno del Estado de Guanajuato: Guanajuato, México, 2017.
- Consejo Nacional de Población (CONAPO). Proyecciones de la Población de los Municipios de México, 2015-2030 (base 1), Estado de Guanajuato proyección año 2017; Gobierno Federal: México City, México. Available online: https://datos.gob.mx/busca/dataset/proyecciones-de-la-poblacion-de-mexico-y-de-las-entidades-federativas-2016-2050/resource/a76ad5a8-3f9d-44af-bf57-179490b3b107?inner_span=True (accessed on 30 January 2020).
- Instituto de Ecología del Estado de Guanajuato. Padrón de vehículos registrados en León; Gobierno del Estado de Guanajuato: Guanajuato, México, 2016.
- Wilson, W.E.; Levy, A.; Wimmer, D.B. A study of sulfur dioxide in photochemical smog II. Effect of sulfur dioxide on oxidant formation in photochemical smog. J. Air Pollut. Control Assoc. 1972, 22, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Bian, H.; Feng, Y.; Liu, A.; Li, X.; Zeng, F.; Zhang, X. Analysis of the relationship between O3, NO and NO2 in Tianjin, China. Aerosol Air Qual. Res. 2011, 11, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.; Zhao, T.; Cheng, X.; Gong, S.; Zhang, X.; Tang, L.; Liu, D.; Wu, X.; Wang, L.; Chen, Y. Inverse relations of PM2.5 and O3 in air compound pollution between cold and hot seasons over an urban area of East China. Atmosphere 2017, 8, 59. [Google Scholar] [CrossRef] [Green Version]
- Crutzen, P.J. Estimates of Possible Variations in Total Ozone Due to Natural Causes and Human Activities. Ambio 1974, 3, 201–210. [Google Scholar]
- Felipe-Sotelo, M.; Gustems, L.; Hernández, I.; Terrado, M.; Tauler, R. Investigation of geographical and temporal distribution of tropospheric ozone in Catalonia (North-East Spain) during the period 2000–2004 using multivariate data analysis methods. Atmos Environ. 2006, 40, 7421–7436. [Google Scholar] [CrossRef]
- Cruz, L.P.S.; Santos, D.F.; dos Santos, I.F.; Gomes, Í.V.S.; Santos, A.V.S.; Souza, K.S.P.P. Exploratory analysis of the atmospheric levels of BTEX, criteria air pollutants and meteorological parameters in a tropical urban area in Northeastern Brazil. Microchem. J. 2020, 152, 104265. [Google Scholar] [CrossRef]
- Prinn, R.; Cunnold, D.; Rasmussen, R.; Simmonds, P.; Alyea, F.; Crawford, A.; Fraser, P.; Rosen, R. Atmospheric trends in methylchloroform and the global average for the hydroxyl radical. Science 1987, 238, 945–950. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, D.; Kumar, K.; Singh, B.B.; Kumar, V. Distribution of VOCs in urban and rural atmospheres of subtropical India: Temporal variation, source attribution, ratios, OFP and risk assessment. Sci. Total Environ. 2018, 613, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Petracchini, F.; Paciucci, L.; Vichi, F.; D’Angelo, B.; Aihaiti, A.; Liotta, F.; Paolini, V.; Cecinato, A. Gaseous pollutants in the city of Urumqi, Xinjiang: Spatial and temporal trends, sources and implications. Atmos. Pollut. Res. 2016, 7, 925–934. [Google Scholar] [CrossRef]
- Fu, L.; Hao, J.; He, D.; He, K.; Li, P. Assessment of vehicular pollution in China. J. Air Waste Manag. Assoc. 2001, 51, 658–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Chen, C.; Huang, C.; Fu, L. On-road vehicle emission inventory and its uncertainty analysis for Shanghai, China. Sci. Total Environ. 2008, 398, 60–67. [Google Scholar] [CrossRef]
- Marčiulaitienė, E.; Šerevičienė, V.; Baltrėnas, P.; Baltrėnaitė, E. The characteristics of BTEX concentration in various types of environment in the Baltic Sea Region, Lithuania. Environ. Sci. Pollut. Res. 2017, 24, 4162–4173. [Google Scholar] [CrossRef]
- Sexton, K.; Linder, S.H.; Marko, D.; Bethel, H.; Lupo, P.J. Comparative assessment of air pollution-related health risks in Houston. Environ. Health Perspect. 2007, 115, 1388–1393. [Google Scholar] [CrossRef]
Criteria Air Pollutants | Instrument Details |
---|---|
Carbon Monoxide (CO) | Teledyne Model 300E equipment, using the Gas Filter Correlation Method and certified according to US EPA RFCA-1093-093 |
Nitrogen Dioxide (NO2) | Teledyne Model 200E equipment for measuring NO, NO2, and NOx; using the Chemoluminiscence Method and certified according to US EPA RFNA-1194-099 |
Ozone (O3) | Teledyne Model 400E equipment, using the UV Absorption Method and certified according to US EPA EQOA-0992-087 |
Particulate Matter (PM10) | Met One Instruments equipment Model BAM 1020, using the Beta Ray Dimming Method and certified according to US EPA EQPM-0308-170 |
Sulfur Dioxide (SO2) | Ecotech equipment Model EC9850 A&B series, using Ultraviolet Fluorescence Spectrometer and certified according to US EPA. |
Air Pollutant | Slope Factor a (SF) | CAS No. | Carcinogenicity b | Reference |
---|---|---|---|---|
Benzene | 2.9 × 10−2 (mg/kg/day)−1 | 71,432 | Group A | a The Risk Assessment Information System [18] b EPA Cancer classification [17] |
Climatic Season/ Meteorological Parameters | Wind Speed (km h−1) | Wind Direction | Temperature (°C) | Relative Humidity (%) | Solar Radiation (W m−2) | Barometric Pressure (hPa) | |
---|---|---|---|---|---|---|---|
Summer | B1 | 2.3 | ESE | 13.7 | 78.4 | 126.4 | 829.0 |
B2 | 6.3 | SSE | 22.7 | 44.6 | 694.3 | 816.5 | |
B3 | 3.8 | ESE | 20.2 | 52.6 | 165.7 | 809.7 | |
Autumn | B1 | 1.5 | SSE | 14.4 | 75.1 | 132.8 | 821.4 |
B2 | 4.5 | SSE | 23.8 | 41.5 | 649.2 | 819.5 | |
B3 | 3.5 | SW | 21.3 | 49.2 | 101.3 | 818.1 |
Site/BTEX Concentrations | Benzene µg m−3 | Toluene µg m−3 | Ethylbenzene µg m−3 | p-Xylene µg m−3 | Characteristics of the Study Site | Sampling and Analysis Details |
---|---|---|---|---|---|---|
Leon, Guanajuato, Mexico (This study) | 1.96 | 12.92 | 13.19 | 3.51 | 1.57 million inhabitants, 1220 km2, urban–industrial, heavy traffic area | Charcoal sorbent tubes, 1.5 h, active sampling: 200 mL min−1, CS2 desorption, GC/FID |
Delhi, India [3] | 7.07 | 19.19 | 5.90 | 13.30 | 13.79 million inhabitants, 1483 km2, urban–industrial, heavy traffic area | Charcoal tubes, passive sampling, One week, CS2 desorption, GC/FID |
Yazd, Iran [30] | 21 | 38 | 14 | 41 | 529,673 inhabitants, 97 km2, urban–industrial, heavy traffic area | Charcoal sorbent tubes, active sampling: 200 mL min−1, 1.5 h, CS2 desorption, GC/FID |
Hanoi, Vietnam [27] | 30–123 | 38–87 | 9–24 | 26–56 | 8.054 million inhabitants, 3329 km2, urban–industrial, heavy traffic area | Charcoal sorbent tubes, active sampling: 200 mL min−1, 2 h, CS2 desorption, GC/FID |
Kolkata, India [29] | 24.97–79.18 | 27.65–103 | 4.5–36.25 | 11.17–35.85 | 14.7 million inhabitants, 205 km2, urban–industrial, heavy traffic area | Charcoal sorbent tubes, active sampling: 100 mL min−1, 6 h, CS2 desorption, GC/FID |
Valencia, Spain [25] | 1.2 | 6.8 | 0.9 | 1.4 | 2.531 million inhabitants, 134.6 km2, urban–industrial, heavy traffic area | Charcoal tubes, passive sampling, 15 day, CS2 desorption, GC/FID |
Bari, Italy [32] | 0.8–9 | 0.9–15.5 | 0.2–2.7 | 1.1–13.9 | 400,000 inhabitants, 116.21 km2, urban–industrial, heavy traffic area | Charcoal tubes Radiello, passive sampling, One week, CS2 desorption, GC/FID |
Algiers, Algeria [28] | 16.7 | 40.5 | 6.8 | 17 | 3.16 million inhabitants, 1190 km2, urban–industrial, heavy traffic area | Charcoal tubes Radiello, passive sampling, two week, CS2 desorption, GC/FID |
Beijing, China [4] | 2.1–9.2 | 5.9–14.5 | 2.3–4.4 | 1.7–3.5 | 21.54 million inhabitants, 185 km2, urban–industrial, heavy traffic area | Tenax sorbent tubes, active sampling: 350 mL min−1, 1 h, GC/PID |
Gdansk, Poland [26] | 0.49–0.82 | 0.74–1.39 | 0.13–0.42 | 0.43–1.27 | 460,500 inhabitants, 262 km2, urban–industrial, heavy traffic area | Charcoal tubes Radiello, passive sampling, two week, CS2 desorption, TD-GC/FID |
Ahvaz, Iran [24] | 1.78 | 5.19 | 0.51 | 1.13 | 1.185 million inhabitants, 185 km2, urban–industrial, heavy traffic area | Charcoal sorbent tubes, active sampling: 200 mL min−1, 8 h, CS2 desorption, GC/FID |
Mexico City [33] | 1.66–3.67 | 7.5–17.63 | 20 million inhabitants, 1485 km2, urban–industrial, heavy traffic area | Stainless Steel SUMMA canisters, active sampling: 24 h, GC/FID | ||
Carmen, Campeche, Mexico [31] | 5.42 | 11.23 | 3.97 | 8.32 | 500,000 inhabitants, 153 km2, oil and gas industry | Charcoal sorbent tubes, 1.5 h, active sampling: 200 mL min−1, CS2 desorption, GC/FID |
Monterrey, Nuevo Leon, Mexico [34] | 0.3–5.1 | 1.8–4.5 | 0.1–0.4 | 0.2–2.2 | 3.93 million inhabitants, 5346 km2 | Stainless Steel SUMMA canisters, active sampling: 4 h, GC/FID |
Vienna, Austria [6] | 3.15 | 4.41 | 0.63 | 0.82 | 1.8 million inhabitants, 414.7 km2 | 2-1-electropolished stainless steel canisters, active sampling, GC/FID |
London, U.K. [6] | 2.55 | 7.57 | 1.01 | 1.17 | 8.9 million inhabitants, 1737 km2 | 2-1-electropolished stainless steel canisters, active sampling, GC/FID |
Paris, France [6] | 4.52 | 12.36 | 1.44 | 2.04 | 2.1 million inhabitants, 105.4 km2 | 2-1-electropolished stainless steel canisters, active sampling, GC/FID |
Rome, Italy [7] | 25.0 (In 1991) 8.0 (In 2000) | 108 (In 1991) 54 (In 2000) | - | - | 2.8 million inhabitants, 1285 km2 | Differential optical absorption spectroscopy (DOAS) |
(a) Summer | |||||||||||||||
Measured Parameters | CO | O3 | NO2 | SO2 | PM10 | Benzene | Toluene | Ethyl-benzene | p-Xylene | Wind Speed | Wind Direction | Relative Humidity | Temperature | Pressure | Solar Radiation |
CO | 1 | −0.370 | 0.886 | 0.481 | 0.463 | 0.024 | 0.470 | 0.049 | 0.643 | −0.698 | 0.113 | 0.449 | −0.417 | 0.363 | −0.230 |
O3 | −0.370 | 1 | −0.308 | −0.571 | 0.014 | 0.393 | −0.330 | −0.073 | −0.210 | 0.429 | 0.430 | −0.663 | 0.748 | −0.477 | 0.595 |
NO2 | 0.886 | −0.308 | 1 | 0.407 | 0.400 | 0.004 | 0.408 | −0.167 | 0.721 | −0.683 | 0.316 | 0.438 | −0.417 | 0.326 | −0.299 |
SO2 | 0.481 | −0.571 | 0.407 | 1 | 0.123 | −0.233 | 0.385 | 0.060 | 0.256 | −0.290 | −0.340 | 0.234 | −0.315 | 0.180 | −0.097 |
PM10 | 0.463 | 0.014 | 0.400 | 0.123 | 1 | 0.117 | 0.372 | 0.327 | 0.506 | −0.113 | 0.315 | −0.191 | 0.144 | −0.115 | 0.254 |
Benzene | 0.024 | 0.393 | 0.004 | −0.233 | 0.117 | 1 | −0.202 | 0.278 | 0.333 | 0.043 | 0.181 | −0.231 | 0.358 | −0.010 | 0.388 |
Toluene | 0.470 | −0.330 | 0.408 | 0.385 | 0.372 | −0.202 | 1 | 0.482 | 0.485 | −0.229 | −0.262 | 0.143 | −0.217 | −0.167 | −0.225 |
Ethylbenzene | 0.049 | −0.073 | −0.167 | 0.060 | 0.327 | 0.278 | 0.482 | 1 | 0.242 | 0.177 | −0.337 | −0.153 | 0.128 | −0.268 | 0.244 |
p-Xylene | 0.643 | −0.210 | 0.721 | 0.256 | 0.506 | 0.333 | 0.485 | 0.242 | 1 | −0.417 | 0.144 | 0.330 | −0.284 | 0.209 | −0.180 |
Wind speed | −0.698 | 0.429 | −0.683 | −0.290 | −0.113 | 0.043 | −0.229 | 0.177 | −0.417 | 1 | −0.269 | −0.717 | 0.677 | −0.671 | 0.466 |
Wind direction | 0.113 | 0.430 | 0.316 | −0.340 | 0.315 | 0.181 | −0.262 | −0.337 | 0.144 | −0.269 | 1 | −0.120 | 0.157 | 0.032 | 0.039 |
Relative humidity | 0.449 | −0.663 | 0.438 | 0.234 | −0.191 | −0.231 | 0.143 | −0.153 | 0.330 | −0.717 | −0.120 | 1 | −0.971 | 0.749 | −0.758 |
Temperature | −0.417 | 0.748 | −0.417 | −0.315 | 0.144 | 0.358 | −0.217 | 0.128 | −0.284 | 0.677 | 0.157 | −0.971 | 1 | −0.704 | 0.790 |
Pressure | 0.363 | −0.477 | 0.326 | 0.180 | −0.115 | −0.010 | −0.167 | −0.268 | 0.209 | −0.671 | 0.032 | 0.749 | −0.704 | 1 | −0.304 |
Solar radiation | −0.230 | 0.595 | −0.299 | −0.097 | 0.254 | 0.388 | −0.225 | 0.244 | −0.180 | 0.466 | 0.039 | −0.758 | 0.790 | −0.304 | 1 |
(b) Autumn | |||||||||||||||
Measured Parameters | CO | O3 | NO2 | SO2 | PM10 | Benzene | Toluene | Ethyl-benzene | p-Xylene | Wind Speed | Wind Direction | Relative Humidity | Temperature | Pressure | Solar Radiation |
CO | 1 | −0.690 | 0.857 | 0.440 | 0.746 | −0.156 | 0.027 | 0.177 | 0.163 | −0.476 | 0.175 | 0.557 | −0.530 | 0.494 | −0.457 |
O3 | −0.690 | 1 | −0.564 | −0.366 | −0.477 | 0.012 | −0.117 | 0.098 | −0.038 | 0.549 | 0.057 | −0.681 | 0.847 | −0.453 | 0.625 |
NO2 | 0.857 | −0.564 | 1 | 0.312 | 0.785 | −0.344 | 0.070 | 0.097 | −0.063 | −0.379 | 0.083 | 0.627 | −0.494 | 0.503 | −0.590 |
SO2 | 0.440 | −0.366 | 0.312 | 1 | 0.363 | 0.394 | 0.129 | 0.012 | 0.121 | −0.639 | 0.096 | 0.058 | −0.196 | 0.415 | 0.177 |
PM10 | 0.746 | −0.477 | 0.785 | 0.363 | 1 | −0.330 | −0.003 | 0.146 | −0.066 | −0.369 | −0.254 | 0.478 | −0.363 | 0.729 | −0.249 |
Benzene | −0.156 | 0.012 | −0.344 | 0.394 | −0.330 | 1 | 0.145 | 0.203 | 0.330 | −0.283 | 0.095 | −0.182 | −0.113 | −0.210 | 0.297 |
Toluene | 0.027 | −0.117 | 0.070 | 0.129 | −0.003 | 0.145 | 1 | 0.290 | 0.490 | −0.212 | −0.157 | −0.030 | −0.128 | 0.178 | 0.155 |
Ethylbenzene | 0.177 | 0.098 | 0.097 | 0.012 | 0.146 | 0.203 | 0.290 | 1 | 0.623 | 0.183 | 0.027 | 0.014 | −0.070 | 0.096 | 0.213 |
p-Xylene | 0.163 | −0.038 | −0.063 | 0.121 | −0.066 | 0.330 | 0.490 | 0.623 | 1 | −0.149 | 0.165 | −0.155 | −0.009 | 0.068 | 0.280 |
Wind speed | −0.476 | 0.549 | −0.379 | −0.639 | −0.369 | −0.283 | −0.212 | 0.183 | −0.149 | 1 | 0.016 | −0.324 | 0.411 | −0.519 | 0.061 |
Wind direction | 0.175 | 0.057 | 0.083 | 0.096 | −0.254 | 0.095 | −0.157 | 0.027 | 0.165 | 0.016 | 1 | −0.055 | 0.065 | −0.403 | −0.156 |
Relative humidity | 0.557 | −0.681 | 0.627 | 0.058 | 0.478 | −0.182 | −0.030 | 0.014 | −0.155 | −0.324 | −0.055 | 1 | −0.872 | 0.583 | −0.691 |
Temperature | −0.530 | 0.847 | −0.494 | −0.196 | −0.363 | −0.113 | −0.128 | −0.070 | −0.009 | 0.411 | 0.065 | −0.872 | 1 | −0.475 | 0.661 |
Pressure | 0.494 | −0.453 | 0.503 | 0.415 | 0.729 | −0.210 | 0.178 | 0.096 | 0.068 | −0.519 | −0.403 | 0.583 | −0.475 | 1 | −0.101 |
Solar Radiation | −0.457 | 0.625 | −0.590 | 0.177 | −0.249 | 0.297 | 0.155 | 0.213 | 0.280 | 0.061 | −0.156 | −0.691 | 0.661 | −0.101 | 1 |
(a) Summer | ||||
Factor Loadings | F1 | F2 | F3 | F4 |
CO | 0.709 | |||
O3 | 0.673 | |||
NO2 | 0.503 | |||
SO2 | 0.399 | |||
PM10 | 0.428 | |||
Benzene | 0.350 | |||
Toluene | 0.301 | |||
Ethylbenzene | 0.445 | |||
p-Xylene | 0.413 | |||
Wind speed | 0.615 | |||
Wind direction | 0.743 | |||
Relative Humidity | 0.789 | |||
Temperature | 0.773 | |||
Pressure | 0.498 | |||
Solar Radiation | 0.357 | |||
(b) Autumn | ||||
Factor Loadings | F1 | F2 | F3 | |
CO | 0.846 | |||
O3 | 0.784 | |||
NO2 | 0.585 | |||
SO2 | 0.309 | |||
PM10 | 0.637 | |||
Benzene | 0.651 | |||
Toluene | 0.365 | |||
Ethylbenzene | 0.658 | |||
p-Xylene | 0.705 | |||
Wind speed | 0.430 | |||
Wind direction | ||||
Relative humidity | 0.692 | |||
Temperature | 0.767 | |||
Pressure | 0.545 | |||
Solar Radiation |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerón Bretón, J.G.; Cerón Bretón, R.M.; Martínez Morales, S.; Kahl, J.D.W.; Guarnaccia, C.; Lara Severino, R.d.C.; Rangel Marrón, M.; Ramírez Lara, E.; Espinosa Fuentes, M.d.l.L.; Uc Chi, M.P.; et al. Health Risk Assessment of the Levels of BTEX in Ambient Air of One Urban Site Located in Leon, Guanajuato, Mexico during Two Climatic Seasons. Atmosphere 2020, 11, 165. https://doi.org/10.3390/atmos11020165
Cerón Bretón JG, Cerón Bretón RM, Martínez Morales S, Kahl JDW, Guarnaccia C, Lara Severino RdC, Rangel Marrón M, Ramírez Lara E, Espinosa Fuentes MdlL, Uc Chi MP, et al. Health Risk Assessment of the Levels of BTEX in Ambient Air of One Urban Site Located in Leon, Guanajuato, Mexico during Two Climatic Seasons. Atmosphere. 2020; 11(2):165. https://doi.org/10.3390/atmos11020165
Chicago/Turabian StyleCerón Bretón, Julia Griselda, Rosa María Cerón Bretón, Stephanie Martínez Morales, Jonathan D. W. Kahl, Claudio Guarnaccia, Reyna del Carmen Lara Severino, Marcela Rangel Marrón, Evangelina Ramírez Lara, María de la Luz Espinosa Fuentes, Martha Patricia Uc Chi, and et al. 2020. "Health Risk Assessment of the Levels of BTEX in Ambient Air of One Urban Site Located in Leon, Guanajuato, Mexico during Two Climatic Seasons" Atmosphere 11, no. 2: 165. https://doi.org/10.3390/atmos11020165
APA StyleCerón Bretón, J. G., Cerón Bretón, R. M., Martínez Morales, S., Kahl, J. D. W., Guarnaccia, C., Lara Severino, R. d. C., Rangel Marrón, M., Ramírez Lara, E., Espinosa Fuentes, M. d. l. L., Uc Chi, M. P., & Sánchez, G. L. (2020). Health Risk Assessment of the Levels of BTEX in Ambient Air of One Urban Site Located in Leon, Guanajuato, Mexico during Two Climatic Seasons. Atmosphere, 11(2), 165. https://doi.org/10.3390/atmos11020165