Characterization of Wind-Sea- and Swell-Induced Wave Energy along the Norwegian Coast
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Wave Climate in the Northeast Atlantic: The North Sea, the Norwegian Sea, and the Barents Sea
3.2. WEF along the Norwegian Coast
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Marine Renewable Energy | |
Significant wave height | |
Swell significant wave height | |
Wind sea significant wave height | |
Peak wave period | |
Swell peak wave period | |
Wind sea peak wave period | |
(Total) Wave Energy Flux | |
Swell Wave Energy Flux | |
Wind Sea Wave Energy Flux | |
Average Swell Wave Energy Flux | |
Average Wind Sea Wave Energy Flux |
References
- European Commission. A Clean Planet for All—A European Long-Term Strategic Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; Technical Report; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Twidell, J.; Weir, T. Renewable Energy Resources; Routledge: London, UK, 2015. [Google Scholar] [CrossRef]
- Borthwick, A.G.L. Marine Renewable Energy Seascape. Engineering 2016, 2, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Grabbe, M.; Lalander, E.; Lundin, S.; Leijon, M. A review of the tidal current energy resource in Norway. Renew. Sustain. Energy Rev. 2009, 13, 1898–1909. [Google Scholar] [CrossRef] [Green Version]
- Astariz, S.; Iglesias, G. The economics of wave energy: A review. Renew. Sustain. Energy Rev. 2015, 45, 397–408. [Google Scholar] [CrossRef]
- Magagna, D.; Uihlein, A. Ocean energy development in Europe: Current status and future perspectives. Int. J. Mar. Energy 2015, 11, 84–104. [Google Scholar] [CrossRef]
- Pérez-Collazo, C.; Greaves, D.; Iglesias, G. A review of combined wave and offshore wind energy. Renew. Sustain. Energy Rev. 2015, 42, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Uihlein, A.; Magagna, D. Wave and tidal current energy—A review of the current state of research beyond technology. Renew. Sustain. Energy Rev. 2016, 58, 1070–1081. [Google Scholar] [CrossRef]
- Chatzigiannakou, M.; Temiz, I.; Leijon, M. Offshore Deployments of Wave Energy Converters by Seabased Industry AB. J. Mar. Sci. Eng. 2017, 5, 15. [Google Scholar] [CrossRef]
- Wang, Z. New wave power. Nature 2017, 542, 159–160. [Google Scholar] [CrossRef]
- Aderinto, T.; Li, H. Ocean Wave Energy Converters: Status and Challenges. Energies 2018, 11, 1250. [Google Scholar] [CrossRef] [Green Version]
- Lavidas, G. Energy and socio-economic benefits from the development of wave energy in Greece. Renew. Energy 2019, 132, 1290–1300. [Google Scholar] [CrossRef]
- Reguero, B.G.; Losada, I.J.; Méndez, F.J. A recent increase in global wave power as a consequence of oceanic warming. Nat. Commun. 2019, 10, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clément, A.; McCullen, P.; Falcão, A.; Fiorentino, A.; Gardner, F.; Hammarlund, K.; Lemonis, G.; Lewis, T.; Nielsen, K.; Petroncini, S.; et al. Wave energy in Europe: Current status and perspectives. Renew. Sustain. Energy Rev. 2002, 6, 405–431. [Google Scholar] [CrossRef]
- Gunn, K.; Stock-Williams, C. Quantifying the global wave power resource. Renew. Energy 2012, 44, 296–304. [Google Scholar] [CrossRef]
- Falnes, J. Research and development in ocean-wave energy in Norway. In Proceedings of the International Symposium on Ocean Energy Development, Muroran, Hokkaido, Japan, 26–27 August 1993; pp. 27–39. [Google Scholar]
- Kalogeri, C.; Galanis, G.; Spyrou, C.; Diamantis, D.; Baladima, F.; Koukoula, M.; Kallos, G. Assessing the European offshore wind and wave energy resource for combined exploitation. Renew. Energy 2017, 101, 244–264. [Google Scholar] [CrossRef]
- Saha, P.; Idsø, J. New hydropower development in Norway: Municipalities’ attitude, involvement and perceived barriers. Renew. Sustain. Energy Rev. 2016, 61, 235–244. [Google Scholar] [CrossRef]
- Cheliotis, I.; Varlas, G.; Christakos, K. The Impact of Cyclone Xaver on Hydropower Potential in Norway. In Perspectives on Atmospheric Sciences; Springer International Publishing: Cham, Switzerland, 2017; pp. 175–181. [Google Scholar]
- Strbac, G.; Hatziargyriou, N.; Lopes, J.P.; Moreira, C.; Dimeas, A.; Papadaskalopoulos, D. Microgrids: Enhancing the Resilience of the European Megagrid. IEEE Power Energy Mag. 2015, 13, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Rusu, E.; Onea, F. A review of the technologies for wave energy extraction. Clean Energy 2018, 1. [Google Scholar] [CrossRef] [Green Version]
- Katsafados, P.; Papadopoulos, A.; Korres, G.; Varlas, G. A fully coupled atmosphere–ocean wave modeling system for the Mediterranean Sea: Interactions and sensitivity to the resolved scales and mechanisms. Geosci. Model Dev. 2016, 9, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Varlas, G.; Katsafados, P.; Papadopoulos, A.; Korres, G. Implementation of a two-way coupled atmosphere-ocean wave modeling system for assessing air-sea interaction over the Mediterranean Sea. Atmos. Res. 2018, 208, 201–217. [Google Scholar] [CrossRef]
- Katsafados, P.; Varlas, G.; Papadopoulos, A.; Spyrou, C.; Korres, G. Assessing the Implicit Rain Impact on Sea State During Hurricane Sandy (2012). Geophys. Res. Lett. 2018. [Google Scholar] [CrossRef]
- Zheng, C.; Shao, L.; Shi, W.; Su, Q.; Lin, G.; Li, X.; Chen, X. An assessment of global ocean wave energy resources over the last 45 a. Acta Oceanol. Sin. 2014, 33, 92–101. [Google Scholar] [CrossRef]
- Cornett, A. A Global Wave Energy Resource Assessment. In Proceedings of the Eighteenth International Offshore and Polar Engineering Conference, Vancouver, BC, Canada, 6–11 July 2008; Volume 50. [Google Scholar]
- The WAVEWATCHIII® Development Group. User Manual and System Documentation of WAVEWATCH III® Version 5.16; Technical Report 329; NOAA/NWS/NCEP/MMAB: College Park, MD, USA, 2016. [Google Scholar]
- Reistad, M.; Breivik, Ø.; Haakenstad, H.; Aarnes, O.J.; Furevik, B.R.; Bidlot, J.R. A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea. J. Geophys. Res. Oceans 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Furevik, B.R.; Haakenstad, H. Near-surface marine wind profiles from rawinsonde and NORA10 hindcast. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Uppala, S.; Kallberg, P.; Simmons, A.J.; Andrae, U.; Da Costa Bechtold, V.; Fiorino, M.; Gibson, J.K.; Haseler, J.; Hernandez-Carrascal, A.; Kelly, G.A.; et al. The Era-40 Re-analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012. [Google Scholar] [CrossRef]
- Undén, P.; Rontu, L.; Järvinen, H.; Lynch, P.; Calvo-Sanchez, J.; Cats, G.; Cuxart, J.; Eerola, K.; Fortelius, C.; García-Moya, J. HIRLAM-5 Scientific Documentation; Technical Report; Sveriges Meteorologiska Och Hydrologiska Institut: Norrköping, Sweden, 2002. [Google Scholar]
- ECMWF. Part VII: ECMWF Wave Model. In IFS Documentation CY45R1; Number 7 in IFS Documentation; ECMWF: Reading, UK, 2018; Chapter 10; p. 70. [Google Scholar]
- Aarnes, O.J.; Breivik, Ø.; Reistad, M. Wave Extremes in the Northeast Atlantic. J. Clim. 2012, 25, 1529–1543. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, G.; López, M.; Carballo, R.; Castro, A.; Fraguela, J.; Frigaard, P. Wave energy potential in Galicia (NW Spain). Renew. Energy 2009, 34, 2323–2333. [Google Scholar] [CrossRef]
- Herbich, J.B. Handbook of Coastal Engineering, 1st ed.; McGraw-Hill Professional: New York, NY, USA, 2000. [Google Scholar]
- Falnes, J. A review of wave-energy extraction. Mar. Struct. 2007, 20, 185–201. [Google Scholar] [CrossRef]
- Izadparast, A.H.; Niedzwecki, J.M. Estimating the potential of ocean wave power resources. Ocean Eng. 2011, 38, 177–185. [Google Scholar] [CrossRef]
- Bento, A.R.; Martinho, P.; Guedes Soares, C. Wave energy assessement for Northern Spain from a 33-year hindcast. Renew. Energy 2018, 127, 322–333. [Google Scholar] [CrossRef]
- Akpınar, A.; Jafali, H.; Rusu, E. Temporal Variation of the Wave Energy Flux in Hotspot Areas of the Black Sea. Sustainability 2019, 11, 562. [Google Scholar] [CrossRef] [Green Version]
- Holthuijsen, L. Waves in Oceanic and Coastal Waters; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Cahill, B.; Lewis, T. Wave period ratios and the calculation of wave power. In Proceedings of the 2nd Marine Energy Technology Symposium METS2014, Seattle, WA, USA, 15–18 April 2014. [Google Scholar]
- Santo, H.; Taylor, P.H.; Woollings, T.; Poulson, S. Decadal wave power variability in the North-East Atlantic and North Sea. Geophys. Res. Lett. 2015, 42, 4956–4963. [Google Scholar] [CrossRef]
- Varlas, G.; Christakos, K.; Cheliotis, I.; Papadopoulos, A.; Steeneveld, G.J. Spatiotemporal variability of marine renewable energy resources in Norway. Energy Procedia 2017, 125, 180–189. [Google Scholar] [CrossRef]
- Sasaki, W. Changes in wave energy resources around Japan. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Goddijn-Murphy, L.; Míguez, B.M.; McIlvenny, J.; Gleizon, P. Wave energy resource assessment with AltiKa satellite altimetry: A case study at a wave energy site. Geophys. Res. Lett. 2015, 42, 5452–5459. [Google Scholar] [CrossRef]
- Boronowski, S.; Wild, P.; Rowe, A.; Cornelis van Kooten, G. Integration of wave power in Haida Gwaii. Renew. Energy 2010, 35, 2415–2421. [Google Scholar] [CrossRef]
- Semedo, A.; Vettor, R.; Breivik, O.; Sterl, A.; Reistad, M.; Lima, D. The wind sea and swell waves climate in the Nordic seas. Ocean Dyn. 2014, 65. [Google Scholar] [CrossRef]
- Lavidas, G.; Polinder, H. North Sea Wave Database (NSWD) and the Need for Reliable Resource Data: A 38 Year Database for Metocean and Wave Energy Assessments. Atmosphere 2019, 10, 551. [Google Scholar] [CrossRef] [Green Version]
- Christakos, K.; Varlas, G.; Reuder, J.; Katsafados, P.; Papadopoulos, A. Analysis of a Low-level Coastal Jet off the Western Coast of Norway. Energy Procedia 2014, 53, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Christakos, K.; Cheliotis, I.; Varlas, G.; Steeneveld, G.J. Offshore Wind Energy Analysis of Cyclone Xaver over North Europe. Energy Procedia 2016, 94, 37–44. [Google Scholar] [CrossRef] [Green Version]
- SWAN Team. Scientific and Technical Documentation SWAN Cycle III Version 41.31; Delft University of Technology: Delft, The Netherlands, 2019. [Google Scholar]
- Christakos, K.; Furevik, B.R.; Aarnes, O.J.; Breivik, Ø.; Tuomi, L.; Byrkjedal, Ø. The importance of wind forcing in fjord wave modelling. Ocean Dyn. 2020, 70, 57–75. [Google Scholar] [CrossRef] [Green Version]
Point | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 15.97 | 10.64 | 8.11 | 3.95 | 3.38 | 3.99 | 3.91 | 3.97 | 7.07 | 10.05 | 12.52 | 15.42 | 8.25 |
2 | 37.95 | 29.07 | 23.53 | 13.15 | 8.40 | 8.69 | 8.14 | 8.70 | 15.99 | 23.31 | 30.97 | 36.63 | 20.38 |
3 | 56.83 | 45.26 | 38.58 | 21.13 | 12.16 | 9.37 | 7.94 | 9.65 | 20.89 | 34.57 | 45.16 | 55.10 | 29.72 |
4 | 68.80 | 54.98 | 46.52 | 26.11 | 14.60 | 10.68 | 8.64 | 10.37 | 23.85 | 40.07 | 52.03 | 65.70 | 35.20 |
5 | 89.75 | 79.54 | 63.32 | 33.03 | 16.69 | 12.88 | 10.42 | 12.37 | 31.00 | 48.61 | 62.31 | 86.15 | 45.51 |
6 | 85.95 | 79.07 | 59.67 | 30.16 | 14.65 | 11.55 | 8.97 | 10.92 | 28.67 | 45.75 | 58.73 | 81.40 | 42.96 |
7 | 80.41 | 74.88 | 56.41 | 27.23 | 12.98 | 10.13 | 7.97 | 9.90 | 25.98 | 42.80 | 54.43 | 74.90 | 39.83 |
8 | 68.06 | 66.05 | 50.39 | 24.71 | 13.00 | 10.41 | 7.88 | 9.67 | 22.24 | 39.17 | 46.26 | 62.46 | 35.02 |
9 | 58.22 | 58.58 | 45.27 | 21.99 | 12.10 | 9.79 | 7.26 | 9.09 | 19.78 | 35.36 | 39.83 | 53.84 | 30.92 |
10 | 47.29 | 48.30 | 37.33 | 19.44 | 11.39 | 9.24 | 6.97 | 8.92 | 17.67 | 30.85 | 33.76 | 43.71 | 26.24 |
Point | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3.19 | 2.43 | 1.92 | 1.05 | 0.90 | 1.04 | 1.03 | 1.10 | 1.45 | 2.17 | 2.70 | 3.01 | 1.83 |
2 | 10.66 | 9.15 | 7.51 | 4.60 | 2.84 | 2.39 | 2.09 | 2.50 | 4.69 | 6.68 | 9.15 | 10.71 | 6.08 |
3 | 20.02 | 17.75 | 15.65 | 9.75 | 5.55 | 3.89 | 3.39 | 4.12 | 8.58 | 12.96 | 17.35 | 20.75 | 11.65 |
4 | 27.00 | 23.88 | 21.14 | 12.82 | 7.22 | 5.00 | 4.27 | 5.08 | 11.05 | 17.72 | 22.55 | 27.80 | 15.46 |
5 | 43.69 | 39.62 | 33.03 | 19.21 | 10.35 | 7.55 | 6.27 | 7.26 | 15.85 | 24.31 | 31.43 | 41.31 | 23.32 |
6 | 45.14 | 41.03 | 33.75 | 18.57 | 9.48 | 7.31 | 5.85 | 6.86 | 15.83 | 24.43 | 31.03 | 42.41 | 23.47 |
7 | 43.32 | 40.45 | 31.79 | 16.99 | 8.63 | 6.60 | 5.17 | 6.37 | 15.09 | 22.57 | 28.87 | 40.05 | 22.16 |
8 | 37.66 | 35.18 | 27.92 | 15.20 | 8.02 | 6.17 | 4.91 | 6.02 | 13.72 | 21.39 | 26.31 | 35.02 | 19.79 |
9 | 29.80 | 28.51 | 22.45 | 12.31 | 6.63 | 5.27 | 4.26 | 5.30 | 11.49 | 17.76 | 21.18 | 27.83 | 16.07 |
10 | 21.47 | 20.69 | 16.52 | 9.62 | 5.42 | 4.63 | 3.58 | 4.60 | 9.28 | 14.48 | 16.13 | 20.31 | 12.23 |
Point | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 12.67 | 8.11 | 6.14 | 2.88 | 2.45 | 2.92 | 2.86 | 2.84 | 5.59 | 7.82 | 9.74 | 12.32 | 6.36 |
2 | 27.36 | 19.90 | 15.99 | 8.47 | 5.50 | 6.26 | 6.03 | 6.18 | 11.28 | 16.59 | 21.76 | 25.94 | 14.27 |
3 | 36.93 | 27.48 | 22.79 | 10.99 | 6.39 | 5.38 | 4.45 | 5.41 | 12.13 | 21.41 | 27.49 | 34.25 | 17.93 |
4 | 41.70 | 30.93 | 25.16 | 12.83 | 7.16 | 5.54 | 4.26 | 5.12 | 12.59 | 22.01 | 29.09 | 37.47 | 19.49 |
5 | 43.27 | 37.30 | 28.21 | 12.70 | 5.80 | 4.93 | 3.78 | 4.71 | 14.28 | 22.92 | 28.89 | 42.23 | 20.75 |
6 | 37.38 | 34.76 | 23.54 | 10.36 | 4.63 | 3.84 | 2.80 | 3.68 | 11.91 | 19.66 | 25.40 | 35.73 | 17.81 |
7 | 33.43 | 30.90 | 21.87 | 8.97 | 3.79 | 3.08 | 2.47 | 3.13 | 9.80 | 18.39 | 22.95 | 31.51 | 15.86 |
8 | 27.49 | 28.33 | 20.25 | 8.60 | 4.55 | 3.88 | 2.69 | 3.28 | 7.64 | 16.36 | 17.83 | 24.89 | 13.82 |
9 | 26.23 | 27.81 | 20.99 | 8.90 | 5.13 | 4.24 | 2.77 | 3.48 | 7.56 | 16.47 | 16.93 | 23.93 | 13.70 |
10 | 24.23 | 25.87 | 19.48 | 9.29 | 5.74 | 4.37 | 3.24 | 4.09 | 7.79 | 15.41 | 16.25 | 21.78 | 13.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christakos, K.; Varlas, G.; Cheliotis, I.; Spyrou, C.; Aarnes, O.J.; Furevik, B.R. Characterization of Wind-Sea- and Swell-Induced Wave Energy along the Norwegian Coast. Atmosphere 2020, 11, 166. https://doi.org/10.3390/atmos11020166
Christakos K, Varlas G, Cheliotis I, Spyrou C, Aarnes OJ, Furevik BR. Characterization of Wind-Sea- and Swell-Induced Wave Energy along the Norwegian Coast. Atmosphere. 2020; 11(2):166. https://doi.org/10.3390/atmos11020166
Chicago/Turabian StyleChristakos, Konstantinos, George Varlas, Ioannis Cheliotis, Christos Spyrou, Ole Johan Aarnes, and Birgitte Rugaard Furevik. 2020. "Characterization of Wind-Sea- and Swell-Induced Wave Energy along the Norwegian Coast" Atmosphere 11, no. 2: 166. https://doi.org/10.3390/atmos11020166
APA StyleChristakos, K., Varlas, G., Cheliotis, I., Spyrou, C., Aarnes, O. J., & Furevik, B. R. (2020). Characterization of Wind-Sea- and Swell-Induced Wave Energy along the Norwegian Coast. Atmosphere, 11(2), 166. https://doi.org/10.3390/atmos11020166