Pillars of Solution for the Problem of Winter PM2.5 Variability in Fresno—Effects of Local Meteorology and Emissions
Abstract
:1. Introduction
2. Methods
2.1. Characteristics of Selected Sites and Databases
2.2. Analyses
- Hour of the day of each month in each winter (2015–2017) averaged together,
- Hour of the day of all months in all winters averaged together.
3. Results
3.1. Hourly Average PM2.5 Variation for Garland and Clovis during Winter Months
3.2. The Relationship Between PM2.5 Concentrations and Potential Temperature Gradients
3.3. The Relationships among Wind Speed and Precipitation and PM2.5
3.4. Emission Inventory, Meteorology and PM2.5 Concentrations at the Fresno-Garland Site
3.5. Year-to-Year Variability in PM2.5 and Average Yearly Meteorological Variables
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cisneros, R.; Brown, P.; Cameron, L.; Gaab, E.; Gonzalez, M.; Ramondt, S.; Veloz, D.; Song, A.; Schweizer, D. Understanding Public Views about Air Quality and Air Pollution Sources in the San Joaquin Valley, California. J. Environ. Public Health 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreria, S.R.; Shipp, E.M. Historical Meteorological Analysis in Support of the 2003 San Joaquin Valley PM10 State Implementation Plan; Final Report; San Joaquin Valley Air Pollution District: Fresno, CA, USA, 2005. [Google Scholar]
- SJVAQPCD, San Joaquin Valley Air Pollution Control District—2018 PM2.5 SIP. 2018. Available online: https://ww3.arb.ca.gov/planning/sip/sjvpm25/2018plan/photochemmodprotocol_sjvapp.pdf (accessed on 1 December 2019).
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ. Health Perspect. 2010, 118, 847–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Coull, B.A.; Bell, M.L.; Koutrakis, P. Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations. Environ. Res. 2012, 118, 8–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schauer, J.J.; Cass, G.R. Source Apportionment of Wintertime Gas-Phase and Particle-Phase Air Pollutants Using Organic Compounds as Tracers. Environ. Sci. Technol. 2000, 34, 1821–1832. [Google Scholar] [CrossRef] [Green Version]
- Watson, J.G.; Chow, J.C. A wintertime PM2.5 episode at the Fresno, CA, supersite. Atmos. Environ. 2002, 36, 465–475. [Google Scholar] [CrossRef]
- Neuman, J.A.; Nowak, J.B.; Brock, C.A.; Trainer, M.; Fehsenfeld, F.C.; Holloway, J.S.; Hubler, G.; Hudson, P.K.; Murphy, D.M.; Orsini, D.; et al. Variability in ammonium nitrate formation and nitric acid depletion with altitude and location over California. J. Geophys. Res. 2003, 108, 4557. [Google Scholar] [CrossRef]
- SJVAQPCD, San Joaquin Valley Air Pollution Control District 2012 PM2.5 Plan. 2012. Available online: http://www.valleyair.org/Air_Quality_Plans/PM25Plan2012/CompletedPlanbookmarked.pdf (accessed on 1 December 2019).
- Pun, B.K.; Seigneur, C. Sensitivity of particulate matter nitrate formation to precursor emissions in the California San Joaquin Valley. Environ. Sci. Technol. 2001, 35, 2979–2987. [Google Scholar] [CrossRef] [PubMed]
- Stockwell, W.R.; Watson, J.G.; Robinson, N.F.; Steiner, W.; Sylte, W.W. The ammonium nitrate particle equivalent of NOX emissions for winter conditions in Central California’s San Joaquin Valley. Atmos. Environ. 2000, 34, 4711–4717. [Google Scholar] [CrossRef]
- Stelson, A.W.; Seinfeld, J.H. Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmos. Environ. 1982, 16, 983–992. [Google Scholar] [CrossRef]
- Tang, I.N.; Munkelwitz, H.R. Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols. Atmos. Environ. 1993, 27, 467–473. [Google Scholar] [CrossRef]
- Smith, T.B.; Lehrman, D.E. Long-Range Tracer Studies in the San Joaquin Valley. In Regional Photochemical Measurement and Modeling Studies; Ranzieri, A.J., Solomon, P.A., Eds.; A&WMA: Pittsburgh, PA, USA, 1994; pp. 151–165. [Google Scholar]
- Yoo, J.-M.; Lee, Y.-R.; Kim, D.; Jeong, M.-J.; Stockwell, W.R.; Kundu, P.K.; Oh, S.-M.; Shin, D.-B.; Lee, S.-J. New Indices for Wet Scavenging of Air Pollutants (O3, CO, NO2, SO2 and PM10) by Summertime Rain. Atmos. Environ. 2014, 82, 226–237. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, J.; Zhu, X.; Song, T.; Munkel, C.; Hu, B.; Schafer, K.; Liu, Z.; Zhang, J.; Wang, L.; et al. Mixing layer height and its implications for air pollution over Beijing, China. Atmos. Chem. Phys. 2016, 16, 2459–2475. [Google Scholar] [CrossRef] [Green Version]
- Chow, J.C.; Chen, L.-W.A.; Watson, J.G.; Lowenthal, D.H.; Kagliano, K.A.; Turkiewicz, K.; Lehrman, D.E. PM2.5 chemical composition and spatiotemporal variability during the California regional PM10/PM2.5 air quality study (CRPAQS). J. Geophys. Res. 2006, 111, D10S04. [Google Scholar] [CrossRef]
- Green, M.C.; Chow, J.C.; Watson, J.G.; Dick, K.; Inouye, D. Effects of snow cover and atmospheric stability on winter PM2.5 concentrations in western U.S. valleys. J. Appl. Met. Clim. 2015, 54, 1191–1201. [Google Scholar] [CrossRef]
- Chen, L.-W.A.; Watson, J.G.; Chow, J.C.; Green, M.C.; Inouye, D.; Dick, K. Wintertime particulate pollution episodes in an urban valley of the Western US: A case study. Atmos. Chem. Phys. 2012, 12, 10051–10064. [Google Scholar]
- U.S. Census. 2017. Available online: www.census.gov (accessed on 1 July 2017).
- Interagency Monitoring of Protected Environments. Available online: http://vista.cira.colostate.edu/Improve/ (accessed on 15 March 2019).
- Interactive Map of Air Quality Monitors. Available online: https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors (accessed on 10 January 2018).
- Operating Manual, Partisol®-Plus Model 2025 Sequential Air Sampler. Available online: https://www.arb.ca.gov/airwebmanual/instrument_manuals/Documents/FRM_Manual.pdf (accessed on 16 August 2019).
- MesoWest. Available online: https://mesowest.utah.edu (accessed on 5 December 2016).
- Jacques, A.; (MESOWEST, Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT, USA). Personal communication, 2020.
- Interagency Wildland Fire Weather Station Standards & Guidelines. Available online: https://raws.nifc.gov/sites/default/files/inline-files/pms426-3.pdf (accessed on 20 October 2019).
- CARB. 2018. Available online: https://www.arb.ca.gov/ei/ei.htm (accessed on 11 November 2018).
- Klassen, J.; (SJV Air Pollution Control District, Bakersfield, CA, USA). Personal communication, 2018.
- Johnson, M.; (California Air Resources Board, Sacramento, CA, USA). Personal communication, 2018.
- Gorin, C.A.; Collett, J.L.; Herckes, P. Wood Smoke Contribution to Winter Aerosol in Fresno, CA. JA&WMA 2006, 56, 1584–1590. [Google Scholar]
- PM_Plan, 2018 Plan for the 1997, 2006, and 2015 PM2.5 Standards-Appendix A. 2018. Available online: https://www.valleyair.org/pmplans/documents/2018/pm-plan adopted/A.pdf (accessed on 18 April 2019).
Station | Data Type | Winter Data Availability | Temporal Resolution | Measurement Notes | Station Coordinates and Elevation |
---|---|---|---|---|---|
Site name: Fresno-GarlandAQS site ID: 06-019-0011 | PM2.5 | 2012 2013 2014 2015 2016 2017 | Daily since 1 January 2012 Hourly since 8 January 2012 | This site also has Chemical Speciation Data from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) aerosol network [21] Daily (POC = 1)—Sample collection method/instrument: * R&P Model 2025 PM2.5 sequential air sampler w/VSCC. Sample analysis method: Gravimetric Hourly (POC = 3)—Sample collection method/instrument: Met One Beta Attenuation Monitor (BAM)-1020 mass monitor w/VSCC. Sample analysis method: Beta Attenuation. | Lat: 36.785322° Lon: −119.774174° Elevation: 96 m |
Site name: Fresno First Street AQS site ID: 06-019-0008 | PM2.5 | 6 January 1999– 31 January 2012 | Daily | POC = 1 For daily data prior to 2012, we used data from the First Street site, at 3425 N First St (450 m away from Garland). Sample collection method/instrument: R&P Model 2025 PM2.5 sequential air sampler w/WINS. Sample analysis method: Gravimetric | Lat: 36.781333° Lon: −119.773190° Elevation: 96 m |
Site name: Clovis-Villa | PM2.5 | 25 November 2008–31 December 2017 | Hourly | POC = 3 Sample collection method/instrument: Teledyne Model 602 Beta plus w/VSCCSample analysis method: Beta Attenuation. | Lat: 36.82° Lon: −119.72° Elevation: 86 m |
Local Site Name | ||||
---|---|---|---|---|
Fresno-Garland (USEPA) | Clovis (MESOWEST) | Fancher Creek (MESOWEST) | Trimmer (MESOWEST) | |
Latitude: 36.79° Longitude: −119.77° Elevation: 96 m | Latitude: 36.85° Longitude: −119.63° Elevation: 127 m | Latitude: 36.88° Longitude: −119.48° Elevation: 279 m | Latitude: 36.91° Longitude: −119.31° Elevation: 453 m | |
Distance from the Garland site (kms) | 0 | 14 | 28 | 43 |
NH4NO3 | (NH4)2SO4 | Organic Mass | EC | Crustal | Other/Unaccounted |
---|---|---|---|---|---|
44.9% | 5.7% | 28.6% | 6.0% | 2.8% | 11.9% |
Site | Elevation (m) | Distance from the Fresno-Garland Site (km) | r2 |
---|---|---|---|
PM2.5 against Potential Temperature Difference | |||
Fresno-Garland (US EPA) | 96 | --- | --- |
Fancher Cree (MESOWEST) | 279 | 28 | 0.37 |
Trimmer (MESOWEST) | 453 | 43 | 0.41 |
Month/Year | PM2.5 (μg/m3) | Delta θ (°C) | Precipitation Frequency (%) | Wind Speed (m s−1) |
---|---|---|---|---|
November | ||||
2015 | 21.60 | 1.34 | 18 | 3.57 |
2016 | 21.54 | 1.92 | 14 | 4.02 |
2017 | 21.18 | 1.80 | 13 | 4.15 |
December | ||||
2015 | 22.20 | 1.67 | 27 | 4.18 |
2016 | 25.62 | 2.08 | 23 | 3.94 |
2017 | 51.70 | 2.95 | 3 | 2.69 |
January | ||||
2016 | 16.43 | 1.45 | 52 | 4.71 |
2017 | 10.19 | 1.20 | 57 | 6.42 |
2018 | 27.44 | 2.55 | 17 | 4.06 |
February | ||||
2016 | 19.14 | 1.50 | 7 | 3.27 |
2017 | 8.10 | 0.66 | 46 | 7.21 |
2018 | 19.44 | 1.09 | 12 | 4.47 |
Entire winter | ||||
2015 | 19.91 | 1.49 | 25 | 3.92 |
2016 | 17.02 | 1.51 | 33 | 5.28 |
2017 | 30.51 | 2.14 | 11 | 3.81 |
Parameter | Delta θ (∆θ) | Wind Speed |
---|---|---|
PM2.5 | 0.19 (0.44) | 0.30 (−0.55) |
Emissions-normalized PM2.5 * | 0.26 (0.51) | 0.32 (−0.57) |
NH4NO3 ** | 0.27 (0.52) | 0.22 (−0.47) |
Emissions-normalized NH4NO3 *** | 0.30 (0.55) | 0.20 (−0.45) |
Wind speed | 0.12 (−0.35) |
Precipitation Amount (Inches) | Average PM2.5 (μg/m3) | Average ∆θ (°C) | Average Wind Speed (m/s) | Number of Observations |
---|---|---|---|---|
<0.01 | 32.0 | 2.2 | 3.0 | 1422 |
0.01–0.10 | 18.7 | 1.4 | 5.9 | 385 |
>0.10 | 12.7 | 1.1 | 7.0 | 230 |
Year | PM2.5/Emissions of PM2.5 | ∆θ | Precipitation Frequency | Wind Speed |
---|---|---|---|---|
2001 | −0.53 | −0.30 | −0.15 | 0.94 |
2002 | −0.07 | −1.11 | −0.11 | 0.03 |
2003 | −1.15 | −0.55 | 1.28 | 0.80 |
2004 | −0.90 | −0.51 | 0.67 | 0.37 |
2005 | −0.20 | −0.09 | −0.60 | 0.62 |
2006 | −0.01 | 0.02 | 0.11 | 0.51 |
2007 | −0.46 | 0.09 | 0.16 | 0.04 |
2008 | −0.25 | −0.24 | 0.62 | −0.54 |
2009 | −0.29 | −0.73 | 0.63 | −0.49 |
2010 | −0.64 | −0.42 | 0.16 | −0.50 |
2011 | 1.14 | 0.84 | −1.83 | −1.39 |
2012 | 0.28 | 1.87 | −0.23 | −0.97 |
2013 | 2.95 | 2.59 | −1.84 | −1.37 |
2014 | 1.04 | 0.19 | −1.18 | −0.79 |
2015 | −0.12 | −0.85 | 0.51 | 0.20 |
2016 | −0.79 | −0.81 | 1.80 | 2.55 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karandana Gamalathge, T.D.; Green, M.C.; Stockwell, W.R. Pillars of Solution for the Problem of Winter PM2.5 Variability in Fresno—Effects of Local Meteorology and Emissions. Atmosphere 2020, 11, 312. https://doi.org/10.3390/atmos11030312
Karandana Gamalathge TD, Green MC, Stockwell WR. Pillars of Solution for the Problem of Winter PM2.5 Variability in Fresno—Effects of Local Meteorology and Emissions. Atmosphere. 2020; 11(3):312. https://doi.org/10.3390/atmos11030312
Chicago/Turabian StyleKarandana Gamalathge, Thishan Dharshana, Mark C. Green, and William R. Stockwell. 2020. "Pillars of Solution for the Problem of Winter PM2.5 Variability in Fresno—Effects of Local Meteorology and Emissions" Atmosphere 11, no. 3: 312. https://doi.org/10.3390/atmos11030312
APA StyleKarandana Gamalathge, T. D., Green, M. C., & Stockwell, W. R. (2020). Pillars of Solution for the Problem of Winter PM2.5 Variability in Fresno—Effects of Local Meteorology and Emissions. Atmosphere, 11(3), 312. https://doi.org/10.3390/atmos11030312