Balancing Waste and Nutrient Flows Between Urban Agglomerations and Rural Ecosystems: Biochar for Improving Crop Growth and Urban Air Quality in The Mediterranean Region
Abstract
:1. Introduction
- i.
- The collection of scientific arguments for advocating the valorization of Mediterranean biowaste via pyrolysis as an upcycling method to produce biochar.
- ii.
- Supporting biochar’s safe use by re-grouping European and International standards and methods.
- iii.
- Advocating biochar’s agricultural and environmental benefits, such as:
- (a)
- nutrient retention,
- (b)
- closing cycles between urban and rural ecosystems
- (c)
- producing better air quality in cities by sequestrating carbon in soils.
- The performance of a meta-analysis of selected experimental data from papers of the international literature concerning the biowaste pyrolysis process, as a convenient thermochemical method whereby biowaste is efficiently converted into biochar.
- The performance of a parametric meta-analysis of engineered pyrolytic biochar characteristics
- The assessment of current development work and evaluation of potential opportunities for available biowaste in the European Mediterranean countries (Greece, Italy, France, Spain, Portugal, etc.), but also for other non-European Mediterranean countries (Turkey, Egypt, etc.) to produce pyrolytic biochar for complementary sustainable agriculture practices and climate change mitigation alternatives.
2. Methodology
- agricultural and agri-food waste,
- lignocellulosic waste,
- animal waste,
- sewage sludge.
3. About Biochar
3.1. Biochar Production
- (a)
- High yield of biochar production.
- (b)
- Low harmful emissions of SOx and NOx release, being an environmentally-friendly technology for biochar production [28].
- (c)
- Its flexibility in handling different types of feedstocks (wastes), under various operating conditions, which makes it possible to produce designed characteristics of biochar [2].
3.2. Biochar Properties
- Porous structure, volume, and the size of pores
- Density
- Surface area
- Water holding capacity
- pH
- Ash content
- Electrical conductivity
- Cation exchange capacity (CEC)
- Fixed carbon and volatile matter
- Elemental composition (C, N, H, O).
- Content of metals, some of which are heavy according to the type of feedstock (P, S, K, Ca, Mg, Fe, Cu, Zn, and Mn)
3.2.1. Porous Structure
3.2.2. pH
3.2.3. Density
3.2.4. Surface Area
3.2.5. Water Holding Capacity
3.2.6. Ash Content
3.2.7. Electrical Conductivity
3.2.8. Cation Exchange Capacity
3.2.9. Fixed Carbon and Volatile Matter
3.2.10. Elemental Composition
3.2.11. Metals Content
3.3. Factors Affecting Biochar’s Quality
3.3.1. Pyrolysis Temperature
3.3.2. Pyrolysis Heating rate and Residence Time
3.3.3. Feedstock Type
- Agricultural waste
- Lignocellulosic waste
- Animal waste
- Sludge
- (a)
- pyrolysis temperature,
- (b)
- type of feedstock,
- (c)
- the related biochar property that is studied.
3.4. Long-Term Field Experiments in Soils with Biochar
3.4.1. Biochar Enhances Crop Production
- Improved water retention capacity, leading to lower watering requirements [95].
- Improved nutrient retention [96].
- Reduced leaching of nitrogen into ground water [80].
- Removal of cations from the soil, such as heavy metals [97].
- Increased cation-exchange capacity, resulting in improved soil fertility [80].
- Removal of organic substances, such as hydrocarbons and pharmaceutical materials [98].
- Crop yield enhancement [99].
- Improved soil structure and pH value, effectiveness of fertilizer use, and reduction of toxicity [3].
3.4.2. Effects of Biochar on the Physicochemical and Biological Soil Properties
3.4.3. Effect of Biochar on Soil’s pH and Nutrient Content
3.4.4. Effect of Biochar on CEC
- The dominance of negatively charged surface functional groups.
- The increased active surface area.
- The adsorption of highly oxidized organic matter.
- The presence of residual volatile matter [100].
3.4.5. Effects of Biochar on Recycling of N and P to Soils
- Accelerates nitration [104].
- Affects denitrification [105]
- Reduces ammonia evaporation [106].
- Through the adsorption of ammonia, N can be stored in soils [64].
- Biochar with its high ion exchange capacity can alter the availability of P, enhancing the ability to exchange ions or affecting the action of cations interacting with P [69].
3.5. Biochar’s Role in Climate Change Mitigation
- Avoiding agricultural waste’ burning and therefore reduction of CO2 emissions
- Avoiding landfilling of other wastes, resulting in reducing GHG emissions.
- Offering carbon (C) sequestration by capturing and storing C in soil, preventing releases into the atmosphere [73].
- Accelerating the decomposition of soil organic carbon (SOC) [108].
- Reduction of CO2 emissions; pyrolysis does not release CO2 into the atmosphere as combustion does.
- Reduction of N2O emissions, which is explained by the physical or biological immobilization of NO3− Biochar with lower N content was found to be more suitable for mitigation of N2O emissions from soil [73].
- Reduction of CH4 emissions that are produced by soil microorganisms under anaerobic conditions through methanogenesis [73].
- Closed carbon cycle: By using plant residues in biochar production via pyrolysis, the carbon cycle is closed due to photosynthesis and plant growth [109].
- Biochar systems are at least GHG-neutral and/or negative. They are used to draw down atmospheric carbon by increasing stable soil carbon levels, alleviating GHG emissions because they are produced via pyrolysis, which results in an offset of fossil fuel use through simultaneous bioenergy production [110].
- Biochar systems return to the soil the nutrients from various food supply chains and mitigate climate change, by sequestrating carbon (C) [111].
3.5.1. Biochar for Carbon Sequestration
- (i)
- Increase in the pH to a near-neutral condition by the ash of biochar.
- (ii)
- Improved soil moisture retention through biochar water retention.
- (iii)
- Increase in soil aeration.
- (iv)
- The presence of organic nutrient compounds in biochar [114].
- (i)
- The formation of soil aggregates, as biochar may enhance the formation of microaggregates that physically protect the SOC against decomposition [115].
- (ii)
- The toxicity of biochar.
- (iii)
- The sorption of enzymes and SOC to the biochar surface.
- (iv)
- Preferential utilization of biochar rather than SOC by the microorganisms [114].
3.5.2. Biochar Impact on Greenhouse Gas Emissions
- (a)
- By preventing GHG emissions from the combustion of biowastes and landfilling.
- (b)
- The environmental challenges caused by agricultural and animal waste and sludge disposal in the Mediterranean can be reduced by recycling these wastes via pyrolysis into biochar and energy.
- (c)
- Livestock manure, along with waste residues and sludge materials, precursors of biochar, emit significant amounts of GHGs, adding to global warming and deteriorating air quality.
- i.
- Converting photosynthetic biomass carbon (C) into biochar, closing the CO2 cycle due to the photosynthesis reaction.
- ii.
- Pyrolysis increases the recalcitrance of organic materials and enhances their activities as physical, chemical, and biological soil conditioners [120].
- iii.
- Pyrolytic biochar, by replacing manure and slurry application to the fields that are the main source of anthropogenic emissions of N2O, contributes to the decrease of N2O release.
- iv.
- Biochar can act as a sorbent for organic and inorganic contaminants and can efficiently remove these materials from soils.
- v.
- Biochar can help improving food security by contributing to sustainable agriculture.
- vi.
- Biochar amendments enhance soil quality, increasing biomass production.
- vii.
- Soil biochar applications may directly reduce GHG emissions from soils.
- (i)
- Nitrification.
- (ii)
- Denitrification.
4. Biochar Classification System and Associated Test Methods
- (a)
- The International Biochar Initiative (IBI).
- (b)
- The European Biochar Certificate (EBC).
4.1. International Biochar Initiative
4.2. European Biochar Certificate
5. SWOT Analysis
6. Conclusions
- Clarification of the mechanisms of the processes (microbial colonization, water retention, GHG reduction, climate change mitigation).
- Trade-offs between biochar application and crop yields and food safety.
- The design of biochar though pyrolysis optimization for different soil types.
- Food security and health safety issues by biochar applications.
Author Contributions
Funding
Conflicts of Interest
References
- Cepeliauskaite, G.; Stasiskiene, Z. The Framework of the Principles of Sustainable Urban Ecosystems Development and Functioning. Sustainability 2020, 12, 720. [Google Scholar] [CrossRef] [Green Version]
- Semida, W.M.; Beheiry, H.R.; Sétamou, M.; Simpson, C.R.; El-Mageed, T.A.A.; Rady, M.M.; Nelson, S.D. Biochar implications for sustainable agriculture and environment: A review. S. Afr. J. Bot. 2019, 127, 333–347. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Biochar sequestration in terrestrial ecosystems: A review. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Shaaban, M.; Van Zwieten, L.; Bashir, S.; Younas, A.; Núñez-Delgado, A.; Chhajro, M.A.; Kubar, K.A.; Ali, U.; Rana, M.S.; Mehmood, M.A.; et al. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. J. Environ. Manag. 2018, 228, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Yu, H.; Zou, W.; Chen, J.; Chen, H.; Yu, Z.; Huang, J.; Tang, H.; Wei, X.; Gao, B. Biochar amendment improves crop production in problem soils: A review. J. Environ. Manag. 2019, 232, 8–21. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Ok, Y.S.; Awad, Y.; Lee, S.S.; Sung, J.-K.; Koutsospyros, A.; Moon, D.H. Impacts of biochar application on upland agriculture: A review. J. Environ. Manag. 2019, 234, 52–64. [Google Scholar] [CrossRef]
- De la Rosa, J.M. Biochar as Soil Amendment: Impact on Soil Properties and Sustainable Resource Management. Spec. Issue Agron. ISSN 2019, 2073–4395. [Google Scholar]
- Bista, P.; Ghimire, R.; Machado, S.; Pritchett, L. Biochar Effects on Soil Properties and Wheat Biomass vary with Fertility Management. Agronomy 2019, 9, 623. [Google Scholar] [CrossRef] [Green Version]
- Kumputa, S.; Vityakon, P.; Saenjan, P.; Lawongsa, P. Carbonaceous Greenhouse Gases and Microbial Abundance in Paddy Soil under Combined Biochar and Rice Straw Amendment. Agronomy 2019, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Ronga, D.; Francia, E.; Allesina, G.; Pedrazzi, S.; Zaccardelli, M.; Pane, C.; Tava, A.; Bignami, C. Valorization of Vineyard By-Products to Obtain Composted Digestate and Biochar Suitable for Nursery Grapevine (Vitits vinifera L.) Production. Agronomy 2019, 9, 420. [Google Scholar] [CrossRef] [Green Version]
- Paneque, M.; Knicker, H.; Kern, J.; De La Rosa, J.M. Hydrothermal Carbonization and Pyrolysis of Sewage Sludge: Effects on Lolium perenne Germination and Growth. Agronomy 2019, 9, 363. [Google Scholar] [CrossRef] [Green Version]
- Alotaibi, K.D.; Schoenau, J.J. Addition of Biochar to a Sandy Desert Soil: Effect on Crop Growth, Water Retention and Selected Properties. Agronomy 2019, 9, 327. [Google Scholar] [CrossRef] [Green Version]
- Kavitha, B.; Reddy, P.V.L.; Kim, B.; Lee, S.S.; Pandey, S.K.; Kim, K.-H. Benefits and limitations of biochar amendment in agricultural soils: A review. J. Environ. Manag. 2018, 227, 146–154. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, A.; El-Naggar, A.H.; Shaheen, S.M.; Sarkar, B.; Chang, S.X.; Tsang, D.C.; Rinklebe, J.; Ok, Y.S. Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review. J. Environ. Manag. 2019, 241, 458–467. [Google Scholar] [CrossRef]
- Liu, Y.; Lonappan, L.; Brar, S.K.; Yang, S. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review. Sci. Total. Environ. 2018, 645, 60–70. [Google Scholar] [CrossRef]
- Matuštík, J.; Hnátková, T.; Kočí, V. Life cycle assessment of biochar-to-soil systems: A review. J. Clean. Prod. 2020, 259, 120998. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Z.; Shen, B.; Liu, L. Insights into biochar and hydrochar production and applications: A review. Energy 2019, 171, 581–598. [Google Scholar] [CrossRef]
- Rangabhashiyam, S.; Balasubramanian, P. The potential of lignocellulosic biomass precursors for biochar production: Performance, mechanism and wastewater application—A review. Ind. Crop. Prod. 2019, 128, 405–423. [Google Scholar] [CrossRef]
- Lee, M.; Lin, Y.-L.; Chiueh, P.-T.; Den, W. Environmental and energy assessment of biomass residues to biochar as fuel: A brief review with recommendations for future bioenergy systems. J. Clean. Prod. 2020, 251, 119714. [Google Scholar] [CrossRef]
- Ponnusamy, V.K.; Nagappan, S.; Bhosale, R.R.; Lay, C.-H.; Nguyen, D.D.; Pugazhendhi, A.; Chang, S.W.; Kumar, G.; Woong, C.S. Review on sustainable production of biochar through hydrothermal liquefaction: Physico-chemical properties and applications. Bioresour. Technol. 2020, 123414. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Ok, Y.S.; Chen, S.; Tsang, D.C.W.; Kwon, E.E.; Lee, J.; Wang, C.-H. A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresour. Technol. 2017, 246, 242–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Harris, S.; Anandhi, A.; Chen, G. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. J. Clean. Prod. 2019, 215, 890–902. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Rovas, D.; Libutti, A.; Monteleone, M. Boosting circular economy and closing the loop in agriculture: Case study of a small-scale pyrolysis–biochar based system integrated in an olive farm in symbiosis with an olive mill. Environ. Dev. 2015, 14, 22–36. [Google Scholar] [CrossRef]
- ElKhalifa, S.; Al-Ansari, T.; Mackey, H.R.; McKay, G. Food waste to biochars through pyrolysis: A review. Resour. Conserv. Recycl. 2019, 144, 310–320. [Google Scholar] [CrossRef]
- Sanchez-Garcia, M.; Cayuela, M.; Rasse, D.P.; Sánchez-Monedero, M.A. Biochars from Mediterranean Agroindustry Residues: Physicochemical Properties Relevant for C Sequestration and Soil Water Retention. ACS Sustain. Chem. Eng. 2019, 7, 4724–4733. [Google Scholar] [CrossRef]
- Thürer, M.; Tomašević, I.; Stevenson, M.; Qu, T.; Huisingh, D. A systematic review of the literature on integrating sustainability into engineering curricula. J. Clean. Prod. 2018, 181, 608–617. [Google Scholar] [CrossRef] [Green Version]
- Shareef, T.-M.-E.; Zhao, B.; Filonchyk, M. Characterization of biochars derived from maize straw and corn cob and effects of their amendment on maize growth and loess soil properties. Fresenius Environ. Bull. 2018, 27(5A), 3678–3686. [Google Scholar]
- Zhang, A.; Liu, Y.; Pan, G.; Hussain, Q.; Li, L.; Zheng, J.; Zhang, X. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 2011, 351, 263–275. [Google Scholar] [CrossRef]
- Jindo, K.; Mizumoto, H.; Sawada, Y.; Sánchez-Monedero, M.A.; Sonoki, T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 2014, 11, 6613–6621. [Google Scholar] [CrossRef] [Green Version]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Ahmad, Z.; Gao, B.; Mosa, A.; Yu, H.; Yin, X.; Bashir, A.; Ghoveisi, H.; Wang, S. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. J. Clean. Prod. 2018, 180, 437–449. [Google Scholar] [CrossRef]
- Pariyar, P.; Kumari, K.; Jain, M.K.; Jadhao, P.S. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Sci. Total. Environ. 2020, 713, 136433. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef] [Green Version]
- De Figueredo, N.A.; Da Costa, L.M.; Melo, L.C.A.; Siebeneichlerd, E.A.; Tronto, J. Characterization of biochars from different sources and evaluation of release of nutrients and contaminants. Revis. Ciênc. Agron. 2017, 48, 3–403. [Google Scholar] [CrossRef]
- Rittl, T.F.; Butterbach-Bahl, K.; Basile, C.M.; Pereira, L.A.; Alms, V.; Dannenmann, M.; Couto, E.; Cerri, C.E.P. Greenhouse gas emissions from soil amended with agricultural residue biochars: Effects of feedstock type, production temperature and soil moisture. Biomass Bioenergy 2018, 117, 1–9. [Google Scholar] [CrossRef]
- Enders, A.; Hanley, K.; Whitman, T.; Joseph, S.; Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 2012, 114, 644–653. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of green Waste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Qian, L.; Chen, B. Interactions of Aluminum with Biochars and Oxidized Biochars: Implications for the Biochar Aging Process. J. Agric. Food Chem. 2014, 62, 373–380. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, A.; Ji, C.; Joseph, S.D.; Bian, R.; Li, L.; Pan, G.-X.; Paz-Ferreiro, J. Biochar’s effect on crop productivity and the dependence on experimental conditions—A meta-analysis of literature data. Plant Soil 2013, 373, 583–594. [Google Scholar] [CrossRef]
- Tian, X.; Li, C.; Zhang, M.; Wan, Y.; Xie, Z.; Chen, B.; Li, W. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield. PLoS ONE 2018, 13, e0189924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.; Liu, Q.; Liu, G.; Cowie, A.L.; Bei, Q.; Liu, B.; Wang, X.; Ma, J.; Zhu, J.; Xie, Z. Effects of Different Biochars on Pinus elliottii Growth, N Use Efficiency, Soil N 2 O and CH 4 Emissions and C Storage in a Subtropical Area of China. Pedosphere 2017, 27, 248–261. [Google Scholar] [CrossRef]
- Macdonald, L.; Farrell, M.; Van Zwieten, L.; Krull, E.S. Plant growth responses to biochar addition: An Australian soils perspective. Boil. Fertil. Soils 2014, 50, 1035–1045. [Google Scholar] [CrossRef]
- Xie, Z.; Xu, Y.; Liu, G.; Liu, Q.; Zhu, J.; Tu, C.; Amonette, J.E.; Cadisch, G.; Yong, J.W.H.; Hu, S. Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China. Plant Soil 2013, 370, 527–540. [Google Scholar] [CrossRef]
- Abenavoli, L.M.; Longo, L.; Proto, A.R.; Gallucci, F.; Ghignoli, A.; Zimbalatti, G.; Russo, D.; Colantoni, A. Characterization of Biochar Obtained from Olive and Hazelnut Prunings and Comparison with the Standards of European Biochar Certificate (EBC). Procedia-Soc. Behav. Sci. 2016, 223, 698–705. [Google Scholar] [CrossRef] [Green Version]
- Tatarková, V.; Hiller, E.; Vaculik, M. Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy)acetic acid and the growth of sunflower (Helianthus annuus L.). Ecotoxicol. Environ. Saf. 2013, 92, 215–221. [Google Scholar] [CrossRef]
- Lashari, M.S.; Liu, Y.; Li, L.; Pan, W.; Fu, J.; Pan, G.-X.; Zheng, J.; Zheng, J.; Zhang, X.; Yu, X. Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crop. Res. 2013, 144, 113–118. [Google Scholar] [CrossRef]
- Zhang, A.; Bian, R.; Hussain, Q.; Li, L.; Pan, G.; Zheng, J.; Zhang, X.; Zheng, J. Change in net global warming potential of a rice–wheat cropping system with biochar soil amendment in a rice paddy from China. Agric. Ecosyst. Environ. 2013, 173, 37–45. [Google Scholar] [CrossRef]
- Si, L.; Xie, Y.; Ma, Q.; Wu, L. The Short-Term Effects of Rice Straw Biochar, Nitrogen and Phosphorus Fertilizer on Rice Yield and Soil Properties in a Cold Waterlogged Paddy Field. Sustainability 2018, 10, 537. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Shen, G.; Sun, M.; Cao, X.; Shang, G.; Chen, P. Effect of biochar on nitrous oxide emission and its potential mechanisms. J. Air Waste Manag. Assoc. 2014, 64, 894–902. [Google Scholar] [CrossRef] [Green Version]
- Bera, T.; Purakayastha, T.J.; Patra, A.K. Spectral, chemical and physical characterization of mustard stalk biochar as affected by temperature. Clay Res. 2015, 33, 36–45. [Google Scholar]
- Vaccari, F.P.; Baronti, S.; Lugato, E.; Genesio, L.; Castaldi, S.; Fornasier, F.; Miglietta, F. Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur. J. Agron. 2011, 34, 231–238. [Google Scholar] [CrossRef]
- Madari, B.; Silva, M.A.; Carvalho, M.T.; Maia, A.H.; Petter, F.A.; Santos, J.L.; Tsai, S.M.; Leal, W.G.; Zeviani, W.M. Properties of a sandy clay loam Haplic Ferralsol and soybean grain yield in a five-year field trial as affected by biochar amendment. Geoderma 2017, 305, 100–112. [Google Scholar] [CrossRef]
- Rondon, M.A.; Lehmann, J.; Ramirez, J.; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fertil. Soils 2007, 43, 699–708. [Google Scholar] [CrossRef]
- Asai, H.; Samson, B.K.; Stephan, H.M.; Songyikhangsuthor, K.; Homma, K.; Kiyono, Y.; Inoue, Y.; Shiraiwa, T.; Horie, T. Biochar amendment techniques for upland rice production in Northern Laos. Field Crop. Res. 2009, 111, 81–84. [Google Scholar] [CrossRef]
- Major, J.; Rondón, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Rogovska, N.; Laird, D.A.; Cruse, R.; Fleming, P.; Parkin, T.; Meek, D. Impact of Biochar on Manure Carbon Stabilization and Greenhouse Gas Emissions. Soil Sci. Soc. Am. J. 2011, 75, 871–879. [Google Scholar] [CrossRef] [Green Version]
- Diamadopoulos, E.; Velli, P.; Manolikaki, I. Effect of sewage sludge biochar on tomato plant (Solanum lycopersicum L.) cultivation. In Proceedings of the EGU General Assembly, Online. 4–8 May 2020. [Google Scholar]
- Singh, B.-P.; Hatton, B.J.; Singh, B.; Cowie, A.L.; Kathuria, A. Influence of Biochars on Nitrous Oxide Emission and Nitrogen Leaching from Two Contrasting Soils. J. Environ. Qual. 2010, 39, 1224–1235. [Google Scholar] [CrossRef]
- Hussein, A. Impact of Sewage Sludge as Organic Manure on Some Soil Properties, Growth, Yield and Nutrient Contents of Cucumber Crop. J. Appl. Sci. 2009, 9, 1401–1411. [Google Scholar] [CrossRef] [Green Version]
- Anyika, C.; Majid, Z.A.; Rashid, M.; Isa, A.B.; Ismail, N.; Zakaria, M.P.; Yahya, A. Toxic and nontoxic elemental enrichment in biochar at different production temperatures. J. Clean. Prod. 2016, 131, 810–821. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P.B. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Demirbas, A.; Arin, G. An Overview of Biomass Pyrolysis. Energy Sources 2002, 24, 471–482. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Brewer, C.E.; Levine, J. Weight or Volume for Handling Biochar and Biomass? The biochar Journal 2015, Arbaz, Switzerland. Available online: www.biochar-journal.org/en/ct/71 (accessed on 20 May 2020).
- Lee, J.W.; Kidder, M.; Evans, B.R.; Paik, S.; Buchanan, A.C., III; Garten, C.T.; Brown, R.C. Characterization of biochars produced from corn stovers for soil amendment. Environ. Sci. Technol. 2010, 44, 7970–7974. [Google Scholar] [CrossRef] [Green Version]
- Rehrah, D.; Reddy, M.; Novak, J.M.; Bansode, R.; Schimmel, K.; Yu, J.; Watts, D.; Ahmedna, M. Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J. Anal. Appl. Pyrolysis 2014, 108, 301–309. [Google Scholar] [CrossRef]
- Liang, H.; Chen, L.; Liu, G.; Zheng, H. Surface morphology properties of biochars produced from different feedstocks. In Proceedings of the 2016 International Conference on Civil, Transportation and Environment, (ICCTE 2016), Guangzhou, China, 30–31 January 2016. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.-H.; Lehmann, J.; Thies, J.E.; Burton, S.D.; Engelhard, M.H. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 2006, 37, 1477–1488. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, B.; Chen, Z.; Zhu, L.; Schnoor, J.L. Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environ. Sci. Technol. 2018, 52, 5027–5047. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009. [Google Scholar]
- Downie, A.; Crosky, A.; Munroe, P. Physical properties of biochar. In Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009; pp. 13–32. [Google Scholar]
- Xu, Y.; Chen, B. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour. Technol. 2013, 146, 485–493. [Google Scholar] [CrossRef]
- Zhao, B.; O’Connor, D.; Zhang, J.; Peng, T.; Shen, Z.; Tsang, D.C.; Hou, D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J. Clean. Prod. 2018, 174, 977–987. [Google Scholar] [CrossRef]
- Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C. Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant Soil 2007, 300, 9–20. [Google Scholar] [CrossRef]
- Bridgwater, A. Principles and practice of biomass fast pyrolysis processes for liquids. J. Anal. Appl. Pyrolysis 1999, 51, 3–22. [Google Scholar] [CrossRef]
- Cao, X.D.; Ma, L.; Gao, B.; Harris, W. Dairy-manure derived biochar effectively sorbs ead and atrazine. Environ. Sci. Technol. 2009, 43, 3285–3291. [Google Scholar] [CrossRef]
- International Biochar Initiative. Available online: https://biochar-international.org/ (accessed on 2 April 2020).
- Griffin, D.; Wang, D.; Parikh, S.J.; Scow, K.M. Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment. Agric. Ecosyst. Environ. 2017, 236, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Ma, S.; Zhao, Y.; Jing, M.; Xu, Y.; Chen, J. A Field Experiment on Enhancement of Crop Yield by Rice Straw and Corn Stalk-Derived Biochar in Northern China. Sustainability 2015, 7, 13713–13725. [Google Scholar] [CrossRef] [Green Version]
- Kończak, M.; Oleszczuk, P. Application of biochar to sewage sludge reduces toxicity and improve organisms growth in sewage sludge-amended soil in long term field experiment. Sci. Total. Environ. 2018, 625, 8–15. [Google Scholar] [CrossRef]
- Cooper, J.; Greenbergb, I.; Ludwig, B.; Hippich, L.; Fischer, D.; Glaser, B.; Kaiser, M. Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agric. Ecosyst. Environ. 2020, 295, 106882. [Google Scholar] [CrossRef]
- Futa, B.; Oleszczuk, P.; Andruszczak, S.; Kwiecińska-Poppe, E.; Kraska, P. Effect of Natural Aging of Biochar on Soil Enzymatic Activity and Physicochemical Properties in Long-Term Field Experiment. Agronomy 2020, 10, 449. [Google Scholar] [CrossRef] [Green Version]
- Ameloot, N.; Sleutel, S.; Case, S.; Alberti, G.; McNamara, N.P.; Zavalloni, C.; Vervisch, B.; Vedove, G.D.; De Neve, S. C mineralization and microbial activity in four biochar field experiments several years after incorporation. Soil Boil. Biochem. 2014, 78, 195–203. [Google Scholar] [CrossRef]
- Yi, Q.; Liang, B.; Nan, Q.; Wang, H.; Zhang, W.; Wu, W. Temporal physicochemical changes and transformation of biochar in a rice paddy: Insights from a 9-year field experiment. Sci. Total Environ. 2020, 721, 137670. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Yang, J.; Chen, W.; Han, F. Effect of biochar on soil properties on the Loess Plateau: Results from field experiments. Geoderma 2020, 369, 114323. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Z.; Zhu, K.; Wang, Z.; Zhao, X.; Lin, Q.; Li, G. Biochar altered native soil organic carbon by changing soil aggregate size distribution and native SOC in aggregates based on an 8-year field experiment. Sci. Total. Environ. 2020, 708, 134829. [Google Scholar] [CrossRef] [PubMed]
- Rombola’, A.G.; Fabbri, D.; Baronti, S.; Vaccari, F.P.; Genesio, L.; Miglietta, F. Changes in the pattern of polycyclic aromatic hydrocarbons in soil treated with biochar from a multiyear field experiment. Chemosphere 2019, 219, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Miao, S.; Zhong, X.; Zhao, H.; Pan, S. The greatest potential benefit of biochar return on bacterial community structure among three maize-straw products after eight-year field experiment in Mollisols. Appl. Soil Ecol. 2020, 147, 103432. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Agbede, T.M.; Olayanju, A.; Ejue, W.S.; Adekanye, T.A.; Adenusi, T.T.; Ayeni, J.F. Effect of Biochar on Soil Properties, Soil Loss, and Cocoyam Yield on a Tropical Sandy Loam Alfisol. Sci. World J. 2020, 2020, 9391630. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. Biochar Impacts on Soil Physical Properties and Greenhouse Gas Emissions. Agronomy 2013, 3, 313–339. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Li, T.; Fu, Q.; Li, H.; Liu, D.; Ji, Y.; Li, Q.; Cai, Y. Biochar application for the improvement of water-soil environments and carbon emissions under freeze-thaw conditions: An in-situ field trial. Sci. Total Environ. 2020, 723, 138007. [Google Scholar] [CrossRef]
- Atkinson, C.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.-X.; Wu, W.; Shi, D.; Yang, M.; Zhong, Z.-K. Evaluation of Biochar Effects on Nitrogen Retention and Leaching in Multi-Layered Soil Columns. Water Air Soil Pollut. 2010, 213, 47–55. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Y.; Caldwell, R.D. Best Management Practices for Minimizing Nitrate Leaching from Container-Grown Nurseries. Sci. World J. 2001, 1, 96–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- To, M.-H.; Hadi, P.; Hui, C.-W.; Lin, C.S.K.; McKay, G. Mechanistic study of atenolol, acebutolol and carbamazepine adsorption on waste biomass derived activated carbon. J. Mol. Liq. 2017, 241, 386–398. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of biochar amendment on fertility of a south eastern coastal plain soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Cui, L.; Pan, G.-X.; Li, L.; Yan, J.; Zhang, A.; Bian, R.; Chang, A. The reduction of wheat cd uptake in contaminated soil via biochar amendment: A two-year field experiment. Bioresources 2012, 7, 5666–5676. [Google Scholar] [CrossRef] [Green Version]
- Laird, D.A.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Chao, C.; Waqas, M.; Arp, H.P.H.; Zhu, Y.-G. Sewage Sludge Biochar Influence upon Rice (Oryza sativaL) Yield, Metal Bioaccumulation and Greenhouse Gas Emissions from Acidic Paddy Soil. Environ. Sci. Technol. 2013, 47, 8624–8632. [Google Scholar] [CrossRef]
- DeLuca, T.H.; MacKenzie, M.D.; Gundale, M.J. Biochar effects on soil nutrient transformations. In Biochar for Environmental Management; Lehman, J., Joseph, S., Eds.; Earthscan: London, UK, 2008; pp. 251–270. [Google Scholar]
- Song, Y.; Zhang, X.; Ma, B.; Chang, S.X.; Gong, J. Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil. Boil. Fertil. Soils 2013, 50, 321–332. [Google Scholar] [CrossRef]
- Mandal, S.; Sarkar, B.; Bolan, N.; Novak, J.; Ok, Y.S.; Van Zwieten, L.; Singh, B.P.; Kirkham, M.B.; Choppala, G.; Spokas, K.; et al. Designing advanced biochar products Mitigation of Greenhouse Gas Emissions from Tropical Soils Amended with Poultry Manure and Sugar Cane Straw Biochars.for maximizing greenhouse gas mitigation potential. Crit. Rev. Environ. Sci. Technol. 2016, 46, 1367–1401. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M. Biochar and the Nitrogen Cycle: Introduction. J. Environ. Qual. 2010, 39, 1218–1223. [Google Scholar] [CrossRef]
- INTERNATIONAL PLANT PROTECTION CONVENTION. Plant Pathol. 1952, 1, 14. [CrossRef]
- Martin, S.L.; Clarke, M.L.; Othman, M.; Ramsden, S.J.; West, H.M. Biochar-mediated reductions in greenhouse gas emissions from soil amended with anaerobic digestates. Biomass Bioenergy 2015, 79, 39–49. [Google Scholar] [CrossRef]
- Uusitalo, V.; Leino, M. Neutralizing global warming impacts of crop production using biochar from side flows and buffer zones: A case study of oat production in the boreal climate zone. J. Clean. Prod. 2019, 227, 48–57. [Google Scholar] [CrossRef]
- Bis, Z.; Kobyłecki, R.; Ścisłowska, M.; Zarzycki, R. Biochar—Potential tool to combat climate change and drought. Ecohydrol. Hydrobiol. 2018, 18, 441–453. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management-An introduction. In Biochar for Environmental Management- Science, technology and Implementation, 2nd ed.; Lehman, J., Joseph, S., Eds.; Taylor and Francis Group: Abingdon, UK, 2015; ISBN 9780415704151. [Google Scholar]
- Crombie, K.; Masek, O.; Cross, A.; Sohi, S. Biochar—Synergies and trade-offs between soil enhancing properties and C sequestration potential. GCB Bioenergy 2014, 7, 1161–1175. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, A.R.; Gao, B.; Ahn, M.-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Boil. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Brodowski, S.; John, B.; Flessa, H.; Amelung, W. Aggregate-occluded black carbon in soil. Eur. J. Soil Sci. 2006, 57, 539–546. [Google Scholar] [CrossRef]
- Brassard, P.; Godbout, S.; Raghavan, V. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved. J. Environ. Manag. 2016, 181, 484–497. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC 2018, in press. [Google Scholar]
- Lehmann, J.; Amonette, J.E.; Roberts, K.; Hillel, D.; Rosenzweig, C. Role of Biochar in Mitigation of Climate Change. In Handbook of Climate Change and Agroecosystems; Impacts, Adaptation, and mitigation; Hillel, D., Rosenzweig, C., Eds.; Imperial College Press, World Scientific Pub. Co. Pte. Ltd.: London, UK, 2010; Volume 1, pp. 343–363. [Google Scholar]
- Fidel, R.; Laird, D.A.; Parkin, T.B. Effect of Biochar on Soil Greenhouse Gas Emissions at the Laboratory and Field Scales. Soil Syst. 2019, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Novais, S.V.; Zenero, M.D.O.; Junior, E.F.F.; De Lima, R.P.; Cerri, C.E.P. Mitigation of Greenhouse Gas Emissions from Tropical Soils Amended with Poultry Manure and Sugar Cane Straw Biochars. Agric. Sci. 2017, 8, 887–903. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Pan, X.; Liu, X.; Zhang, X.; Xiong, Z. Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant Soil. 2012. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Bai, R.; Di, H.J.; Mo, L.-Y.; Han, B.; Zhang, L.-M.; He, J.-Z. Differentiated Mechanisms of Biochar Mitigating Straw-Induced Greenhouse Gas Emissions in Two Contrasting Paddy Soils. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Zhou, X.; Jiang, L.; Li, M.; Du, Z.; Zhou, G.; Shao, J.; Wang, X.; Xu, Z.; Bai, S.H.; et al. Effects of biochar application on soil greenhouse gas fluxes: A meta-analysis. GCB Bioenergy 2016, 9, 743–755. [Google Scholar] [CrossRef]
- Ndirangu, S.M.; Liu, Y.; Xu, K.; Song, S. Risk Evaluation of Pyrolyzed Biochar from Multiple Wastes. J. Chem. 2019, 2019, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chi, Q.; Liu, X.; Wang, Y. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge. Chemosphere 2019, 216, 698–706. [Google Scholar] [CrossRef]
- Arbestain, M.C.; James, E.; Amonette, J.E.; Singh, B.; Wang, T.; Schmidt, H.-P. A biochar classification system and associated test methods. In Biochar for Environmental Management; Lehmann, J., Joseph, S., Eds.; Routledge: Abingdon, UK, 2015; Chapter 8. [Google Scholar]
- Saletnik, B.; Zaguła, G.; Bajcar, M.; Tarapatskyy, M.; Bobula, G.; Puchalski, C. Biochar as a Multifunctional Component of the Environment—A Review. Appl. Sci. 2019, 9, 1139. [Google Scholar] [CrossRef] [Green Version]
- EBC. European Biochar Certificate-Guidelines for a Sustainable Production of Biochar; European Biochar Foundation (EBC): Arbaz, Switzerland, 2012; Available online: http://www.europeanbiochar.org/en/download (accessed on 1 April 2020). [CrossRef]
- Zabaniotou, A. Conceptual vision for Mediterranean Regions for Sustainable Development via Waste-based Bioeconomy. In Proceedings of the Mediterranean Workshop, Napoli, Italy, 23–24 October 2017. [Google Scholar]
- Fytili, D.; Zabaniotou, A. Circular Economy Synergistic Opportunities of Decentralized Thermochemical Systems for Bioenergy and Biochar Production Fueled with Agro-industrial Wastes with Environmental Sustainability and Social Acceptance: A Review. Curr. Sustain. Energy Rep. 2018, 5, 150–155. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Rovas, D.; Delivand, M.; Francavilla, M.; Libutti, A.; Cammerino, A.; Monteleone, M. Conceptual vision of bioenergy sector development in Mediterranean regions based on decentralized thermochemical systems. Sustain. Energy Technol. Assess. 2017, 23, 33–47. [Google Scholar] [CrossRef]
Screening Process | Number of Remained Articles in the Sample |
---|---|
1st Screening (1st sample) | |
(research and review articles) | 4386 |
Review articles only (within the 1st sample) | 496 |
Research articles | 3890 |
2nd Screening (2nd sample) | |
(research and review articles) | 760 |
Publications with Mediterranean-type waste | 41 |
Other | 719 |
3rd Screening (studied sample with cited references) | |
Papers relevant to biochar for soil amendment | 125 |
Papers exclusively referring to biochar as a soil improver | 90 |
Others with combined relevance | 35 |
Total number of citations in this paper: 131 (125 from Table 1+6 from Table 2) |
Screening Process | Number of Articles |
---|---|
1st Screening (1st sample) | |
(research and review articles) | 3226 |
Review articles only (within the 1st sample) | 569 |
Research articles | 2657 |
2nd Screening (2nd sample) | |
(research and review articles) | 302 |
Publications with Mediterranean-type waste relevance only | 46 |
Others with combined relevance | 256 |
3rd Screening (studied sample with cited references) | |
Papers relevant to biochar for climate change mitigation | 41 |
Papers exclusively referred to biochar for soil mitigation | 6 |
Other | 35 |
Total number of citations in this paper: 131 (125 from Table 1+6 from Table 2) |
Pyrolysis Feedstock | Pyrolysis Temperature (°C) | Pyrolysis Heating Rate (°C/min) | Biochar Yield (wt.%) | Biochar Volatile Matter (wt.%) | Biochar Fixed Matter (wt.%) | Biochar Ash (wt.%) | Biochar Surface Area (m2/g) | Reference |
---|---|---|---|---|---|---|---|---|
Agricultural waste | ||||||||
Corn stover | 450 | 15.0 | 12.7 | 28.7 | 58.0 | 1.2 | [29] | |
500 | 17.0 | - | - | 32.8 | 3.1 | |||
Wheat straw | 300 | 46.96 | 14.39 | 1.9 | [30] | |||
400 | 35.76 | 18.28 | 2.6 | |||||
500 | 32.49 | 22.39 | 3.3 | |||||
600 | 31.55 | 21.82 | 4.5 | |||||
Rice straw | 400 | 39.3 | 22.42 | 46.60 | [31] | |||
500 | 32.6 | 12.80 | 59.91 | |||||
600 | 23.4 | 8.36 | 129.00 | |||||
Rice husk | 400 | 48.6 | 22.00 | 193.70 | [31] | |||
500 | 42.4 | 10.56 | 103.17 | |||||
600 | 37.3 | 6.02 | 288.58 | |||||
Cotton husk | 400 | 38 | 0.2 | [31] | ||||
600 | 33 | 1.9 | ||||||
Corn cob | 300 | 43.60 | 49.10 | 4.90 | [32] | |||
500 | 8.60 | 81.60 | 8.20 | |||||
600 | 7.20 | 82.40 | 8.70 | |||||
Animal wastes | ||||||||
Poultry manure | 500 | 7.0 | 72.0 | 7.3 | 68.6 | 24.0 | 5.8 | [33] |
700 | 7.0 | 47.0 | 4.1 | 69.6 | 24.2 | 6.6 | ||
Poultry litter | 300 | 60.13 | 1.75 | [34] | ||||
400 | 51.52 | 5.65 | ||||||
500 | 47.57 | 18.12 | ||||||
600 | 45.71 | 25.33 | ||||||
Lignocellulosic wastes | ||||||||
Wood sawdust | 300 | 4.38 | 1.28 | [30] | ||||
500 | 4.56 | 3.76 | ||||||
700 | 5.73 | 7.53 | ||||||
Apple tree branch | 400 | 28.3 | 32.36 | 11.90 | [32] | |||
500 | 16.7 | 18.27 | 58.60 | |||||
600 | 16.6 | 11.07 | 208.69 | |||||
Oak tree | 300 | 35.8 | 32.06 | 5.60 | [32] | |||
400 | 28.6 | 19.42 | 103.17 | |||||
500 | 22.0 | 12.30 | 288.58 | |||||
600 | 20.0 | 8.28 | 335.61 | |||||
Eucalyptus sawdust (E. saligna) | 400 | 41 | 0.3 | |||||
600 | 33 | 132.0 | ||||||
Sewage sludge | ||||||||
Sewage sludge | 300 | 92.19 | 68.62 | 81.66 | [35] [36] | |||
400 | 81.66 | 70.14 | 74.73 | |||||
500 | 67.80 | 79.00 | 67.8 | |||||
600 | 65.12 | 85.75 | 65.12 |
Pyrolytic Biochar Feedstock | Pyrolysis T (°C) | pH | C (wt.%) | H (wt.%) | O (wt.%) | N (wt.%) | CEC (kmole/kg) | Reference |
---|---|---|---|---|---|---|---|---|
Agricultural residues | ||||||||
Corn stover | 450 | - | 33.2 | 1.40 | 8.60 | 0.81 | [29] | |
500 | 7.2 | 57.29 | 2.86 | 5.45 | 1.47 | |||
Wheat straw | 300 | 7.98 | 61.48 | 2.73 | 19.61 | 1.40 | [30] | |
400 | 9.06 | 64.18 | 1.78 | 13.93 | 1.36 | |||
500 | 10.37 | 67.39 | 1.01 | 7.35 | 1.38 | |||
600 | 10.83 | 65.34 | 0.52 | 10.77 | 1.10 | |||
Rice Straw | 300 | 73.59 | 4.46 | 0.69 | ||||
500 | 72.45 | 3.08 | 0.46 | |||||
700 | 60.27 | 1.46 | 0.38 | |||||
Rice straw | 400 | 8.62 | 49.92 | 2.80 | 12.02 | 1.22 | [31] | |
500 | 9.82 | 37.48 | 0.93 | 8.64 | 0.61 | |||
600 | 10.19 | 33.78 | 0.60 | 13.68 | 0.41 | |||
700 | 10.39 | 36.26 | 0.51 | 17.38 | 0.34 | |||
800 | 10.47 | 29.17 | 0.25 | 3.71 | 0.25 | |||
Rice husk | 400 | 6.84 | 44.59 | 2.50 | 16.32 | 0.69 | ||
500 | 8.99 | 45.15 | 1.27 | 7.12 | 0.47 | |||
600 | 9.41 | 40.35 | 0.85 | 9.23 | 0.37 | |||
700 | 9.52 | 38.81 | 0.46 | 12.69 | 0.26 | |||
800 | 9.62 | 40.41 | 0.28 | 2.69 | 0.22 | |||
Cotton husk | 400 | 10.0 | 69.8 | 2.0 | 49.0 | [37] | ||
600 | 10.0 | 65.6 | 1.8 | 56.8 | ||||
Corn cob | 300 | 67.21 | 4.49 | 27.63 | 0.67 | [32] | ||
500 | 83.27 | 3.33 | 12.62 | 0.78 | ||||
600 | 84.31 | 2.41 | 12.52 | 0.76 | ||||
Maize straw | 300 | 57.40 | 6.64 | 34.20 | 1.59 | |||
500 | 80.70 | 3.23 | 14.10 | 1.71 | ||||
Animal wastes | ||||||||
Poultry | 500 | 11.0 | 51.56 | 1.87 | 40.32 | 5.50 | [33] | |
manure | 700 | 10.7 | 56.09 | 1.52 | 37.19 | 4.16 | ||
Swine manure | 400 | 9.2 | 49.6 | 2.7 | 28.9 | [37] | ||
600 | 10.7 | 47.0 | 1.8 | 45.4 | ||||
Poultry litter | 300 | 6.29 | 25.28 | [34] | ||||
400 | 9.54 | 26.96 | ||||||
500 | 9.99 | 28.91 | ||||||
600 | 10.06 | 29.01 | ||||||
Bull manure | 300 | 8.2 | 60.6 | 1.3 | [38] | |||
600 | 9.5 | 76.0 | 0.8 | |||||
Dairy manure | 350 | 9.2 | 55.8 | 2.60 | ||||
400 | 9.22 | 57.7 | 0.242 | |||||
600 | 9.94 | 59.4 | 0.225 | |||||
700 | 9.9 | 56.7 | 1.51 | |||||
Lignocellulosic waste | ||||||||
Wood sawdust | 300 | 76.45 | 2.67 | 0.65 | [30] | |||
500 | 84.32 | 1.83 | 0.54 | |||||
700 | 89.92 | 1.36 | 0.41 | |||||
Apple tree branch | 400 | 7.02 | 70.18 | 4.13 | 20.56 | 0.76 | [31] | |
500 | 9.64 | 79.12 | 2.65 | 11.98 | 0.34 | |||
600 | 10.04 | 81.46 | 1.96 | 13.63 | 0.46 | |||
700 | 10.03 | 82.26 | 1.21 | 16.34 | 0.41 | |||
800 | 10.02 | 84.84 | 0.60 | 5.81 | 0.34 | |||
Oak tree | 300 | 6.84 | 44.59 | |||||
400 | 8.99 | 45.15 | ||||||
500 | 8.85 | 81.22 | ||||||
600 | 9.54 | 83.22 | ||||||
Eucalyptus sawdust (E. saligna) | 400 | 7.7 | 78.5 | 0.7 | 3.7 | [37] | ||
600 | 9.6 | 84.0 | 0.8 | 19.8 | ||||
Sludge | ||||||||
Sewage sludge | 200 | 6.54 | 17.09 | 2.09 | 10.01 | 2.19 | [35] [36] | |
300 | 7.20 | 19.72 | 1.79 | 5.76 | 2.59 | |||
500 | 8.70 | 15.26 | 0.73 | 3.28 | 1.73 | |||
700 | 11.15 | 11.33 | 0.31 | 1.90 | 0.71 |
Pyrolysis Feedstock | Biochar Application rate (t/ha) | Soil Type | Crop | Crop yield Increase/Decrease (wt.%) | Reference |
---|---|---|---|---|---|
Agricultural Waste | |||||
Green wastes | 6.75 13.5 40.5 | Potting mixture | Cucumber | +99 +81 30 | [32] |
10 50 100 | Alfisol | Radish | -30 +91 +130 | [39] | |
Maize straw | 0.45 | Entic Hydroagric Anthrosol | Rice | +10.46 | [40] |
2.4 | Sandy loam | +6 | [41] | ||
Wheat Straw | - | Acid soil | Wheat | +19.6 | [35] |
Millet straw | +60.6 | ||||
Corn straw | - | Sandy soil | Cotton | +9.2 | [42] |
20 10 5 | Inceptisol | +21 +18 +9 | |||
- | Saline soil | Wheat | +27.7 | [43] | |
Wheat straw | 1 5 10 | Acid Ferrasol | Rice | +19 +79 +51 | [44] |
10 20 40 | +28 +9 +22 | [45] | |||
12 | Slightly alkaline sandy loam | Neutral | [46] | ||
- | Acid soil | Sunflower | +50 | [47] | |
Saline soil | Wheat | +38 | [48] | ||
Maize | +200 | [49] | |||
Waterlogged paddy | Wheat | +37.6 | [50] | ||
2.5 5 10 20 30 40 | Sandy loam soil | Rapeseed | +22 +22 +43 +37 +53 +61 | [51] | |
Wheat straw | 10 20 40 | Hydroagric Stagnic Anthrosol | Rice | +27.63 +9.2 +22.39 | [49] |
10–40 | Fine loamy Gleysols | Neutral | [49] | ||
Rice straw | 5 | Alkaline sandy loam Inceptisol | Rice | +24.3 | [52] |
Acidic sandy loam Alfisol | +31.3 | ||||
10.5 | Gley paddy | +10 | [51] | ||
2.25 | Silt loam | +7 | [50] | ||
4.5 9 | Gleyi-stagnic | Rice-wheat | +5.88 +14.8 | [35] | |
Animal Waste | |||||
Poultry manure | 30 60 12 | Acidic silty | Wheat | +28.2 +28.6 +38.0 | [53] |
Poultry litter | 1 5 10 | Acidic Aeronosol | Rice | Neutral Neutral -21 | [44] |
- | Acid soil | Wheat | +89 | [44] | |
Cow manure | - | Sandy soil | Maize | +150 | [54] |
Lignocellulosic waste | |||||
Eucalyptus | 90 60 | Neutral clay loam Oxisol | Bean | +46 +39 | [55] |
6.75 13.5 40.5 | Potting mixture | Cucumber | +55 +61 +89 | [32] | |
Wood | - | Sandy soil | Rice | +20 | [54] |
Soybean grain | +100 | [56] | |||
20 | Clayey | Maize | +143 | [57] | |
Hardwood | 19 38 58 | MidwesterMollisols | Maize | +10 +17 +48 | [58] |
Sludge | |||||
Sewage sludge | Pot trial | Tomato | +25 +34 | [59] | |
6 9 12 | Sandy loam | Mung bean | +143.34 +180.78 +164.50 | [60] | |
25 50 100 | Cucumber | +23.28 +43.69 +61.32 | [61] |
Feedstock | Pyrolysis Temp ( °C) | Application Rate (Mg/ha) | Soil Type | pH | CEC (cmol/kg) | Reference | |||
---|---|---|---|---|---|---|---|---|---|
Control | Treatment | Control | Treatment | ||||||
Agricultural residues | |||||||||
Green waste | 450 | 10 50 100 | Alfisol | 4.5 | 4.75 5.38 5.99 | 4.03 - - | 10.5 - - | [39] | |
Wheat straw | 350-550 | 10 20 40 | Anthrosols | 5.6 | 5.70 5.81 5.86 | [101] | |||
Wheat straw | 350-550 | 10 20 40 | Halpudept | 6.5 | 6.75 6.77 6.77 | [45] | |||
Animal wastes | |||||||||
Poultry litter | 550 | 10 25 50 | Alfisol | 4.5 | 6.66 7.29 7.78 | [39] | |||
Lignocellulosic waste | |||||||||
Oak tree | 5 10 20 | Hapludolls | 6.4 | 6.4 6.9 7.1 | 17.1 | 19.8 20.7 20.8 | [102] | ||
Eucalyptus | 350 | 6 12 18 | Haplustox | 5.0 | 5.0 5.2 5.4 | 108.2 - - | 118.5 131.7 131.5 | [55] | |
Sludge | |||||||||
Sludge-wood chip | 550 | 10 10 | Ferrosol Calcarosol | 4.2 7.67 | 5.93 7.6 | 31.0 - | 29.3 - | [51] | |
Sewage sludge | 550 | 10 20 40 | Entisol | 4.0 | 4.4 4.5 4.7 | [103] |
Parameter | EBC V4.8 | EBC Test Method | IBI V2.0 | IBI Test Method |
---|---|---|---|---|
Physical Properties | ||||
Bulk density | Required | DIN 51705 | Not Required | N/A |
Particle size distribution | Not Required | N/A | Required | Progressive dry sieving with 50, 25, 16, 4, 2, 1, 0.5 sieves |
Water content | Required | DIN 51718 | Required | ASTM D1762-84 |
Surface area | Required | Milled < 50μm, 2 h at 150 °C vacuum, N2 | Optional | ASTM D6556 |
Water holding capacity | Optional | Ε DIN ISO 14238 | Not Required | Ν/A |
Chemical properties | ||||
Electrical conductivity | Required | DIN ISO 11265 | Required | U.S. Composting Council |
Total ash | Required | DIN51719, ISO1171, EN14775 | Required | ASTM D1762-84 |
pH | Required | DIN ISO 10390 | Required | U.S. Composting Council |
Total C | Required | DIN 51732, ISO 29541) | Required | ASTM D4373 |
Molar H/Corg ratio | Required | DIN 51732, ISO 29541) | Required | ASTM D4373 |
Molar O/C ratio | Required | DIN 51732, ISO 17247 | Not Required | Ν/A |
N, P, K Content | Required | DIN 51732, ISO 29541 | Required | ASTM D4373 |
Volatile matter VOCs | Optional | TGA 701 (Thermogravimetric Analysis) | Optional | ASTM D1762-84 |
PAHs | Required | DIN EN 15527, DIN CEN/TS 16181 (European Standarisation) | Required | U.S. EPA 8270 |
Pb, Cd, Cu, Ni, Hg, Zn, Cr Content | Required Basic grade: Pb < 150 mg/kg Cd < 1.5 mg/kg Cu < 100 mg/kg Ni < 50 mg/kg Zn < 400 mg/kg Cr < 90 mg/kg Premium grade: Pb < 120 mg/kg Cd < 1 mg/kg Cu < 100 mg/kg Ni < 30 mg/kg Hg < 1 mg/kg Zn < 400 mg/kg Cr < 80 mg/kg | All metals: DIN EN ISO 17294-2Hg: DIN EN 1483 | Required As: 12–100 mg/kg Cd: 1.4–39 mg/kg Cr: 64–1200 mg/kg Co: 40–150 mg/kg Cu: 63–1500 mg/kg Pb: 70–500 mg/kg Hg: 1–17 mg/kg Mo: 5–20 mg/kg Ni: 47–600 mg/kg Se: 2–36 mg/kg Zn: 200–7000 mg/kg B Declaration Cl Declaration Na Declaration | All elements except Hg and Cl: i. Microwave-assisted HNO3 digestion ii. HNO3 digestion determination with iii. ICP-AES iv. Flame (according to U.S. Composting Council Sections 04.05 and 04.06) Hg: U.S. EPA 7471 Cl: Ion chromatography or ion-selective electrode |
Strengths | Weaknesses |
| |
Opportunities | Threats |
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zabaniotou, A.; Stamou, K. Balancing Waste and Nutrient Flows Between Urban Agglomerations and Rural Ecosystems: Biochar for Improving Crop Growth and Urban Air Quality in The Mediterranean Region. Atmosphere 2020, 11, 539. https://doi.org/10.3390/atmos11050539
Zabaniotou A, Stamou K. Balancing Waste and Nutrient Flows Between Urban Agglomerations and Rural Ecosystems: Biochar for Improving Crop Growth and Urban Air Quality in The Mediterranean Region. Atmosphere. 2020; 11(5):539. https://doi.org/10.3390/atmos11050539
Chicago/Turabian StyleZabaniotou, Anastasia, and Katerina Stamou. 2020. "Balancing Waste and Nutrient Flows Between Urban Agglomerations and Rural Ecosystems: Biochar for Improving Crop Growth and Urban Air Quality in The Mediterranean Region" Atmosphere 11, no. 5: 539. https://doi.org/10.3390/atmos11050539
APA StyleZabaniotou, A., & Stamou, K. (2020). Balancing Waste and Nutrient Flows Between Urban Agglomerations and Rural Ecosystems: Biochar for Improving Crop Growth and Urban Air Quality in The Mediterranean Region. Atmosphere, 11(5), 539. https://doi.org/10.3390/atmos11050539