Coupling Large Eddies and Waves in Turbulence: Case Study of Magnetic Helicity at the Ion Inertial Scale
Abstract
:1. Introduction
1.1. The Interactions of Turbulent Eddies and Waves in Atmospheric and Oceanic Flows
1.2. The Case of Space Plasmas
2. Problem Set-Up
2.1. Equations and Parameters
2.2. The Ideal Case
3. Large-Scale Dynamics of Hall MHD: Temporal Data
4. Large-Scale Dynamics of Hall MHD: Growth Rates in Inverse Cascades and Spectral Data
5. Exponential Decrease with Hall Parameter of the Growth Rate of and in Inverse Cascades
6. Variation of the Forcing Wavenumber
7. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Newell, A.; Nazarenko, S.; Biven, L. Wave turbulence and intermittency. Phys. D Nonlinear Phenom. 2001, 152, 520–550. [Google Scholar] [CrossRef] [Green Version]
- Sagaut, P.; Cambon, C. Homogeneous Turbulence Dynamics; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Bühler, O. Wave-Vortex Interactions in Fluids and Superfluids. Ann. Rev. Fluid Mech. 2010, 42, 205–228. [Google Scholar] [CrossRef]
- Mahrt, L. Stably Stratified Atmospheric Boundary Layers. Ann. Rev. Fluid Mech. 2014, 46, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Pouquet, A.; Marino, R.; Mininni, P.D.; Rosenberg, D. Dual constant-flux energy cascades to both large scales and small scales. Phys. Fluids 2017, 29, 111108. [Google Scholar] [CrossRef]
- Gregg, M.; D’Asaro, E.; Riley, J.; Kunze, E. Mixing Efficiency in the Ocean. Ann. Rev. Mar. Sci. 2018, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.; Oncley, S.P. Acceleration intermittency and enhanced collision kernels in turbulent clouds. Atmos. Res. 2001, 59–60, 77–87. [Google Scholar] [CrossRef]
- Lopez, D.H.; Rabbani, M.R.; Crosbie, E.; Raman, A., Jr.; Arellano, F.A.; Sorooshian, A. Frequency and Character of Extreme Aerosol Events in the Southwestern United States: A Case Study Analysis in Arizona. Atmosphere 2016, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Lovejoy, S.; Schertzer, D. Towards a new synthesis for atmospheric dynamics: Space–time cascades. J. Atmos. 2010, 96, 1–52. [Google Scholar] [CrossRef]
- Kalamaras, N.; Tzanis, C.G.; Deligiorgi, D.; Philippopoulos, K.; Koutsogiannis, I. Distribution of Air Temperature Multifractal Characteristics Over Greece. Atmosphere 2019, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Schertzer, D.; Tchiguirinskaia, I. A century of turbulent cascades and the emergence of multifractal operators. Earth Space Sci. 2020. [Google Scholar] [CrossRef] [Green Version]
- van Haren, H.; Gostiaux, L. Convective mixing by internal waves in the Puerto Rico Trench. J. Mar. Res. 2016, 74, 161–173. [Google Scholar] [CrossRef]
- Sorriso-Valvo, L.; Marino, R.; Carbone, V.; Noullez, A.; Lepreti, F.; Veltri, P.; Bruno, R.; Bavassano, B.; Pietropaolo, E. Observation of Inertial Energy Cascade in Interplanetary Space Plasma. Phys. Rev. Lett. 2007, 99, 115001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenschow, D.H.; Lothon, M.; Mayor, S.D.; Sullivan, P.P.; Canut, G. A Comparison of Higher-Order Vertical Velocity Moments in the Convective Boundary Layer from Lidar with in Situ Measurements and Large-Eddy Simulation. Bound.-Layer Meteorol. 2012, 143, 107–123. [Google Scholar] [CrossRef]
- Cava, D.; Giostra, U.; Katul, G. Characteristics of Gravity Waves over an Antarctic Ice Sheet during an Austral Summer. Atmosphere 2015, 6, 1271–1289. [Google Scholar] [CrossRef] [Green Version]
- Walterscheid, R.L.; Gelinas, L.J.; Mechoso, C.R.; Schubert, G. Spectral distribution of gravity wave momentum fluxes over the Antarctic Peninsula from Concordiasi superpressure balloon data. J. Geophys. Res. 2016, 121, 7509–7527. [Google Scholar] [CrossRef]
- Rorai, C.; Mininni, P.; Pouquet, A. Turbulence comes in bursts in stably stratified flows. Phys. Rev. E 2014, 89, 043002. [Google Scholar] [CrossRef] [Green Version]
- Feraco, F.; Marino, R.; Pumir, A.; Primavera, L.; Mininni, P.; Pouquet, A.; Rosenberg, D. Vertical drafts and mixing in stratified turbulence: Sharp transition with Froude number. Eur. Phys. Lett. 2018, 123, 44002. [Google Scholar] [CrossRef] [Green Version]
- Smyth, W.; Moum, J. Anisotropy of turbulence in stably stratified mixing layers. Phys. Fluids 2000, 12, 1343–1362. [Google Scholar] [CrossRef] [Green Version]
- Pouquet, A.; Rosenberg, D.; Marino, R. Linking dissipation, anisotropy and intermittency in rotating stratified turbulence. Phys. Fluids 2019, 31, 105116. [Google Scholar] [CrossRef]
- Smyth, W.; Nash, J.; Moum, J. Self-organized criticality in geophysical turbulence. Sci. Rep. 2019, 9, 3747. [Google Scholar] [CrossRef] [Green Version]
- Sujovolsky, N.; Mininni, P. Invariant manifolds in stratified turbulence. Phys. Rev. Fluids 2019, 4, 052402. [Google Scholar] [CrossRef] [Green Version]
- Buaria, D.; Pumir, A.; Feraco, F.; Marino, R.; Pouquet, A.; Rosenberg, D.; Primavera, L. Single-particle Lagrangian statistics from direct numerical simulations of rotating stratified turbulence. arXiv 2019, arXiv:1909.12433. [Google Scholar]
- Sujovolsky, N.; Mininni, P. From waves to convection and back again: The phase space of stably stratified turbulence. arXiv 2020, arXiv:1912.03160v1. [Google Scholar]
- Meneveau, C. Lagrangian Dynamics and Models of the Velocity Gradient Tensor in Turbulent Flows. Ann. Rev. Fluid Mech. 2011, 43, 219–245. [Google Scholar] [CrossRef]
- Marino, R.; Rosenberg, D.; Herbert, C.; Pouquet, A. Interplay of waves and eddies in rotating stratified turbulence and the link with kinetic-potential energy partition. EuroPhys. Lett. 2015, 112, 49001. [Google Scholar] [CrossRef] [Green Version]
- Herbert, C.; Marino, R.; Pouquet, A.; Rosenberg, D. Waves and vortices in the inverse cascade regime of rotating stratified turbulence with or without rotation. J. Fluid Mech. 2016, 806, 165–204. [Google Scholar] [CrossRef] [Green Version]
- Pouquet, A.; Marino, R. Geophysical turbulence and the duality of the energy flow across scales. Phys. Rev. Lett. 2013, 111, 234501. [Google Scholar] [CrossRef] [Green Version]
- Marino, R.; Pouquet, A.; Rosenberg, D. Resolving the paradox of oceanic large-scale balance and small-scale mixing. Phys. Rev. Lett. 2015, 114, 114504. [Google Scholar] [CrossRef] [Green Version]
- Alexakis, A.; Biferale, L. Cascades and transitions in turbulent flows. Phys. Rep. 2018, 762, 1–139. [Google Scholar] [CrossRef] [Green Version]
- Pouquet, A.; Rosenberg, D.; Marino, R.; Herbert, C. Scaling laws for mixing and dissipation in unforced rotating stratified turbulence. J. Fluid Mech. 2018, 844, 519–545. [Google Scholar] [CrossRef] [Green Version]
- Pouquet, A.; Rosenberg, D.; Stawarz, J.; Marino, R. Helicity Dynamics, Inverse, and Bidirectional Cascades in Fluid and Magnetohydrodynamic Turbulence: A Brief Review. Earth Space Sci. 2019, 6, 351–369. [Google Scholar] [CrossRef]
- Bruno, R.; Carbone, V. The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 2005, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Veltri, P.; Carbone, V.; Lepreti, F.; Nigro, G. Self-Organization in Magnetohydrodynamic Turbulence. In Encyclopedia of Complexity and System Science; Meyers, R.A., Ed.; Springer: Berlin, Germany, 2009. [Google Scholar]
- Matthaeus, W.H.; Wan, M.; Servidio, S.; Greco, A.; Osman, K.T.; Oughton, S.; Dmitruk, P. Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas. Philos. Trans. R. Soc. A 2015, 373, 20140154. [Google Scholar] [CrossRef]
- Galtier, S. Turbulence in space plasmas and beyond. J. Phys. A Math. Theor. 2018, 51, 293001. [Google Scholar] [CrossRef]
- Matthaeus, W.; Velli, M. Who Needs Turbulence? A Review of Turbulence Effects in the Heliosphere and on the Fundamental Process of Reconnection. Space Sci. Rev. 2011, 160, 145–168. [Google Scholar] [CrossRef]
- Marino, R.; Sorriso-Valvo, L.; D’Amicis, R.; Carbone, V.; Bruno, R.; Veltri, P. On the occurence of the third-order scaling in high latitude Solar Wind. Astrophys. J. 2012, 750, 41. [Google Scholar] [CrossRef]
- Pouquet, A. On the possible role of constraints in MHD turbulence. In Lecture Notes, Festival de Théorie, Aix-en-Provence; Ghendrih, P., Diamond, P., Eds.; World Scientific: Singapore, 2015; pp. 45–79. [Google Scholar]
- Tóth, G.; Chen, Y.; Gombosi, T.I.; Cassak, P.; Markidis, S.; Peng, I.B. Scaling the Ion Inertial Length and Its Implications for Modeling Reconnection in Global Simulations. J. Geophys. Res. 2017, 122, 10336–10355. [Google Scholar] [CrossRef]
- Sahraoui, F.; Huang, S.; Belmont, G.; Goldstein, M.L.; Rétino, A.; Robert, P.; de Patoul, J. Scaling of the electron dissipation range of Solar Wind turbulence. Astrophys. J. 2013, 777, 15. [Google Scholar] [CrossRef] [Green Version]
- Lacombe, C.; Alexandrova, O.; Matteini, L. Anisotropies of the Magnetic Field Fluctuations at Kinetic Scales in the Solar Wind: Cluster Observations. Astrophys. J. 2017, 848, 45. [Google Scholar] [CrossRef] [Green Version]
- Stawarz, J.E.; Eriksson, S.; Wilder, F.D.; Ergun, R.E.; Schwartz, S.J.; Pouquet, A.; Burch, J.L.; Giles, B.L.; Khotyaintsev, Y.; Le Contel, O.; et al. Observations of turbulence in a Kelvin-Helmholtz event on 8 September 2015 by the Magnetospheric Multiscale mission. J. Geophys. Res. Space Phys. 2016, 121, 11021–11034. [Google Scholar] [CrossRef]
- Mare, F.D.; Sorriso-Valvo, L.; Retinò, A.; Malara, F.; Hasegawa, H. Evolution of Turbulence in the Kelvin- Helmholtz Instability in the Terrestrial Magnetopause. Atmosphere 2019, 10, 561. [Google Scholar] [CrossRef] [Green Version]
- Le Contel, O.; Retinó, A.; Breuillard, H.; Mirioni, L.; Robert, P.; Chasapis, A.; Lavraud, B.; Chust, T.; Rezeau, L.; Wilder, F.D.; et al. Whistler mode waves and Hall fields detected by MMS during a dayside magnetopause crossing. Geophys. Res. Lett. 2016, 43, 5943–5952. [Google Scholar] [CrossRef]
- Faganello, M.; Califano, F. Review, Magnetized Kelvin-Helmholtz instability: Theory and simulations in the Earth’s magnetosphere context. J. Plasma Phys. 2017, 83. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, R.; Chasapis, A.; Chhiber, R.; Parashar, T.N.; Matthaeus, W.H.; Shay, M.A.; Maruca, B.A.; Burch, J.L.; Moore, T.E.; Pollock, C.J.; et al. Incompressive Energy Transfer in the Earth’s Magnetosheath: Magnetospheric Multiscale Observations. Astrophys. J. 2018, 866, 106. [Google Scholar] [CrossRef] [Green Version]
- Stawarz, J.E.; Gershman, D.J.; Eastwood, J.P.; Phan, T.D.; Gingell, I.L.; Shay, M.A.; Burch, J.L.; Ergun, R.E.; Giles, B.L.; Contel, O.L.; et al. Properties of the Turbulence Associated with Electron-only Magnetic Reconnection in Earth’s Magnetosheath. Astrophys. J. Lett. 2019, 877, L37. [Google Scholar] [CrossRef] [Green Version]
- Camporeale, E.; Sorriso-Valvo, L.; Califano, F.; Retinó, A. Coherent Structures and Spectral Energy Transfer in Turbulent Plasma: A Space-Filter Approach. Phys. Rev. Lett. 2018, 120, 125101. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, N.; Kitahara, M.; Shoji, M.; Miyoshi, Y.; Hasegawa, H.; Nakamura, S.; Katoh, Y.; Saito, Y.; Yokota, S.; Gershman, D.J.; et al. Direct measurements of two-way wave-particle energy transfer in a collisionless space plasma. Science 2018, 361, 1000–1003. [Google Scholar] [CrossRef] [Green Version]
- Brandenburg, A.; Subramanian, K. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 2005, 417, 1–209. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, S.M.; Mininni, P.D.; Gómez, D.O. Waves, Coriolis force, and the dynamo effect. Astrophys. J. 2005, 619, 1014–1018. [Google Scholar] [CrossRef]
- Mininni, P.D.; Gómez, D.; Mahajan, S. Direct simulations of helical Hall-MHD turbulence and dynamo action. Astrophys. J. 2005, 619, 1019–1027. [Google Scholar] [CrossRef]
- Galtier, S.; Buchlin, E. Multiscale Hall MHD turbulence in the Solar Wind. Astrophys. J. 2007, 656, 560–566. [Google Scholar] [CrossRef]
- Galtier, S. Wave turbulence in incompressible magnetohydrodynamics. J. Plasma Phys. 2006, 72, 721–769. [Google Scholar] [CrossRef] [Green Version]
- Mininni, P.; Pouquet, A.; Montgomery, D. Small-Scale Structures in Three-Dimensional Magnetohydrodynamic Turbulence. Phys. Rev. Lett. 2006, 97, 244503. [Google Scholar] [CrossRef] [Green Version]
- Borovsky, J.E.; Funsten, H.O. Role of solar wind turbulence in the coupling of the solar wind to the Earth’s magnetosphere. J. Geophys. Res. 2003, 108, 1246. [Google Scholar] [CrossRef]
- Borovsky, J.E.; Funsten, H.O. MHD turbulence in the Earth’s plasma sheet: Dynamics, dissipation, and driving. J. Geophys. Res. 2003, 108, 1284. [Google Scholar] [CrossRef]
- Franci, L.; Landi, S.; Matteini, L.; Verdini, A.; Hellinger, P. High-resolution hybrid simulations of kinetic plasma turbulence at proton scales. Astrophys. J. 2015, 812, 21. [Google Scholar] [CrossRef] [Green Version]
- Gonzàlez, C.A.; Parashar, T.N.; Gomez, D.; Matthaeus, W.H.; Dmitruk, P. Turbulent electromagnetic fields at sub-proton scales: Two-fluid and full-kinetic plasma simulations. Phys. Plasmas 2019, 26, 012306. [Google Scholar] [CrossRef] [Green Version]
- Galtier, S.; Meyrand, A. Entanglement of helicity and energy in kinetic Alfvén wave/whistler turbulence. J. Plasma Phys. 2015, 81, 325810106. [Google Scholar] [CrossRef] [Green Version]
- Grappin, R.; Pouquet, A.; Léorat, J. Dependence of MHD turbulence spectra on the velocity-magnetic field correlation. Astron. Astrophys. 1983, 126, 51–58. [Google Scholar]
- Stawarz, J.E.; Pouquet, A. Small-scale behavior of Hall magnetohydrodynamic turbulence. Phys. Rev. E 2015, 92, 063102. [Google Scholar] [CrossRef] [Green Version]
- Vasyliunas, V.M. Theoretical models of magnetic field line merging. 1. Rev. Geophys. Space Phys. 1975, 13, 303–336. [Google Scholar] [CrossRef]
- Priest, E.; Forbes, T. Magnetic Reconnection: MHD Theory and Applications; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Song, P.; Gombosi, T.; Ridley, A. Three-fluid Ohm’s law. J. Geophys. Res. 2001, 106, 8149–8156. [Google Scholar] [CrossRef]
- Cothran, C.D.; Landreman, M.; Brown, M.R.; Matthaeus, W. Generalized Ohm’s law in a 3-D reconnection experiment. Geophys. Res. Lett. 2005, 32, L03105. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, S.; Yoshida, Z. Double Curl Beltrami Flow: Diamagnetic Structures. Phys. Rev. Lett. 1998, 99, 4863–4866. [Google Scholar] [CrossRef] [Green Version]
- Laveder, D.; Passot, T.; Sulem, P. Transverse dynamics of dispersive Alfvén waves. I. Direct numerical evidence of filamentation. Phys. Plasmas 2002, 9, 293–305. [Google Scholar] [CrossRef]
- Mininni, P.; Gómez, D.O.; Mahajan, S.M. Role of the Hall current in magnetohydrodynamic dynamos. Astrophys. J. 2003, 584, 1120–1126. [Google Scholar] [CrossRef]
- Gòmez, D.; Mininni, P.; Dmiturk, P. Hall-magnetohydrodynamic small-scale dynamos. Phys. Rev. E 2010, 82, 036406. [Google Scholar] [CrossRef] [Green Version]
- Mininni, P.D.; Alexakis, A.; Pouquet, A. Energy transfer in Hall-MHD turbulence, cascades, backscatter and dynamo action. J. Plasma Phys. 2007, 73, 377–401. [Google Scholar] [CrossRef] [Green Version]
- Torbert, R.B.; Burch, J.L.; Giles, B.L.; Gershman, D.; Pollock, C.J.; Dorelli, J.; Avanov, L.; Argall, M.R.; Shuster, J.; Strangeway, R.J.; et al. Estimates of terms in Ohm’s law during an encounter with an electron diffusion region. Geophys. Res. Lett. 2016, 43, 5918–5925. [Google Scholar] [CrossRef]
- Webster, J.; Burch, J.L.; Reiff, P.H.; Daou, A.G.; Genestreti, K.J.; Graham, D.B.; Torbert, R.B.; Ergun, R.E.; Sazykin, S.Y.; Marshall, A.; et al. Magnetospheric Multiscale Dayside Reconnection Electron Diffusion Region Events. J. Geophys. Res. 2018, 123, 4858–4878. [Google Scholar] [CrossRef]
- Shuster, J.R.; Gershman, D.J.; Chen, L.J.; Wang, S.; Bessho, N.; Dorelli, J.C.; da Silva, D.E.; Giles, B.L.; Paterson, W.R.; Denton, R.E.; et al. MMS Measurements of the Vlasov Equation: Probing the Electron Pressure Divergence Within Thin Current Sheets. Geophys. Res. Lett. 2019, 46, 7862–7872. [Google Scholar] [CrossRef]
- Ergun, R.E.; Goodrich, K.A.; Wilder, F.D.; Ahmadi, N.; Holmes, J.C.; Eriksson, S.; Stawarz, J.E.; Nakamura, R.; Genestreti, K.J.; Hesse, M.; et al. Magnetic Reconnection, Turbulence, and Particle Acceleration: Observations in the Earth’s Magnetotail. Geophys. Res. Lett. 2018, 45, 3338–3347. [Google Scholar] [CrossRef] [Green Version]
- Mininni, P.; Dmitruk, P.; Matthaeus, W.H.; Pouquet, A. Large-scale behavior and statistical equilibria in rotating flows. Phys. Rev. E 2011, 83, 016309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mininni, P.; Rosenberg, D.; Reddy, R.; Pouquet, A. A hybrid MPI-OpenMP scheme for scalable parallel pseudospectral computations for fluid turbulence. Parallel Comput. 2011, 37, 316–326. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, D.; Mininni, P.D.; Reddy, R.; Pouquet, A. GPU Parallelization of a Hybrid Pseudospectral Geophysical Turbulence Framework Using CUDA. Atmosphere 2020, 11, 178. [Google Scholar] [CrossRef] [Green Version]
- Turner, L. Hall effects on magnetic relaxation. IEEE Trans. Plasma Sci. 1986, PS-14, 849–857. [Google Scholar] [CrossRef]
- Servidio, S.; Matthaeus, W.H.; Carbone, V. Statistical properties of ideal three-dimensional Hall magnetohydrodynamics: The spectral structure of the equilibrium ensemble. Phys. Plasmas 2008, 15, 042314. [Google Scholar] [CrossRef]
- Banerjee, S.; Galtier, S. Chiral exact relations for helicities in Hall magnetohydrodynamic turbulence. Phys. Rev. E 2016, 93, 033120. [Google Scholar] [CrossRef] [Green Version]
- Ohsaki, S.; Yoshida, Z. Variational principle with singular perturbation of Hall magnetohydrodynamics. Phys. Plasmas 2005, 12, 064505. [Google Scholar] [CrossRef]
- Sorriso-Valvo, L.; Catapano, F.; Retinò, A.; Le Contel, O.; Perrone, D.; Roberts, O.W.; Coburn, J.T.; Panebianco, V.; Valentini, F.; Perri, S.; et al. Turbulence-Driven Ion Beams in the Magnetospheric Kelvin-Helmholtz Instability. Phys. Rev. Lett. 2019, 122, 035102. [Google Scholar] [CrossRef] [Green Version]
- Politano, H.; Pouquet, A. Dynamical length scales for turbulent magnetized flows. Geophys. Res. Lett. 1998, 25, 273–276. [Google Scholar] [CrossRef]
- Rüdiger, G.; Kitchatinov, L.; Brandenburg, A. Cross Helicity and Turbulent Magnetic Diffusivity in the Solar Convection Zone. Sol. Phys. 2011, 269, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Pouquet, A.; Meneguzzi, M.; Frisch, U. Growth of correlations in magnetohydrodynamic turbulence. Phys. Rev. A 1986, 33, 4266–4276. [Google Scholar] [CrossRef] [PubMed]
- Grappin, R.; Frisch, U.; Léorat, J.; Pouquet, A. Alfvénic fluctuations as asymptotic states of MHD turbulence. Astron. Astrophys. 1982, 102, 6–14. [Google Scholar]
- Passot, T.; Sulem, P.L. Imbalanced kinetic Alfvén wave turbulence: From weak turbulence theory to nonlinear diffusion models for the strong regime. J. Plasma Phys. 2019, 85, 905850301. [Google Scholar] [CrossRef] [Green Version]
- Perez, J.C.; Boldyrev, S. Role of cross-helicity in magnetohydrodynamic turbulence. Phys. Rev. Lett. 2009, 102, 025003. [Google Scholar] [CrossRef] [Green Version]
- Meneguzzi, M.; Politano, H.; Pouquet, A.; Zolver, M. A sparse-mode spectral method for the simulations of turbulent flows. J. Comput. Phys. 1996, 123, 32–44. [Google Scholar] [CrossRef]
- McManus, M.D.; Bowen, T.A.; Mallet, A.; Chen, C.H.; Chandran, B.D.; Bale, S.D.; Livi, R.; Larson, D.E.; de Wit, T.D.; Kasper, J.; et al. Cross Helicity Reversals in Magnetic Switchbacks. Astrophys. J. Suppl. Ser. 2020, 246, 67. [Google Scholar] [CrossRef]
- Yokoi, N. Cross helicity and related dynamo. Geophys. Astrophys. Fluid Dyn. 2013, 107, 114–184. [Google Scholar] [CrossRef] [Green Version]
- Yokoi, N.; Higashimori, K.; Hoshino, M. Transport enhancement and suppression in turbulent magnetic reconnection: A self-consistent turbulence model. Phys. Plasmas 2013, 20, 122310. [Google Scholar] [CrossRef] [Green Version]
- Titov, V.; Stepanov, R.; Yokoi, N.; Verma, M.; Samtaney, R. Cross helicity sign reversals in the dissipative scales of magnetohydrodynamic turbulence. Magnetohydrodynamics 2019, 55, 225–232. [Google Scholar]
- Milosevich, G.; Lingam, M.; Morrison, P.J. On the structure and statistical theory of turbulence of extended magnetohydrodynamics. Astrophys. J. Lett. 2017, 19, 015007. [Google Scholar]
- Milosevich, G.; Passot, T.; Sulem, P. Modeling Imbalanced Collisionless Alfvén Wave Turbulence with Nonlinear Diffusion Equations. Astrophys. J. Lett. 2020, 888, L7. [Google Scholar] [CrossRef] [Green Version]
- Politano, H.; Pouquet, A.; Sulem, P. Inertial ranges and resistive instabilities in two–dimensional MHD turbulence. Phys. Fluids B 1989, 1, 2330–2339. [Google Scholar] [CrossRef]
- Sahraoui, F.; Galtier, S.; Belmont, G. On waves in incompressible Hall magnetohydrodynamics. J. Plasma Phys. 2006, 73, 723–730. [Google Scholar] [CrossRef]
- Meyrand, R.; Galtier, S. Spontaneous Chiral Symmetry Breaking of Hall Magnetohydrodynamic Turbulence. Phys. Rev. Lett. 2012, 109, 194501. [Google Scholar] [CrossRef]
- Lee, T.D. On some statistical properties of hydrodynamical and magneto-hydrodynamical fields. Q. Appl. Math. 1952, 10, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Kraichnan, R. Inertial ranges in two-dimensional turbulence. Phys. Fluids 1967, 10, 1417–1423. [Google Scholar] [CrossRef] [Green Version]
- Kraichnan, R. Helical turbulence and absolute equilibrium. J. Fluid Mech. 1973, 59, 745–752. [Google Scholar] [CrossRef]
- Cichowlas, C.; Bonaïti, P.; Debbasch, F.; Brachet, M. Effective Dissipation and Turbulence in Spectrally Truncated Euler Flows. Phys. Rev. Lett. 2005, 95, 264502. [Google Scholar] [CrossRef] [Green Version]
- Nastrom, G.D.; Gage, K. A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci. 1985, 42, 950–960. [Google Scholar] [CrossRef] [Green Version]
- Koprov, B.; Koprov, V.; Ponomarev, V.; Chkhetiani, O. Experimental Studies of Turbulent Helicity and Its Spectrum in the Atmospheric Boundary Layer. Dokl. Phys. 2005, 50, 419–422. [Google Scholar] [CrossRef]
- Krstulovic, G.; Brachet, M.; Pouquet, A. Alfvén waves and ideal two-dimensional Galerkin truncated magnetohydrodynamics. Phys. Rev. E 2011, 84, 016410. [Google Scholar] [CrossRef] [Green Version]
- Mininni, P.D.; Pouquet, A. Energy spectra stemming from interactions of Alfvén waves and turbulent eddies. Phys. Rev. Lett. 2007, 99, 254502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.Z.; Yang, W.; Zhu, G.Y. Purely helical absolute equilibria and chirality of (magneto)fluid turbulence. J. Fluid Mech. 2014, 739, 479–501. [Google Scholar] [CrossRef] [Green Version]
- Servidio, S.; Matthaeus, W.; Dmitruk, P. Depression of nonlinearity in isotropic MHD turbulence. Phys. Rev. Lett. 2008, 100, 095005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mininni, P.; Pouquet, A. Helicity cascades in rotating turbulence. Phys. Rev. E 2009, 79, 026304. [Google Scholar] [CrossRef]
- Pouquet, A.; Frisch, U.; Léorat, J. Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 1976, 77, 321–354. [Google Scholar] [CrossRef] [Green Version]
- Brissaud, A.; Frisch, U.; Léorat, J.; Lesieur, M.; Mazure, A. Helicity cascades in fully developed isotropic turbulence. Phys. Fluids 1973, 16, 1366–1367. [Google Scholar] [CrossRef] [Green Version]
- Baerenzung, J.; Mininni, P.; Pouquet, A.; Rosenberg, D. Spectral modeling of turbulent flows and the role of helicity in the presence of rotation. J. Atmos. Sci. 2011, 68, 2757–2770. [Google Scholar] [CrossRef]
- Mininni, P.; Pouquet, A. Finite dissipation and intermittency in MHD. Phys. Rev. E 2009, 80, 025401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, W.; Malapaka, S.; Busse, A. Inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. Phys. Rev. E 2012, 85, 015302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, W.; Malapaka, S. Role of helicities for the dynamics of turbulent magnetic fields. Geophys. Astrophys. Fluid Dyn. 2013, 107, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Frishman, A.; Herbert, C. Turbulence Statistics in a Two-Dimensional Vortex Condensate. Phys. Rev. Lett. 2018, 120, 204505. [Google Scholar] [CrossRef] [Green Version]
- Alexandrova, O.; Lacombe, C.; Mangeney, A. Spectra and anisotropy of magnetic fluctuations in theEarth’s magnetosheath: Cluster observations. Ann. Geophys. 2008, 26, 3585–3596. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.Y.; Hadid, L.Z.; Sahraoui, F.; Yuan, Z.G.; Deng, X.H. On the Existence of the Kolmogorov Inertial Range in the Terrestrial Magnetosheath Turbulence. Astrophys. J. Lett. 2017, 863, L10. [Google Scholar] [CrossRef] [Green Version]
- Chasapis, A.; Matthaeus, W.H.; Parashar, T.N.; Wan, M.; Haggerty, C.C.; Pollock, C.J.; Giles, B.L.; Paterson, W.R.; Dorelli, J.; Gershman, D.J.; et al. In Situ Observation of Intermittent Dissipation at Kinetic Scales in the Earth’s Magnetosheath. Astrophys. J. Lett. 2018, 856, L19. [Google Scholar] [CrossRef]
- Phan, T.D.; Eastwood, J.P.; Shay, M.A.; Drake, J.F.; Sonnerup, B.U.Ö.; Fujimoto, M.; Cassak, P.A.; Øieroset, M.; Burch, J.L.; Torbert, R.B.; et al. Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath. Nature 2018, 557, 202–206. [Google Scholar] [CrossRef]
- Bandyopadhyay, R.; Sorriso-Valvo, L.; Chasapis, A.; Hellinger, P.; Matthaeus, W.H.; Verdini, A.; Landi, S.; Franci, L.; Matteini, L.; Giles, B.L.; et al. In-situ observation of Hall Magnetohydrodynamic Cascade in Space Plasma. arXiv 2019, arXiv:1907.06802. [Google Scholar]
- Alexakis, A.; Mininni, P.; Pouquet, A. On the inverse cascade of magnetic helicity. Astrophys. J. 2006, 640, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Zhdankin, V.; Boldyrev, S.; Uzdensky, D.A. Scalings of intermittent structures in magnetohydrodynamic turbulence. Phys. Plasmas 2016, 23, 055705. [Google Scholar] [CrossRef] [Green Version]
- Mininni, P.; Pouquet, A. Inverse cascade behavior in freely decaying two-dimensional fluid turbulence. Phys. Rev. E 2013, 87, 033002. [Google Scholar] [CrossRef] [Green Version]
- Pouquet, A.; Sulem, P.L.; Meneguzzi, M. Influence of velocity-magnetic field correlations on decaying magnetohydrodynamic turbulence with neutral X-points. Phys. Fluids 1988, 31, 2635–2643. [Google Scholar] [CrossRef]
- Scott, R.; Wang, F. Direct Evidence of an Oceanic Inverse Kinetic Energy Cascade from Satellite Altimetry. J. Phys. Oceanogr. 2005, 35, 1650–1666. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Park, S.H.; Klemp, J.B.; Snyder, C. Atmospheric Kinetic Energy Spectra from Global High-Resolution Nonhydrostatic Simulations. J. Atmos. Sci. 2014, 71, 4369–4381. [Google Scholar] [CrossRef]
- Passot, T.; Sulem, P.L.; Tassi, E. Gyrofluid modeling and phenomenology of low-βe Alfvén wave turbulence. Phys. Plasmas 2018, 25, 041207. [Google Scholar] [CrossRef]
- Schekochihin, A.; Cowley, S.; Dorland, W.; Hammett, G.; Howes, G.; Quataert, E.; Tatsuno, T. Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 2009, 182, 310. [Google Scholar] [CrossRef] [Green Version]
- Cho, J. Magnetic Helicity Conservation and Inverse Energy Cascade in Electron Magnetohydrodynamic Wave Packets. Phys. Rev. Lett. 2011, 106, 191104. [Google Scholar] [CrossRef] [Green Version]
- Ji, H. Turbulent dynamos and magnetic helicity. Phys. Rev. Lett. 1999, 83, 3198–3201. [Google Scholar] [CrossRef] [Green Version]
- Galtier, S.; Bhattacharjee, A. Anisotropic weak whistler wave turbulence in electron magnetohydrodynamics. Phys. Plasmas 2003, 10, 3065–3076. [Google Scholar] [CrossRef]
- Kim, H.; Cho, J. Inverse cascade in imbalanced electron magnetohydrodynamic turbulence. Astrophys. J. Suppl. 2015, 801, 75. [Google Scholar] [CrossRef]
ID | |||||||||
---|---|---|---|---|---|---|---|---|---|
AM1 | 0.016 | 0.0 | 0.65 | 0.131 | −0.027 | – | 15.1 | – | |
AH2 | 0.016 | 0.0667 | 0.65 | 0.131 | −0.027 | 0.295 | 17.2 | 15 | |
AH3 | 0.016 | 0.0833 | 0.65 | 0.131 | −0.027 | 0.247 | 17.6 | 12 | |
AH4 | 0.016 | 0.14 | 0.65 | 0.131 | −0.027 | 0.174 | 18.5 | 7 | |
AH5 | 0.016 | 0.2 | 0.65 | 0.131 | −0.027 | 0.15 | 18.8 | 5 |
ID | |||||||||
---|---|---|---|---|---|---|---|---|---|
AM1f | 0.016 | 0.0 | 0.11 | 0.20 | 0.15 | 0.64 | 34.8 | – | |
AH2f | 0.016 | 0.0667 | 0.11 | 0.24 | 0.10 | 0.52 | 34.7 | 15 | |
AH3f | 0.016 | 0.0833 | 0.11 | 0.24 | 0.10 | 0.48 | 34.7 | 12 | |
AH4f | 0.016 | 0.14 | 0.11 | 0.24 | 0.10 | 0.36 | 34.7 | 7.2 | |
AH5f | 0.016 | 0.20 | 0.11 | 0.24 | 0.10 | 0.27 | 34.7 | 5 | |
AH6f | 0.016 | 0.25 | 0.11 | 0.20 | 0.15 | 0.23 | 34.8 | 4 | |
AH7f | 0.016 | 0.30 | 0.11 | 0.22 | 0.19 | 0.21 | 34.9 | 3.3 | |
AH8f | 0.016 | 0.45 | 0.11 | 0.20 | 0.15 | 0.15 | 34.8 | 2.2 | |
AH9f | 0.016 | 0.60 | 0.11 | 0.22 | 0.19 | 0.15 | 34.9 | 1.7 | |
AH10f | 0.016 | 0.90 | 0.11 | 0.22 | 0.19 | 0.13 | 34.9 | 1.1 | |
AH11f | 0.016 | 1.2 | 0.11 | 0.22 | 0.19 | 0.12 | 34.9 | 0.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pouquet, A.; Stawarz, J.E.; Rosenberg, D. Coupling Large Eddies and Waves in Turbulence: Case Study of Magnetic Helicity at the Ion Inertial Scale. Atmosphere 2020, 11, 203. https://doi.org/10.3390/atmos11020203
Pouquet A, Stawarz JE, Rosenberg D. Coupling Large Eddies and Waves in Turbulence: Case Study of Magnetic Helicity at the Ion Inertial Scale. Atmosphere. 2020; 11(2):203. https://doi.org/10.3390/atmos11020203
Chicago/Turabian StylePouquet, Annick, Julia E. Stawarz, and Duane Rosenberg. 2020. "Coupling Large Eddies and Waves in Turbulence: Case Study of Magnetic Helicity at the Ion Inertial Scale" Atmosphere 11, no. 2: 203. https://doi.org/10.3390/atmos11020203
APA StylePouquet, A., Stawarz, J. E., & Rosenberg, D. (2020). Coupling Large Eddies and Waves in Turbulence: Case Study of Magnetic Helicity at the Ion Inertial Scale. Atmosphere, 11(2), 203. https://doi.org/10.3390/atmos11020203