Projection of Future Heat Waves in the United States. Part I: Selecting a Climate Model Subset
Abstract
:1. Introduction
2. Method
2.1. Study Area and Data
- We compare the average long-term maximum and minimum daily temperatures obtained from the observation and models.
- We investigate differences between the observation and models for maximum and minimum daily temperatures with NSE coefficients.
2.2. Heat Wave Definition and Components
- Number of hot days (Days): A hot day has both maximum and minimum temperatures higher than defined thresholds;
- Frequency of heat wave (waves): Number of independent heat waves in each calendar year;
- total length of heat waves (total): The cumulative duration of all heat waves in each calendar year;
- longest heat wave event (longest): The longest heat wave event occurrence in each calendar year;
- Daytime heat wave intensity (Intensity): The cumulative value of daytime temperatures above the maximum temperature threshold during a heat wave;
- Nighttime heat wave intensity (Night): The cumulative value of nighttime temperatures above the minimum temperature threshold during a heat wave;
- First heat wave event (First): The number of the first day of the first heat wave in a calendar year;
- Last heat wave event (Last): The number of the last day of the last heat wave in a calendar year.
2.3. Multi Criteria Decision Making
- Calculate of the decision matrix, D, including alternatives (for i = 1 to m, which is the number of models) and Criteria, , which is NSE between each downscaled GCM and observation for that particular heat wave property (for j = 1 to n, which is the number of heat wave properties):
- Normalize of the elements in the decision matrix for each criterion:
- Calculate of the weighted normalized decision matrix values:
- Find the best and least fit (or ideal and negative-ideal) solutions for each criterion:
- Calculate the distance from best and least fit ideal solutions for each alternative using Euclidean distance method:
- Compute the relative closeness to the ideal solution, which can be the best or least fit outcome, based on the goal:
- Rank each alternative () based on the calculated relative closeness to the ideal solution ().
3. Results
4. Discussion
- We demonstrated how downscaled GCMs represent a better or least fit performance across the cities with similar climates. We observe that this variation in the performance of models has a direct link to the structure of the model(s).
- We demonstrated a few models with previously known robust ocean modeling components simulated historical heatwaves in coastal cities better than other downscaled GCMs. This observation encourages their approach and also sheds light on the possible improvement opportunities for the other models.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Model No | GCM Name | BAL | BIS | COL | DAL | DES | MIA | NYC | PHO | POR | SYR |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Observed | 18.49 | 12.29 | 17.16 | 24.47 | 15.44 | 28.47 | 15.95 | 29.97 | 16.97 | 14.07 |
2 | ACCESS1-0 | 18.646 | 12.273 | 17.182 | 24.620 | 15.581 | 28.505 | 16.334 | 29.952 | 16.841 | 13.864 |
3 | ACCESS1-3 | 18.647 | 12.273 | 17.183 | 24.620 | 15.579 | 28.505 | 16.334 | 29.952 | 16.841 | 13.864 |
4 | BCC-CSM1-1 | 18.646 | 12.272 | 17.182 | 24.621 | 15.578 | 28.504 | 16.334 | 29.952 | 16.841 | 13.863 |
5 | BCC-CSM1-1-M | 18.647 | 12.272 | 17.180 | 24.619 | 15.579 | 28.505 | 16.335 | 29.951 | 16.840 | 13.865 |
6 | CANESM2 | 18.646 | 12.272 | 17.182 | 24.621 | 15.579 | 28.505 | 16.335 | 29.951 | 16.840 | 13.864 |
7 | CCSM4 | 18.645 | 12.273 | 17.182 | 24.621 | 15.580 | 28.505 | 16.334 | 29.952 | 16.841 | 13.864 |
8 | CESM1-BGC | 18.646 | 12.272 | 17.183 | 24.620 | 15.578 | 28.505 | 16.333 | 29.952 | 16.841 | 13.863 |
9 | CESM1-CAM5 | 18.645 | 12.272 | 17.182 | 24.620 | 15.579 | 28.505 | 16.333 | 29.953 | 16.841 | 13.864 |
10 | CMCC-CM | 18.647 | 12.272 | 17.183 | 24.620 | 15.580 | 28.505 | 16.334 | 29.952 | 16.841 | 13.864 |
11 | CMCC-CMS | 18.646 | 12.272 | 17.182 | 24.621 | 15.579 | 28.505 | 16.334 | 29.952 | 16.841 | 13.864 |
12 | CNRM-CM5 | 18.646 | 12.272 | 17.182 | 24.619 | 15.579 | 28.505 | 16.334 | 29.951 | 16.841 | 13.864 |
13 | CSIRO-MK3-6–0 | 18.646 | 12.273 | 17.182 | 24.621 | 15.579 | 28.505 | 16.334 | 29.952 | 16.841 | 13.864 |
14 | EC-EARTH | 18.645 | 12.271 | 17.181 | 24.620 | 15.579 | 28.505 | 16.334 | 29.951 | 16.841 | 13.863 |
15 | FGOALS-G2 | 18.646 | 12.272 | 17.183 | 24.621 | 15.579 | 28.505 | 16.334 | 29.953 | 16.841 | 13.863 |
16 | GFDL-CM3 | 18.646 | 12.272 | 17.183 | 24.621 | 15.580 | 28.505 | 16.334 | 29.952 | 16.842 | 13.863 |
17 | GFDL-ESM2G | 18.647 | 12.273 | 17.182 | 24.621 | 15.580 | 28.505 | 16.334 | 29.952 | 16.841 | 13.863 |
18 | GFDL-ESM2M M | 18.647 | 12.273 | 17.183 | 24.623 | 15.580 | 28.505 | 16.335 | 29.952 | 16.840 | 13.865 |
19 | GISS-E2-H | 18.644 | 12.271 | 17.182 | 24.620 | 15.578 | 28.505 | 16.333 | 29.951 | 16.840 | 13.862 |
20 | GISS-E2-R | 18.646 | 12.272 | 17.182 | 24.622 | 15.580 | 28.505 | 16.334 | 29.952 | 16.841 | 13.864 |
21 | HADGEM2-AO | 18.646 | 12.272 | 17.182 | 24.621 | 15.580 | 28.505 | 16.334 | 29.951 | 16.840 | 13.864 |
22 | HADGEM2-CC | 18.646 | 12.272 | 17.182 | 24.620 | 15.578 | 28.505 | 16.334 | 29.952 | 16.841 | 13.864 |
23 | HADGEM2-ES | 18.646 | 12.273 | 17.183 | 24.620 | 15.580 | 28.505 | 16.334 | 29.953 | 16.841 | 13.864 |
24 | INMCM4 | 18.647 | 12.272 | 17.181 | 24.619 | 15.579 | 28.505 | 16.334 | 29.952 | 16.841 | 13.864 |
25 | IPSL-CM5A-LR | 18.646 | 12.273 | 17.183 | 24.621 | 15.580 | 28.505 | 16.334 | 29.952 | 16.840 | 13.863 |
26 | IPSL-CM5A-MR | 18.647 | 12.274 | 17.184 | 24.622 | 15.581 | 28.505 | 16.334 | 29.952 | 16.840 | 13.864 |
27 | MIROC-ESM | 18.646 | 12.270 | 17.182 | 24.620 | 15.579 | 28.505 | 16.334 | 29.952 | 16.841 | 13.863 |
28 | MIROC-ESM-CHEM | 18.645 | 12.273 | 17.182 | 24.619 | 15.579 | 28.505 | 16.333 | 29.952 | 16.841 | 13.863 |
29 | MIROC5 | 18.647 | 12.273 | 17.182 | 24.621 | 15.579 | 28.505 | 16.335 | 29.951 | 16.841 | 13.864 |
30 | MPI-ESM-LR | 18.646 | 12.273 | 17.184 | 24.621 | 15.580 | 28.505 | 16.334 | 29.952 | 16.841 | 13.863 |
31 | MPI-ESM-MR | 18.645 | 12.272 | 17.183 | 24.620 | 15.579 | 28.505 | 16.333 | 29.952 | 16.841 | 13.863 |
32 | MRI-CGCM3 | 18.646 | 12.270 | 17.181 | 24.621 | 15.579 | 28.505 | 16.333 | 29.951 | 16.840 | 13.863 |
33 | NORESM1-M | 18.645 | 12.272 | 17.182 | 24.620 | 15.578 | 28.505 | 16.334 | 29.951 | 16.841 | 13.863 |
34 | Median_GCM | 18.646 | 12.272 | 17.182 | 24.621 | 15.579 | 28.505 | 16.334 | 29.952 | 16.841 | 13.864 |
Model No | GCM Name | BAL | BIS | COL | DAL | DES | MIA | NYC | PHO | POR | SYR |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Observed | 7.48 | 1.18 | 2.59 | 12.02 | 4.61 | 20.64 | 8.46 | 15.54 | 7.09 | 3.66 |
2 | ACCESS1-0 | 7.618 | 1.111 | 2.298 | 12.205 | 4.743 | 20.442 | 8.193 | 14.883 | 6.942 | 3.355 |
3 | ACCESS1-3 | 7.618 | 1.112 | 2.298 | 12.204 | 4.742 | 20.442 | 8.193 | 14.883 | 6.943 | 3.354 |
4 | BCC-CSM1-1 | 7.617 | 1.112 | 2.298 | 12.204 | 4.742 | 20.442 | 8.192 | 14.883 | 6.942 | 3.353 |
5 | BCC-CSM1-1-M | 7.618 | 1.112 | 2.297 | 12.204 | 4.741 | 20.442 | 8.194 | 14.883 | 6.943 | 3.355 |
6 | CANESM2 | 7.618 | 1.113 | 2.298 | 12.205 | 4.742 | 20.442 | 8.193 | 14.883 | 6.941 | 3.354 |
7 | CCSM4 | 7.617 | 1.112 | 2.299 | 12.206 | 4.744 | 20.441 | 8.193 | 14.883 | 6.943 | 3.354 |
8 | CESM1-BGC | 7.617 | 1.112 | 2.299 | 12.205 | 4.741 | 20.442 | 8.193 | 14.883 | 6.942 | 3.354 |
9 | CESM1-CAM5 | 7.617 | 1.111 | 2.298 | 12.204 | 4.742 | 20.441 | 8.193 | 14.884 | 6.944 | 3.355 |
10 | CMCC-CM | 7.617 | 1.112 | 2.297 | 12.204 | 4.743 | 20.442 | 8.193 | 14.882 | 6.942 | 3.355 |
11 | CMCC-CMS | 7.618 | 1.111 | 2.299 | 12.205 | 4.743 | 20.442 | 8.193 | 14.884 | 6.944 | 3.354 |
12 | CNRM-CM5 | 7.616 | 1.111 | 2.298 | 12.204 | 4.742 | 20.442 | 8.193 | 14.884 | 6.943 | 3.354 |
13 | CSIRO-MK3-6-0 | 7.617 | 1.111 | 2.298 | 12.205 | 4.743 | 20.441 | 8.194 | 14.883 | 6.942 | 3.355 |
14 | EC-EARTH | 7.616 | 1.113 | 2.298 | 12.203 | 4.741 | 20.441 | 8.193 | 14.882 | 6.942 | 3.354 |
15 | FGOALS-G2 | 7.617 | 1.112 | 2.299 | 12.205 | 4.742 | 20.441 | 8.192 | 14.884 | 6.942 | 3.353 |
16 | GFDL-CM3 | 7.617 | 1.112 | 2.299 | 12.205 | 4.744 | 20.442 | 8.193 | 14.882 | 6.943 | 3.354 |
17 | GFDL-ESM2G | 7.618 | 1.111 | 2.298 | 12.205 | 4.742 | 20.441 | 8.193 | 14.883 | 6.943 | 3.354 |
18 | GFDL-ESM2M | 7.619 | 1.110 | 2.300 | 12.207 | 4.744 | 20.442 | 8.195 | 14.884 | 6.942 | 3.356 |
19 | GISS-E2-H | 7.616 | 1.113 | 2.299 | 12.205 | 4.741 | 20.441 | 8.192 | 14.883 | 6.942 | 3.353 |
20 | GISS-E2-R | 7.617 | 1.112 | 2.298 | 12.205 | 4.742 | 20.442 | 8.194 | 14.884 | 6.943 | 3.355 |
21 | HADGEM2-AO | 7.617 | 1.112 | 2.299 | 12.205 | 4.743 | 20.441 | 8.194 | 14.883 | 6.942 | 3.354 |
22 | HADGEM2-CC | 7.617 | 1.112 | 2.299 | 12.204 | 4.742 | 20.442 | 8.193 | 14.883 | 6.942 | 3.354 |
23 | HADGEM2-ES | 7.617 | 1.111 | 2.299 | 12.204 | 4.743 | 20.442 | 8.193 | 14.884 | 6.942 | 3.354 |
24 | INMCM4 | 7.618 | 1.111 | 2.298 | 12.204 | 4.743 | 20.441 | 8.194 | 14.883 | 6.943 | 3.355 |
25 | IPSL-CM5A-LR | 7.617 | 1.111 | 2.299 | 12.205 | 4.743 | 20.441 | 8.193 | 14.884 | 6.942 | 3.355 |
26 | IPSL-CM5A-MR | 7.618 | 1.111 | 2.301 | 12.205 | 4.745 | 20.442 | 8.193 | 14.883 | 6.942 | 3.355 |
27 | MIROC-ESM | 7.618 | 1.114 | 2.298 | 12.205 | 4.742 | 20.442 | 8.193 | 14.884 | 6.943 | 3.354 |
28 | MIROC-ESM-CHEM | 7.616 | 1.111 | 2.298 | 12.204 | 4.741 | 20.441 | 8.192 | 14.883 | 6.943 | 3.353 |
29 | MIROC5 | 7.618 | 1.111 | 2.299 | 12.205 | 4.743 | 20.442 | 8.194 | 14.883 | 6.943 | 3.354 |
30 | MPI-ESM-LR | 7.617 | 1.111 | 2.300 | 12.205 | 4.743 | 20.441 | 8.193 | 14.884 | 6.944 | 3.353 |
31 | MPI-ESM-MR | 7.617 | 1.111 | 2.299 | 12.205 | 4.742 | 20.442 | 8.193 | 14.883 | 6.942 | 3.353 |
32 | MRI-CGCM3 | 7.617 | 1.113 | 2.298 | 12.205 | 4.742 | 20.441 | 8.192 | 14.883 | 6.942 | 3.353 |
33 | NORESM1-M | 7.477 | 1.176 | 2.599 | 12.022 | 4.608 | 20.640 | 8.475 | 15.539 | 7.090 | 3.661 |
34 | Median_GCM | 7.617 | 1.112 | 2.2985 | 12.205 | 4.742 | 20.442 | 8.193 | 14.883 | 6.942 | 3.354 |
Model No | GCM Name | BAL | BIS | COL | DAL | DES | MIA | NYC | PHO | POR | SYR |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ACCESS1-0 | 0.534 | 0.542 | 0.305 | 0.441 | 0.558 | 0.258 | 0.629 | 0.640 | 0.479 | 0.571 |
2 | ACCESS1-3 | 0.543 | 0.547 | 0.295 | 0.451 | 0.562 | 0.247 | 0.636 | 0.635 | 0.472 | 0.589 |
3 | BCC-CSM1-1 | 0.549 | 0.558 | 0.293 | 0.434 | 0.567 | 0.246 | 0.634 | 0.621 | 0.471 | 0.585 |
4 | BCC-CSM1-1-M | 0.539 | 0.556 | 0.303 | 0.434 | 0.561 | 0.235 | 0.628 | 0.640 | 0.466 | 0.581 |
5 | CANESM2 | 0.536 | 0.558 | 0.304 | 0.445 | 0.555 | 0.247 | 0.624 | 0.637 | 0.471 | 0.571 |
6 | CCSM4 | 0.538 | 0.544 | 0.290 | 0.449 | 0.565 | 0.246 | 0.633 | 0.645 | 0.477 | 0.581 |
7 | CESM1-BGC | 0.545 | 0.559 | 0.295 | 0.445 | 0.566 | 0.236 | 0.639 | 0.627 | 0.469 | 0.589 |
8 | CESM1-CAM5 | 0.557 | 0.542 | 0.295 | 0.451 | 0.559 | 0.235 | 0.643 | 0.633 | 0.460 | 0.591 |
9 | CMCC-CM | 0.542 | 0.564 | 0.296 | 0.437 | 0.566 | 0.238 | 0.640 | 0.630 | 0.473 | 0.579 |
10 | CMCC-CMS | 0.536 | 0.562 | 0.303 | 0.445 | 0.575 | 0.241 | 0.630 | 0.636 | 0.464 | 0.582 |
11 | CNRM-CM5 | 0.538 | 0.544 | 0.278 | 0.435 | 0.551 | 0.244 | 0.627 | 0.637 | 0.474 | 0.588 |
12 | CSIRO-MK3-6-0 | 0.550 | 0.552 | 0.288 | 0.442 | 0.560 | 0.233 | 0.637 | 0.634 | 0.467 | 0.588 |
13 | EC-EARTH | 0.546 | 0.565 | 0.297 | 0.448 | 0.565 | 0.238 | 0.633 | 0.635 | 0.467 | 0.590 |
14 | FGOALS-G2 | 0.539 | 0.564 | 0.298 | 0.462 | 0.560 | 0.223 | 0.631 | 0.634 | 0.463 | 0.577 |
15 | GFDL-CM3 | 0.545 | 0.540 | 0.292 | 0.445 | 0.553 | 0.235 | 0.642 | 0.639 | 0.462 | 0.590 |
16 | GFDL-ESM2G | 0.543 | 0.551 | 0.296 | 0.442 | 0.566 | 0.241 | 0.630 | 0.625 | 0.462 | 0.577 |
17 | GFDL-ESM2M | 0.541 | 0.555 | 0.288 | 0.439 | 0.568 | 0.233 | 0.630 | 0.631 | 0.476 | 0.582 |
18 | GISS-E2-H | 0.541 | 0.552 | 0.298 | 0.458 | 0.565 | 0.246 | 0.632 | 0.625 | 0.469 | 0.586 |
19 | GISS-E2-R | 0.536 | 0.553 | 0.306 | 0.446 | 0.558 | 0.263 | 0.627 | 0.632 | 0.471 | 0.581 |
20 | HADGEM2-AO | 0.546 | 0.549 | 0.289 | 0.446 | 0.556 | 0.250 | 0.639 | 0.626 | 0.478 | 0.589 |
21 | HADGEM2-CC | 0.548 | 0.547 | 0.291 | 0.448 | 0.558 | 0.239 | 0.634 | 0.644 | 0.472 | 0.582 |
22 | HADGEM2-ES | 0.533 | 0.553 | 0.290 | 0.439 | 0.551 | 0.256 | 0.625 | 0.635 | 0.467 | 0.573 |
23 | INMCM4 | 0.541 | 0.560 | 0.307 | 0.436 | 0.569 | 0.254 | 0.637 | 0.649 | 0.471 | 0.586 |
24 | IPSL-CM5A-LR | 0.546 | 0.555 | 0.300 | 0.440 | 0.559 | 0.255 | 0.641 | 0.635 | 0.465 | 0.586 |
25 | IPSL-CM5A-MR | 0.540 | 0.549 | 0.295 | 0.450 | 0.554 | 0.219 | 0.633 | 0.628 | 0.463 | 0.579 |
26 | MIROC-ESM | 0.534 | 0.556 | 0.298 | 0.440 | 0.559 | 0.236 | 0.632 | 0.637 | 0.458 | 0.581 |
27 | MIROC-ESM-CHEM | 0.541 | 0.545 | 0.298 | 0.440 | 0.554 | 0.238 | 0.636 | 0.637 | 0.465 | 0.582 |
28 | MIROC5 | 0.538 | 0.550 | 0.293 | 0.434 | 0.564 | 0.230 | 0.630 | 0.631 | 0.481 | 0.585 |
29 | MPI-ESM-LR | 0.544 | 0.559 | 0.310 | 0.445 | 0.564 | 0.237 | 0.626 | 0.632 | 0.477 | 0.580 |
30 | MPI-ESM-MR | 0.546 | 0.561 | 0.300 | 0.453 | 0.570 | 0.256 | 0.640 | 0.632 | 0.482 | 0.589 |
31 | MRI-CGCM3 | 0.543 | 0.566 | 0.302 | 0.447 | 0.570 | 0.215 | 0.633 | 0.633 | 0.470 | 0.582 |
32 | NORESM1-M | 0.537 | 0.557 | 0.297 | 0.429 | 0.557 | 0.223 | 0.624 | 0.639 | 0.482 | 0.584 |
33 | Median_GCM | 0.561 | 0.544 | 0.307 | 0.435 | 0.551 | 0.229 | 0.643 | 0.645 | 0.481 | 0.592 |
Model No | GCM Name | BAL | BIS | COL | DAL | DES | MIA | NYC | PHO | POR | SYR |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ACCESS1-0 | 0.564 | 0.539 | 0.555 | 0.495 | 0.565 | 0.122 | 0.638 | 0.659 | 0.376 | 0.518 |
2 | ACCESS1-3 | 0.580 | 0.549 | 0.570 | 0.526 | 0.586 | 0.112 | 0.649 | 0.691 | 0.376 | 0.531 |
3 | BCC-CSM1-1 | 0.570 | 0.543 | 0.512 | 0.503 | 0.581 | 0.097 | 0.675 | 0.658 | 0.374 | 0.539 |
4 | BCC-CSM1-1-M | 0.567 | 0.527 | 0.487 | 0.512 | 0.565 | 0.086 | 0.660 | 0.663 | 0.387 | 0.524 |
5 | CANESM2 | 0.567 | 0.538 | 0.519 | 0.495 | 0.579 | 0.085 | 0.687 | 0.637 | 0.378 | 0.517 |
6 | CCSM4 | 0.573 | 0.547 | 0.525 | 0.504 | 0.583 | 0.086 | 0.648 | 0.687 | 0.373 | 0.533 |
7 | CESM1-BGC | 0.577 | 0.549 | 0.530 | 0.510 | 0.593 | 0.100 | 0.646 | 0.680 | 0.371 | 0.523 |
8 | CESM1-CAM5 | 0.583 | 0.543 | 0.531 | 0.518 | 0.585 | 0.085 | 0.655 | 0.683 | 0.376 | 0.526 |
9 | CMCC-CM | 0.568 | 0.581 | 0.557 | 0.496 | 0.584 | 0.086 | 0.652 | 0.662 | 0.370 | 0.519 |
10 | CMCC-CMS | 0.590 | 0.566 | 0.567 | 0.527 | 0.611 | 0.073 | 0.661 | 0.686 | 0.372 | 0.541 |
11 | CNRM-CM5 | 0.575 | 0.535 | 0.539 | 0.514 | 0.565 | 0.094 | 0.650 | 0.665 | 0.393 | 0.516 |
12 | CSIRO-MK3-6–0 | 0.594 | 0.574 | 0.532 | 0.496 | 0.585 | 0.084 | 0.659 | 0.677 | 0.376 | 0.535 |
13 | EC-EARTH | 0.567 | 0.532 | 0.488 | 0.512 | 0.559 | 0.071 | 0.667 | 0.668 | 0.373 | 0.522 |
14 | FGOALS-G2 | 0.575 | 0.579 | 0.548 | 0.513 | 0.588 | 0.054 | 0.658 | 0.677 | 0.368 | 0.520 |
15 | GFDL-CM3 | 0.577 | 0.572 | 0.547 | 0.528 | 0.594 | 0.086 | 0.672 | 0.663 | 0.353 | 0.550 |
16 | GFDL-ESM2G | 0.584 | 0.579 | 0.549 | 0.529 | 0.604 | 0.087 | 0.672 | 0.657 | 0.365 | 0.536 |
17 | GFDL-ESM2M | 0.537 | 0.526 | 0.510 | 0.485 | 0.564 | 0.079 | 0.632 | 0.684 | 0.335 | 0.500 |
18 | GISS-E2-H | 0.566 | 0.568 | 0.560 | 0.507 | 0.574 | 0.082 | 0.640 | 0.678 | 0.335 | 0.528 |
19 | GISS-E2-R | 0.560 | 0.566 | 0.571 | 0.505 | 0.570 | 0.094 | 0.639 | 0.678 | 0.367 | 0.522 |
20 | HADGEM2-AO | 0.566 | 0.557 | 0.561 | 0.496 | 0.573 | 0.091 | 0.648 | 0.675 | 0.367 | 0.536 |
21 | HADGEM2-CC | 0.532 | 0.546 | 0.546 | 0.502 | 0.579 | 0.074 | 0.632 | 0.679 | 0.355 | 0.515 |
22 | HADGEM2-ES | 0.558 | 0.541 | 0.508 | 0.490 | 0.570 | 0.088 | 0.654 | 0.649 | 0.348 | 0.513 |
23 | INMCM4 | 0.576 | 0.544 | 0.539 | 0.495 | 0.575 | 0.116 | 0.668 | 0.647 | 0.334 | 0.530 |
24 | IPSL-CM5A-LR | 0.583 | 0.564 | 0.561 | 0.527 | 0.616 | 0.106 | 0.666 | 0.695 | 0.381 | 0.553 |
25 | IPSL-CM5A-MR | 0.587 | 0.561 | 0.557 | 0.534 | 0.614 | 0.082 | 0.667 | 0.686 | 0.365 | 0.548 |
26 | MIROC-ESM | 0.602 | 0.565 | 0.542 | 0.518 | 0.607 | 0.071 | 0.684 | 0.672 | 0.384 | 0.538 |
27 | MIROC-ESM-CHEM | 0.569 | 0.560 | 0.556 | 0.483 | 0.579 | 0.087 | 0.648 | 0.681 | 0.360 | 0.519 |
28 | MIROC5 | 0.567 | 0.565 | 0.544 | 0.496 | 0.601 | 0.073 | 0.645 | 0.675 | 0.385 | 0.529 |
29 | MPI-ESM-LR | 0.550 | 0.532 | 0.504 | 0.484 | 0.558 | 0.099 | 0.648 | 0.671 | 0.360 | 0.508 |
30 | MPI-ESM-MR | 0.553 | 0.559 | 0.519 | 0.511 | 0.586 | 0.104 | 0.648 | 0.661 | 0.369 | 0.519 |
31 | MRI-CGCM3 | 0.575 | 0.575 | 0.547 | 0.500 | 0.593 | 0.073 | 0.649 | 0.672 | 0.373 | 0.518 |
32 | NORESM1-M | 0.543 | 0.527 | 0.520 | 0.472 | 0.566 | 0.089 | 0.636 | 0.690 | 0.330 | 0.500 |
33 | Median_GCM | 0.580 | 0.543 | 0.553 | 0.495 | 0.572 | 0.076 | 0.661 | 0.685 | 0.381 | 0.534 |
Model No | GCM Name | BAL | BIS | COL | DAL | DES | MIA | NYC | PHO | POR | SYR |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ACCESS1-0 | −2.00 | −1.35 | −1.58 | −0.19 | −1.66 | −0.10 | −1.62 | −0.80 | −0.39 | −1.43 |
2 | ACCESS1-3 | −0.80 | −0.96 | −0.83 | −0.88 | −1.32 | −0.01 | −0.73 | −1.26 | −1.10 | −0.80 |
3 | BCC-CSM1-1 | −0.91 | −1.13 | −1.76 | −0.86 | −1.56 | 0.11 | −0.99 | −0.40 | −0.70 | −1.26 |
4 | BCC-CSM1-1-M | −0.94 | −0.75 | −1.30 | −0.43 | −1.18 | 0.00 | −0.97 | −0.69 | −0.51 | −0.91 |
5 | CANESM2 | −1.35 | −0.77 | −0.63 | −0.35 | −1.13 | 0.09 | −0.51 | −0.66 | −0.47 | −1.06 |
6 | CCSM4 | −1.57 | −1.62 | −1.04 | −0.39 | −0.84 | −0.08 | −0.90 | −0.21 | −0.69 | −1.16 |
7 | CESM1-BGC | −1.18 | −0.72 | −1.00 | −0.56 | −1.41 | −0.05 | −1.58 | −0.46 | −0.49 | −1.57 |
8 | CESM1-CAM5 | −1.13 | −1.44 | −1.08 | −0.79 | −1.30 | −0.74 | −0.91 | −0.63 | −0.41 | −0.80 |
9 | CMCC-CM | −1.49 | −0.82 | −0.10 | −0.78 | −0.94 | 0.04 | −1.16 | −0.60 | −0.61 | −1.60 |
10 | CMCC-CMS | −0.78 | −1.29 | −1.48 | −0.83 | −1.33 | −0.17 | −0.74 | −0.34 | −1.04 | −1.27 |
11 | CNRM-CM5 | −1.38 | −2.20 | −0.91 | −0.24 | −1.68 | −0.32 | −1.66 | −0.57 | −0.57 | −1.35 |
12 | CSIRO-MK3-6–0 | −1.11 | −1.85 | −0.92 | −0.82 | −1.37 | −0.26 | −1.75 | −0.23 | −0.68 | −1.43 |
13 | EC-EARTH | −0.19 | −0.52 | −0.91 | −0.50 | −0.92 | −0.05 | −0.10 | −0.60 | −1.37 | −0.36 |
14 | FGOALS-G2 | −2.01 | −1.53 | −1.06 | −0.86 | −0.89 | −0.30 | −0.99 | −1.27 | −1.31 | −1.28 |
15 | GFDL-CM3 | −0.97 | −1.79 | −0.91 | −0.72 | −1.64 | −0.09 | −1.21 | −0.60 | −1.00 | −0.72 |
16 | GFDL-ESM2G | −1.49 | −2.17 | −1.65 | −0.71 | −1.14 | −0.04 | −1.52 | −1.13 | −1.10 | −1.66 |
17 | GFDL-ESM2M | −1.21 | −0.99 | −0.65 | −1.11 | −0.52 | −0.03 | −0.94 | −1.07 | −0.51 | −0.54 |
18 | GISS-E2-H | −1.74 | −1.36 | −0.72 | −0.42 | −1.99 | 0.00 | −1.30 | −0.66 | −0.72 | −1.57 |
19 | GISS-E2-R | −1.34 | −1.06 | −0.69 | −0.53 | −0.91 | 0.13 | −1.47 | −0.94 | −0.57 | −1.22 |
20 | HADGEM2-AO | −1.60 | −0.81 | −1.15 | −1.22 | −2.07 | −0.21 | −0.81 | −0.60 | −0.42 | −0.92 |
21 | HADGEM2-CC | −0.85 | −1.82 | −1.61 | −0.55 | −1.81 | −0.32 | −1.20 | −0.38 | −1.19 | −1.08 |
22 | HADGEM2-ES | −1.04 | −1.90 | −0.95 | −1.37 | −1.77 | 0.11 | −0.82 | −0.53 | −1.03 | −1.03 |
23 | INMCM4 | −1.09 | −1.13 | −1.66 | −0.92 | −1.49 | −0.15 | −0.62 | −0.90 | −0.43 | −0.86 |
24 | IPSL-CM5A-LR | −0.83 | −1.01 | −0.66 | −0.78 | −1.13 | 0.00 | −1.45 | −0.65 | −1.04 | −0.70 |
25 | IPSL-CM5A-MR | −1.41 | −1.42 | −0.80 | −0.24 | −1.00 | −0.17 | −1.33 | −1.05 | −1.31 | −0.94 |
26 | MIROC-ESM | −1.18 | −0.83 | −0.52 | −0.64 | −1.00 | 0.04 | −1.27 | −0.45 | −0.35 | −1.42 |
27 | MIROC-ESM-CHEM | −1.28 | −0.77 | −1.39 | −1.51 | −1.47 | 0.10 | −1.18 | −0.46 | −1.04 | −0.99 |
28 | MIROC5 | −1.18 | −0.76 | −1.39 | −1.46 | −0.87 | −0.13 | −2.27 | −0.35 | −0.41 | −1.86 |
29 | MPI-ESM-LR | −0.80 | −1.58 | −1.26 | −0.20 | −0.57 | −0.17 | −1.06 | −0.62 | −0.23 | −0.75 |
30 | MPI-ESM-MR | −1.04 | −1.24 | −0.38 | −1.08 | −0.99 | −0.10 | −0.60 | −0.49 | −0.28 | −0.76 |
31 | MRI-CGCM3 | −1.18 | −1.23 | −0.93 | −1.02 | −0.87 | −0.28 | −1.48 | −0.92 | −0.71 | −1.66 |
32 | NORESM1-M | −1.52 | −0.51 | −1.10 | −1.38 | −0.79 | 0.02 | −1.17 | −0.78 | −0.86 | −0.94 |
33 | Median_GCM | −1.08 | −0.77 | −0.71 | −0.48 | −1.00 | −0.04 | −0.93 | −0.39 | −0.66 | −0.94 |
Model No | GCM Name | BAL | BIS | COL | DAL | DES | MIA | NYC | PHO | POR | SYR |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ACCESS1-0 | −1.20 | −0.75 | −1.07 | −0.74 | −1.26 | −0.21 | −1.04 | −1.27 | −0.40 | −1.35 |
2 | ACCESS1-3 | −0.70 | −0.74 | −0.72 | −0.73 | −1.48 | 0.11 | −0.88 | −1.13 | −0.85 | −0.88 |
3 | BCC-CSM1-1 | −1.05 | −1.02 | −1.38 | −0.41 | −1.44 | 0.05 | −1.32 | −1.24 | −0.91 | −1.12 |
4 | BCC-CSM1-1-M | −0.48 | −0.90 | −0.80 | −0.58 | −1.02 | −0.06 | −0.80 | −0.85 | −0.57 | −0.72 |
5 | CANESM2 | −1.28 | −0.81 | −0.43 | −0.55 | −0.89 | −0.18 | −0.95 | −0.69 | −0.15 | −1.39 |
6 | CCSM4 | −0.70 | −1.18 | −0.82 | −0.73 | −0.89 | −0.20 | −0.69 | −0.47 | −0.54 | −1.26 |
7 | CESM1-BGC | −0.69 | −1.20 | −1.00 | −0.49 | −1.07 | −0.33 | −1.40 | −0.87 | −0.63 | −1.94 |
8 | CESM1-CAM5 | −1.29 | −1.22 | −0.55 | −0.73 | −1.12 | −0.79 | −1.63 | −0.66 | −0.57 | −1.04 |
9 | CMCC-CM | −1.06 | −0.54 | −0.23 | −0.80 | −0.67 | −0.27 | −1.08 | −1.24 | −0.18 | −0.97 |
10 | CMCC-CMS | −0.73 | −0.86 | −1.10 | −0.99 | −1.09 | −0.37 | −1.31 | −0.81 | −0.78 | −1.54 |
11 | CNRM-CM5 | −1.33 | −1.37 | −0.22 | −0.94 | −1.00 | −0.20 | −1.31 | −1.06 | −0.86 | −1.42 |
12 | CSIRO-MK3-6-0 | −0.93 | −1.05 | −0.52 | −0.56 | −1.15 | −0.27 | −1.66 | −0.63 | −0.37 | −1.06 |
13 | EC-EARTH | −0.71 | −0.49 | −0.77 | −0.93 | −0.69 | −0.20 | −0.62 | −0.82 | −0.81 | −0.56 |
14 | FGOALS-G2 | −1.48 | −1.16 | −0.96 | −1.78 | −0.73 | −0.13 | −1.07 | −1.31 | −1.24 | −0.95 |
15 | GFDL-CM3 | −1.02 | −0.98 | −1.17 | −0.68 | −0.92 | −0.19 | −1.06 | −0.92 | −0.60 | −0.99 |
16 | GFDL-ESM2G | −1.12 | −1.41 | −1.13 | −0.50 | −1.31 | −0.15 | −1.59 | −1.17 | −0.46 | −1.58 |
17 | GFDL-ESM2M | −1.19 | −0.95 | −0.53 | −0.95 | −0.51 | −0.13 | −0.84 | −1.64 | −0.52 | −1.23 |
18 | GISS-E2-H | −1.14 | −1.02 | −0.67 | −1.06 | −1.16 | −0.09 | −1.29 | −0.84 | −1.09 | −1.30 |
19 | GISS-E2-R | −0.50 | −1.05 | −0.94 | −1.08 | −1.13 | −0.13 | −0.38 | −1.13 | −0.46 | −1.16 |
20 | HADGEM2-AO | −1.00 | −0.47 | −0.78 | −1.04 | −1.12 | −0.24 | −0.73 | −0.65 | −0.50 | −1.10 |
21 | HADGEM2-CC | −0.62 | −1.36 | −0.88 | −0.47 | −1.01 | −0.53 | −1.26 | −1.00 | −1.02 | −1.32 |
22 | HADGEM2-ES | −0.99 | −1.30 | −1.36 | −1.46 | −1.56 | −0.13 | −0.88 | −1.31 | −1.23 | −1.11 |
23 | INMCM4 | −1.23 | −0.68 | −0.98 | −1.52 | −1.38 | −0.33 | −0.81 | −1.33 | −0.21 | −0.83 |
24 | IPSL-CM5A-LR | −1.07 | −0.92 | −0.63 | −1.71 | −1.39 | −0.25 | −0.90 | −0.41 | −0.81 | −0.76 |
25 | IPSL-CM5A-MR | −1.10 | −1.28 | −0.39 | −0.55 | −0.98 | −0.35 | −1.12 | −0.66 | −0.59 | −0.94 |
26 | MIROC-ESM | −1.11 | −0.82 | −0.45 | −1.00 | −0.97 | −0.02 | −1.22 | −0.91 | −0.32 | −1.37 |
27 | MIROC-ESM-CHEM | −1.59 | −0.85 | −1.11 | −1.55 | −0.88 | −0.14 | −1.06 | −1.03 | −0.91 | −0.80 |
28 | MIROC5 | −0.73 | −0.39 | −1.35 | −1.60 | −1.08 | −0.07 | −0.94 | −0.91 | −0.13 | −1.58 |
29 | MPI-ESM-LR | −0.52 | −1.36 | −0.87 | −0.69 | −0.76 | −0.25 | −1.40 | −0.79 | −0.25 | −0.98 |
30 | MPI-ESM-MR | −1.05 | −0.78 | −0.45 | −0.81 | −0.54 | −0.39 | −0.98 | −0.54 | −0.12 | −0.72 |
31 | MRI-CGCM3 | −1.17 | −1.16 | −0.78 | −1.06 | −1.12 | −0.24 | −1.57 | −1.02 | −0.53 | −1.32 |
32 | NORESM1-M | −1.28 | −0.72 | −1.26 | −1.08 | −0.57 | −0.07 | −1.02 | −1.48 | −0.74 | −0.93 |
33 | Median_GCM | −1.07 | −0.77 | −0.61 | −0.73 | −0.96 | −0.20 | −1.19 | −0.66 | −0.56 | −1.03 |
Model No | GCM Name | BAL | BIS | COL | DAL | DES | MIA | NYC | PHO | POR | SYR |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ACCESS1-0 | −2.13 | −1.33 | −1.54 | −0.13 | −1.55 | −0.16 | −1.36 | −0.78 | −0.51 | −1.24 |
2 | ACCESS1-3 | −0.80 | −0.93 | −0.95 | −0.81 | −1.07 | −0.06 | −0.77 | −1.31 | −1.23 | −0.54 |
3 | BCC-CSM1-1 | −1.14 | −1.23 | −1.75 | −0.78 | −1.44 | 0.03 | −1.15 | −0.36 | −0.80 | −0.93 |
4 | BCC-CSM1-1-M | −0.96 | −0.85 | −1.26 | −0.36 | −1.16 | −0.06 | −1.13 | −0.68 | −0.48 | −0.78 |
5 | CANESM2 | −1.45 | −0.80 | −0.56 | −0.36 | −1.02 | 0.02 | −0.43 | −0.69 | −0.52 | −0.97 |
6 | CCSM4 | −1.68 | −1.59 | −0.98 | −0.34 | −0.90 | −0.07 | −0.95 | −0.20 | −0.79 | −0.96 |
7 | CESM1-BGC | −1.39 | −0.62 | −1.00 | −0.50 | −1.19 | −0.09 | −1.66 | −0.47 | −0.43 | −1.38 |
8 | CESM1-CAM5 | −1.14 | −1.50 | −1.03 | −0.69 | −1.26 | −0.88 | −1.00 | −0.60 | −0.40 | −0.72 |
9 | CMCC-CM | −1.64 | −0.86 | −0.13 | −0.71 | −0.79 | −0.05 | −1.29 | −0.59 | −0.70 | −1.35 |
10 | CMCC-CMS | −0.92 | −1.20 | −1.56 | −0.82 | −1.11 | −0.25 | −0.85 | −0.34 | −1.11 | −1.02 |
11 | CNRM-CM5 | −1.38 | −2.19 | −0.76 | −0.22 | −1.43 | −0.44 | −1.31 | −0.58 | −0.57 | −0.97 |
12 | CSIRO-MK3-6-0 | −1.10 | −1.59 | −0.90 | −0.78 | −1.40 | −0.33 | −1.61 | −0.25 | −0.69 | −1.29 |
13 | EC-EARTH | −0.34 | −0.53 | −0.91 | −0.45 | −0.98 | −0.17 | −0.22 | −0.64 | −1.34 | −0.20 |
14 | FGOALS-G2 | −2.01 | −1.49 | −1.05 | −0.78 | −0.78 | −0.37 | −0.81 | −1.15 | −1.45 | −1.09 |
15 | GFDL-CM3 | −0.92 | −1.82 | −0.94 | −0.68 | −1.61 | −0.13 | −1.11 | −0.55 | −1.00 | −0.47 |
16 | GFDL-ESM2G | −1.61 | −2.06 | −1.56 | −0.71 | −1.04 | −0.07 | −1.47 | −1.16 | −1.18 | −1.34 |
17 | GFDL-ESM2M | −1.07 | −1.08 | −0.57 | −1.05 | −0.39 | −0.06 | −0.72 | −1.02 | −0.52 | −0.33 |
18 | GISS-E2-H | −1.80 | −1.44 | −0.66 | −0.35 | −1.65 | −0.13 | −1.34 | −0.58 | −0.85 | −1.23 |
19 | GISS-E2-R | −1.41 | −1.13 | −0.71 | −0.41 | −0.85 | 0.10 | −1.27 | −0.83 | −0.62 | −1.15 |
20 | HADGEM2-AO | −1.73 | −0.97 | −1.16 | −1.13 | −1.94 | −0.31 | −0.84 | −0.52 | −0.47 | −0.61 |
21 | HADGEM2-CC | −1.00 | −1.84 | −1.51 | −0.48 | −1.75 | −0.35 | −1.22 | −0.35 | −1.27 | −0.78 |
22 | HADGEM2-ES | −0.96 | −1.80 | −0.87 | −1.22 | −1.58 | 0.13 | −0.70 | −0.47 | −1.15 | −0.80 |
23 | INMCM4 | −1.17 | −1.33 | −1.71 | −0.87 | −1.20 | −0.13 | −0.66 | −0.94 | −0.37 | −0.74 |
24 | IPSL-CM5A-LR | −0.88 | −0.95 | −0.64 | −0.75 | −0.96 | −0.06 | −1.16 | −0.67 | −0.99 | −0.54 |
25 | IPSL-CM5A-MR | −1.51 | −1.45 | −0.87 | −0.25 | −0.99 | −0.20 | −1.17 | −1.10 | −1.30 | −0.86 |
26 | MIROC-ESM | −1.16 | −0.86 | −0.48 | −0.57 | −0.95 | −0.01 | −1.20 | −0.39 | −0.36 | −1.06 |
27 | MIROC-ESM-CHEM | −1.35 | −0.87 | −1.53 | −1.35 | −1.22 | 0.06 | −1.30 | −0.47 | −1.20 | −0.74 |
28 | MIROC5 | −1.03 | −0.69 | −1.32 | −1.40 | −0.71 | −0.15 | −2.14 | −0.29 | −0.46 | −1.46 |
29 | MPI-ESM-LR | −0.79 | −1.61 | −1.32 | −0.12 | −0.49 | −0.22 | −1.21 | −0.58 | −0.41 | −0.72 |
30 | MPI-ESM-MR | −1.09 | −1.14 | −0.51 | −1.07 | −0.78 | −0.18 | −0.53 | −0.47 | −0.31 | −0.50 |
31 | MRI-CGCM3 | −1.01 | −1.30 | −0.93 | −1.00 | −0.63 | −0.35 | −1.42 | −0.86 | −0.79 | −1.14 |
32 | NORESM1-M | −1.56 | −0.58 | −1.19 | −1.23 | −0.73 | 0.01 | −0.97 | −0.70 | −0.88 | −0.65 |
33 | Median_GCM | −1.63 | −0.91 | −0.75 | −0.65 | −1.06 | −0.34 | −1.46 | −0.47 | −1.22 | −1.13 |
Model No | GCM Name | BAL | BIS | COL | DAL | DES | MIA | NYC | PHO | POR | SYR |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ACCESS1-0 | −2.21 | −1.94 | −2.41 | −0.18 | −3.04 | −0.92 | −0.77 | −0.59 | −1.18 | −2.73 |
2 | ACCESS1-3 | −0.81 | −1.75 | −0.95 | −0.63 | −2.11 | −0.82 | −0.80 | −0.70 | −2.03 | −1.10 |
3 | BCC-CSM1-1 | −1.34 | −2.44 | −1.83 | −0.57 | −1.64 | −1.45 | −1.66 | −0.14 | −1.18 | −0.85 |
4 | BCC-CSM1-1-M | −1.04 | −0.89 | −1.16 | −0.36 | −1.15 | −1.13 | −0.93 | −0.58 | −0.77 | −0.81 |
5 | CANESM2 | −0.91 | −1.99 | −1.33 | −0.54 | −0.53 | −0.57 | −0.64 | −0.62 | −1.32 | −0.86 |
6 | CCSM4 | −0.96 | −1.79 | −0.95 | −0.39 | −1.54 | −0.40 | −0.91 | −0.46 | −1.01 | −1.68 |
7 | CESM1-BGC | −1.07 | −1.68 | −0.55 | −0.76 | −0.90 | −0.49 | −1.01 | −0.37 | −0.34 | −1.09 |
8 | CESM1-CAM5 | −0.28 | −6.57 | −0.75 | −0.51 | −1.89 | −2.31 | −0.51 | −0.80 | −0.81 | −0.13 |
9 | CMCC-CM | −0.45 | −1.65 | −0.50 | −0.55 | −0.68 | −0.74 | −1.65 | −0.57 | −0.85 | −3.02 |
10 | CMCC-CMS | −1.27 | −1.97 | −2.97 | −0.64 | −1.20 | −0.45 | −1.43 | −0.37 | −1.57 | −1.29 |
11 | CNRM-CM5 | −0.75 | −2.66 | −1.72 | −0.24 | −1.58 | −1.94 | −1.41 | −0.46 | −0.56 | −1.84 |
12 | CSIRO-MK3-6-0 | −0.42 | −2.89 | −1.33 | −0.80 | −0.87 | −0.78 | −0.87 | −0.46 | −1.00 | −1.46 |
13 | EC-EARTH | −0.39 | −1.40 | −0.80 | −0.52 | −1.48 | −0.74 | −0.70 | −0.78 | −2.51 | −0.08 |
14 | FGOALS-G2 | −2.17 | −2.00 | −1.82 | −0.73 | −1.33 | −1.36 | −1.01 | −1.55 | −1.74 | −1.21 |
15 | GFDL-CM3 | −1.47 | −2.54 | −2.56 | −0.41 | −3.87 | −0.58 | −1.30 | −0.50 | −0.51 | −1.51 |
16 | GFDL-ESM2G | −1.35 | −5.14 | −2.41 | −0.76 | −0.83 | −0.71 | −1.20 | −0.97 | −2.24 | −1.24 |
17 | GFDL-ESM2M | −0.75 | −2.81 | −0.95 | −1.92 | −0.95 | −1.21 | −1.46 | −1.89 | −1.68 | −0.87 |
18 | GISS-E2-H | −0.73 | −3.45 | −1.07 | −0.20 | −1.36 | −3.04 | −1.18 | −0.36 | −1.61 | −1.62 |
19 | GISS-E2-R | −2.09 | −1.43 | −1.22 | −0.68 | −1.02 | −0.21 | −1.38 | −0.80 | −0.99 | −1.51 |
20 | HADGEM2-AO | −1.19 | −1.93 | −1.63 | −0.55 | −2.08 | −0.32 | −0.68 | −0.41 | −1.05 | −0.66 |
21 | HADGEM2-CC | −1.15 | −2.85 | −2.52 | −0.55 | −3.93 | −0.68 | −0.94 | −0.56 | −1.17 | −0.84 |
22 | HADGEM2-ES | −1.02 | −5.96 | −1.55 | −0.96 | −1.18 | 0.03 | −1.23 | −0.83 | −2.53 | −0.93 |
23 | INMCM4 | −0.44 | −2.49 | −2.37 | −0.60 | −0.47 | −0.80 | −0.83 | −1.02 | −1.42 | −1.00 |
24 | IPSL-CM5A-LR | −0.53 | −5.82 | −0.55 | −0.32 | −1.50 | −1.02 | −0.51 | −0.59 | −1.74 | −0.58 |
25 | IPSL-CM5A-MR | −1.05 | −2.84 | −1.26 | −0.16 | −1.23 | −0.86 | −1.10 | −1.11 | −2.64 | −0.72 |
26 | MIROC-ESM | −0.80 | −1.00 | −0.97 | −0.33 | −1.20 | −0.27 | −0.75 | −0.21 | −0.59 | −1.02 |
27 | MIROC-ESM-CHEM | −0.40 | −1.45 | −1.14 | −1.29 | −1.49 | −0.12 | −1.10 | −0.21 | −1.24 | −0.79 |
28 | MIROC5 | −1.09 | −1.45 | −0.90 | −1.07 | −0.55 | −0.44 | −3.51 | −0.38 | −0.40 | −1.18 |
29 | MPI-ESM-LR | −1.08 | −3.67 | −1.37 | −0.41 | −0.89 | −0.47 | −1.09 | −0.45 | −0.56 | −0.77 |
30 | MPI-ESM-MR | −0.64 | −4.87 | −1.58 | −1.04 | −1.55 | −0.70 | −1.27 | −0.51 | −0.50 | −1.09 |
31 | MRI-CGCM3 | −0.30 | −1.50 | −0.70 | −0.91 | −0.72 | −0.85 | −1.12 | −0.58 | −1.29 | −0.94 |
32 | NORESM1-M | −1.51 | −1.94 | −2.63 | −1.12 | −0.51 | −0.87 | −0.70 | −1.82 | −2.31 | −0.72 |
33 | Median_GCM | −1.05 | −1.73 | −0.96 | −0.55 | −1.11 | −0.74 | −1.10 | −0.46 | −1.53 | −1.28 |
Model No | GCM Name | BAL | BIS | COL | DAL | DES | MIA | NYC | PHO | POR | SYR |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ACCESS1-0 | −2.09 | −1.24 | −1.76 | −0.22 | −1.53 | −0.16 | −1.81 | −0.75 | −0.55 | −1.22 |
2 | ACCESS1-3 | −0.72 | −0.84 | −1.12 | −1.00 | −1.01 | −0.10 | −0.93 | −1.26 | −1.24 | −0.50 |
3 | BCC-CSM1-1 | −1.08 | −1.18 | −1.95 | −0.97 | −1.34 | 0.01 | −1.59 | −0.29 | −0.79 | −0.90 |
4 | BCC-CSM1-1-M | −0.96 | −0.77 | −1.41 | −0.42 | −1.13 | −0.07 | −1.65 | −0.64 | −0.47 | −0.75 |
5 | CANESM2 | −1.29 | −0.73 | −0.71 | −0.46 | −0.95 | 0.00 | −0.72 | −0.71 | −0.49 | −0.90 |
6 | CCSM4 | −1.62 | −1.51 | −1.12 | −0.42 | −0.78 | −0.09 | −1.36 | −0.12 | −0.78 | −0.93 |
7 | CESM1-BGC | −1.38 | −0.59 | −1.15 | −0.60 | −1.16 | −0.11 | −2.13 | −0.36 | −0.47 | −1.31 |
8 | CESM1-CAM5 | −1.06 | −1.53 | −1.23 | −0.95 | −1.20 | −0.94 | −1.34 | −0.58 | −0.39 | −0.61 |
9 | CMCC-CM | −1.53 | −0.87 | −0.16 | −0.96 | −0.72 | −0.08 | −1.78 | −0.53 | −0.70 | −1.29 |
10 | CMCC-CMS | −0.89 | −1.06 | −1.77 | −0.98 | −0.99 | −0.28 | −1.22 | −0.24 | −1.09 | −0.96 |
11 | CNRM-CM5 | −1.33 | −2.13 | −0.90 | −0.26 | −1.44 | −0.46 | −1.63 | −0.52 | −0.56 | −0.89 |
12 | CSIRO-MK3-6-0 | −1.00 | −1.48 | −1.03 | −0.99 | −1.30 | −0.38 | −2.08 | −0.20 | −0.73 | −1.24 |
13 | EC-EARTH | −0.31 | −0.54 | −1.11 | −0.59 | −0.95 | −0.18 | −0.45 | −0.58 | −1.41 | −0.19 |
14 | FGOALS-G2 | −1.88 | −1.40 | −1.20 | −1.04 | −0.79 | −0.44 | −1.14 | −1.08 | −1.49 | −1.07 |
15 | GFDL-CM3 | −0.80 | −1.76 | −1.14 | −0.92 | −1.67 | −0.14 | −1.44 | −0.49 | −0.95 | −0.43 |
16 | GFDL-ESM2G | −1.54 | −2.07 | −1.82 | −0.96 | −1.03 | −0.09 | −1.93 | −1.18 | −1.24 | −1.32 |
17 | GFDL-ESM2M | −0.96 | −0.94 | −0.67 | −1.38 | −0.38 | −0.08 | −1.00 | −0.97 | −0.49 | −0.27 |
18 | GISS-E2-H | −1.75 | −1.37 | −0.84 | −0.41 | −1.56 | −0.18 | −1.72 | −0.49 | −0.80 | −1.30 |
19 | GISS-E2-R | −1.43 | −1.05 | −0.84 | −0.57 | −0.75 | 0.10 | −1.81 | −0.78 | −0.62 | −1.13 |
20 | HADGEM2-AO | −1.72 | −0.92 | −1.38 | −1.39 | −1.95 | −0.35 | −1.18 | −0.47 | −0.52 | −0.63 |
21 | HADGEM2-CC | −0.95 | −1.65 | −1.78 | −0.62 | −1.68 | −0.35 | −1.66 | −0.28 | −1.26 | −0.71 |
22 | HADGEM2-ES | −0.92 | −1.65 | −0.91 | −1.46 | −1.49 | 0.14 | −1.13 | −0.44 | −1.15 | −0.69 |
23 | INMCM4 | −1.04 | −1.19 | −1.91 | −1.00 | −1.12 | −0.14 | −0.92 | −0.94 | −0.35 | −0.67 |
24 | IPSL-CM5A-LR | −0.82 | −0.90 | −0.75 | −0.89 | −0.97 | −0.07 | −1.63 | −0.61 | −1.08 | −0.47 |
25 | IPSL-CM5A-MR | −1.49 | −1.38 | −1.03 | −0.33 | −0.97 | −0.23 | −1.64 | −1.05 | −1.36 | −0.77 |
26 | MIROC-ESM | −1.08 | −0.83 | −0.61 | −0.79 | −0.94 | −0.03 | −1.57 | −0.32 | −0.37 | −1.00 |
27 | MIROC-ESM-CHEM | −1.26 | −0.80 | −1.71 | −1.76 | −1.21 | 0.05 | −1.79 | −0.38 | −1.16 | −0.69 |
28 | MIROC5 | −0.94 | −0.71 | −1.48 | −1.68 | −0.63 | −0.16 | −2.77 | −0.26 | −0.47 | −1.38 |
29 | MPI-ESM-LR | −0.70 | −1.53 | −1.44 | −0.21 | −0.43 | −0.25 | −1.64 | −0.51 | −0.42 | −0.63 |
30 | MPI-ESM-MR | −0.94 | −1.13 | −0.69 | −1.28 | −0.78 | −0.21 | −0.89 | −0.42 | −0.33 | −0.49 |
31 | MRI-CGCM3 | −0.92 | −1.22 | −1.03 | −1.19 | −0.55 | −0.40 | −1.82 | −0.82 | −0.77 | −1.03 |
32 | NORESM1-M | −1.50 | −0.51 | −1.35 | −1.52 | −0.77 | −0.03 | −1.38 | −0.64 | −0.89 | −0.59 |
33 | Median_GCM | −1.08 | −0.50 | −0.14 | −0.74 | −0.35 | −0.80 | −1.82 | −0.46 | −1.16 | −1.06 |
Model No | GCM Name | BAL | BIS | COL | DAL | DES | MIA | NYC | PHO | POR | SYR |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ACCESS1-0 | −2.07 | −1.25 | −2.23 | −0.21 | −1.46 | −0.33 | −2.12 | −0.78 | −0.93 | −1.13 |
2 | ACCESS1-3 | −0.59 | −0.61 | −1.29 | −0.60 | −0.88 | −0.67 | −0.71 | −0.95 | −1.51 | −0.35 |
3 | BCC-CSM1-1 | −1.12 | −1.11 | −2.13 | −0.95 | −1.14 | −0.33 | −1.41 | −0.17 | −1.04 | −0.74 |
4 | BCC-CSM1-1-M | −1.01 | −0.54 | −1.65 | −0.32 | −0.95 | −0.31 | −1.60 | −0.61 | −0.58 | −0.58 |
5 | CANESM2 | −0.90 | −0.66 | −1.21 | −0.47 | −0.72 | −0.37 | −0.51 | −0.88 | −0.59 | −0.66 |
6 | CCSM4 | −1.63 | −1.25 | −1.14 | −0.15 | −0.42 | −0.38 | −1.47 | −0.20 | −0.86 | −0.80 |
7 | CESM1-BGC | −1.54 | −0.49 | −1.42 | −0.37 | −1.04 | −0.37 | −1.98 | −0.23 | −0.89 | −1.07 |
8 | CESM1-CAM5 | −1.05 | −1.89 | −1.75 | −0.70 | −1.12 | −1.51 | −1.34 | −0.81 | −0.52 | −0.35 |
9 | CMCC-CM | −1.54 | −1.04 | −0.29 | −1.11 | −0.56 | −0.51 | −1.82 | −0.50 | −0.84 | −1.01 |
10 | CMCC-CMS | −1.08 | −0.79 | −2.16 | −0.86 | −0.71 | −0.74 | −1.44 | −0.18 | −1.35 | −0.76 |
11 | CNRM-CM5 | −1.31 | −2.01 | −1.37 | −0.16 | −1.36 | −0.81 | −1.32 | −0.54 | −0.75 | −0.63 |
12 | CSIRO-MK3-6-0 | −0.70 | −1.25 | −1.23 | −0.66 | −1.06 | −1.02 | −2.07 | −0.30 | −1.13 | −0.99 |
13 | EC-EARTH | −0.32 | −0.69 | −1.41 | −0.51 | −0.83 | −0.43 | −0.31 | −0.50 | −1.86 | −0.24 |
14 | FGOALS-G2 | −2.03 | −1.40 | −1.65 | −0.84 | −0.82 | −1.11 | −1.22 | −0.62 | −1.90 | −0.95 |
15 | GFDL-CM3 | −0.69 | −1.77 | −1.90 | −0.73 | −1.79 | −0.51 | −1.18 | −0.47 | −0.97 | −0.29 |
16 | GFDL-ESM2G | −1.65 | −2.19 | −2.68 | −0.95 | −0.96 | −0.53 | −1.71 | −1.22 | −1.79 | −1.21 |
17 | GFDL-ESM2M | −1.06 | −0.82 | −0.85 | −1.19 | −0.39 | −0.40 | −1.27 | −0.74 | −0.90 | −0.12 |
18 | GISS-E2-H | −1.81 | −1.26 | −1.31 | −0.10 | −1.34 | −0.86 | −1.61 | −0.40 | −0.77 | −1.54 |
19 | GISS-E2-R | −1.80 | −0.97 | −0.94 | −0.39 | −0.67 | −0.16 | −2.14 | −0.74 | −0.84 | −1.00 |
20 | HADGEM2-AO | −2.06 | −1.03 | −1.91 | −0.97 | −2.03 | −0.67 | −1.26 | −0.64 | −0.92 | −0.68 |
21 | HADGEM2-CC | −1.29 | −1.20 | −2.80 | −0.66 | −1.49 | −0.54 | −1.94 | −0.42 | −1.88 | −0.56 |
22 | HADGEM2-ES | −0.95 | −1.65 | −0.90 | −1.01 | −1.30 | 0.02 | −1.09 | −0.63 | −1.66 | −0.32 |
23 | INMCM4 | −0.72 | −1.13 | −2.50 | −0.80 | −0.99 | −0.42 | −0.73 | −0.96 | −0.49 | −0.50 |
24 | IPSL-CM5A-LR | −0.64 | −0.72 | −0.95 | −0.63 | −0.99 | −0.34 | −1.52 | −0.60 | −1.49 | −0.35 |
25 | IPSL-CM5A-MR | −1.29 | −1.08 | −1.39 | −0.22 | −0.84 | −0.57 | −1.38 | −0.98 | −1.82 | −0.47 |
26 | MIROC-ESM | −0.90 | −0.85 | −1.04 | −0.73 | −0.90 | −0.35 | −1.42 | −0.28 | −0.55 | −0.76 |
27 | MIROC-ESM-CHEM | −1.30 | −0.61 | −1.93 | −1.66 | −1.15 | −0.18 | −1.70 | −0.30 | −1.28 | −0.49 |
28 | MIROC5 | −0.83 | −0.88 | −1.92 | −1.25 | −0.42 | −0.39 | −2.63 | −0.43 | −0.71 | −0.92 |
29 | MPI-ESM-LR | −0.63 | −1.62 | −1.54 | −0.37 | −0.32 | −0.60 | −1.53 | −0.51 | −0.65 | −0.38 |
30 | MPI-ESM-MR | −0.63 | −1.20 | −1.41 | −0.87 | −0.81 | −0.65 | −1.01 | −0.60 | −0.70 | −0.45 |
31 | MRI-CGCM3 | −0.83 | −1.04 | −1.23 | −0.85 | −0.41 | −0.95 | −1.56 | −0.71 | −0.90 | −0.53 |
32 | NORESM1-M | −1.90 | −0.48 | −1.72 | −1.17 | −0.89 | −0.52 | −1.77 | −0.66 | −1.36 | −0.48 |
33 | Median_GCM | −1.11 | −0.77 | −0.15 | −0.05 | −0.72 | −0.59 | −1.71 | −0.41 | −1.50 | −0.72 |
Model No | GCM Name | BAL | BIS | COL | DAL | DES | MIA | NYC | PHO | POR | SYR |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ACCESS1-0 | −0.86 | −1.43 | −1.14 | −0.66 | −1.75 | −0.11 | −0.78 | −1.36 | −0.22 | −0.91 |
2 | ACCESS1-3 | −0.71 | −0.74 | −1.01 | −3.45 | −2.68 | −0.30 | −0.36 | −0.78 | −0.48 | −1.67 |
3 | BCC-CSM1-1 | −0.92 | −1.61 | −1.74 | −0.90 | −1.24 | −0.57 | −1.08 | −0.78 | −0.92 | −1.27 |
4 | BCC-CSM1-1-M | −0.82 | −0.87 | −1.18 | −1.09 | −1.79 | −0.25 | −0.44 | −1.49 | −0.67 | −1.29 |
5 | CANESM2 | −1.64 | −1.38 | −0.49 | −0.77 | −1.20 | −0.32 | −0.93 | −0.85 | −0.76 | −0.95 |
6 | CCSM4 | −1.14 | −0.98 | −1.18 | −0.63 | −1.07 | −0.29 | −1.12 | −1.11 | −0.85 | −1.43 |
7 | CESM1-BGC | −0.68 | −0.91 | −1.03 | −1.06 | −1.47 | −0.48 | −1.17 | −0.97 | −0.81 | −1.46 |
8 | CESM1-CAM5 | −1.09 | −1.05 | −0.79 | −4.37 | −0.90 | −0.71 | −1.13 | −0.95 | −0.35 | −1.40 |
9 | CMCC-CM | −1.54 | −0.56 | −0.62 | −1.48 | −0.98 | −0.34 | −1.08 | −1.43 | −0.89 | −1.38 |
10 | CMCC-CMS | −1.61 | −1.03 | −1.35 | −2.04 | −2.33 | −0.56 | −0.99 | −0.85 | −1.02 | −1.60 |
11 | CNRM-CM5 | −0.94 | −1.04 | −1.45 | −0.31 | −2.31 | −0.41 | −1.25 | −1.17 | −0.98 | −1.16 |
12 | CSIRO-MK3-6-0 | −0.63 | −1.74 | −0.37 | −0.94 | −0.93 | −0.28 | −1.33 | −1.22 | −0.67 | −1.36 |
13 | EC-EARTH | −0.68 | −0.86 | −0.79 | −0.64 | −1.67 | −0.11 | −0.87 | −0.52 | −1.54 | −0.60 |
14 | FGOALS-G2 | −1.47 | −1.73 | −0.69 | −5.79 | −2.06 | −0.57 | −1.14 | −0.68 | −0.86 | −0.87 |
15 | GFDL-CM3 | −1.09 | −1.07 | −1.32 | −3.46 | −1.68 | −0.68 | −0.69 | −1.02 | −0.86 | −1.40 |
16 | GFDL-ESM2G | −1.11 | −1.15 | −0.78 | −5.75 | −1.38 | −0.58 | −1.54 | −2.07 | −0.63 | −1.43 |
17 | GFDL-ESM2M | −0.91 | −1.04 | −1.18 | −2.56 | −1.22 | −0.38 | −0.85 | −1.41 | −0.79 | −0.84 |
18 | GISS-E2-H | −0.29 | −1.08 | −1.21 | −1.14 | −1.88 | −0.56 | −0.62 | −1.10 | −0.71 | −0.61 |
19 | GISS-E2-R | −0.36 | −1.12 | −1.24 | −1.01 | −1.61 | −0.34 | −1.25 | −1.67 | −0.73 | −1.23 |
20 | HADGEM2-AO | −0.90 | −0.61 | −0.62 | −1.31 | −2.27 | −0.63 | −0.51 | −0.91 | −0.57 | −1.18 |
21 | HADGEM2-CC | −0.45 | −2.31 | −0.65 | −0.74 | −1.46 | −0.15 | −1.06 | −1.13 | −1.39 | −1.46 |
22 | HADGEM2-ES | −0.89 | −1.38 | −1.56 | −2.61 | −1.33 | −0.45 | −0.79 | −2.34 | −0.90 | −1.60 |
23 | INMCM4 | −0.98 | −1.88 | −1.24 | −3.34 | −3.23 | −0.25 | −0.92 | −0.70 | −1.11 | −1.46 |
24 | IPSL-CM5A-LR | −1.20 | −0.90 | −1.15 | −1.28 | −1.37 | −0.57 | −0.69 | −1.00 | −0.78 | −1.55 |
25 | IPSL-CM5A-MR | −0.78 | −1.50 | −0.79 | −1.76 | −1.23 | −0.46 | −1.03 | −0.92 | −0.39 | −1.86 |
26 | MIROC-ESM | −0.78 | −0.51 | −0.37 | −0.72 | −0.99 | −0.49 | −1.02 | −0.58 | −0.42 | −1.87 |
27 | MIROC-ESM-CHEM | −1.72 | −0.91 | −0.91 | −8.19 | −1.44 | −0.47 | −0.88 | −0.99 | −0.93 | −1.58 |
28 | MIROC5 | −0.66 | −1.08 | −1.19 | −3.86 | −0.74 | −0.85 | −0.57 | −1.20 | −0.83 | −0.77 |
29 | MPI-ESM-LR | −0.70 | −1.04 | −0.89 | −0.36 | −0.77 | −0.51 | −1.29 | −2.40 | −0.56 | −1.46 |
30 | MPI-ESM-MR | −1.17 | −0.87 | −1.54 | −2.85 | −1.79 | −0.60 | −0.70 | −1.47 | −0.60 | −1.24 |
31 | MRI-CGCM3 | −0.84 | −1.06 | −0.51 | −0.66 | −1.61 | −0.40 | −1.12 | −1.14 | −1.05 | −1.77 |
32 | NORESM1-M | −0.24 | −1.14 | −1.20 | −9.57 | −1.23 | −0.57 | −0.20 | −1.21 | −0.76 | −0.87 |
33 | Median_GCM | −1.39 | −0.91 | −0.62 | −0.66 | −1.57 | −0.59 | −1.13 | −0.78 | −0.93 | −1.46 |
Model No | GCM Name | BAL | BIS | COL | DAL | DES | MIA | NYC | PHO | POR | SYR |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ACCESS1-0 | −1.23 | −0.95 | −2.51 | −1.04 | −0.94 | 0.05 | −1.23 | −1.02 | −0.15 | −0.91 |
2 | ACCESS1-3 | −0.46 | −0.98 | −1.09 | −8.99 | −5.11 | −0.16 | −0.71 | −1.64 | −0.21 | −0.73 |
3 | BCC-CSM1-1 | −0.70 | −0.44 | −1.72 | −0.46 | −1.97 | −0.21 | −1.65 | −0.82 | −0.15 | −0.93 |
4 | BCC-CSM1-1-M | −0.66 | −0.88 | −0.56 | −0.18 | −0.83 | −0.09 | −1.31 | −0.43 | −0.21 | −1.11 |
5 | CANESM2 | −1.12 | −1.07 | −0.15 | −0.26 | −0.84 | −0.10 | −1.16 | −0.47 | −0.05 | −1.75 |
6 | CCSM4 | −0.60 | −0.68 | −0.91 | −1.29 | −1.07 | −0.05 | −0.89 | −0.31 | −0.13 | −0.48 |
7 | CESM1-BGC | −0.73 | −1.10 | −1.20 | −0.43 | −1.29 | −0.14 | −1.52 | −0.91 | −0.23 | −1.50 |
8 | CESM1-CAM5 | −0.54 | −1.19 | −1.09 | −8.63 | −2.07 | −0.48 | −0.57 | −1.32 | −0.18 | −0.93 |
9 | CMCC-CM | −1.02 | −0.46 | −0.44 | −0.91 | −0.44 | −0.03 | −0.60 | −0.51 | 0.04 | −1.05 |
10 | CMCC-CMS | −2.64 | −0.38 | −1.30 | −4.08 | −1.44 | −0.02 | −0.70 | −0.90 | −0.20 | −0.60 |
11 | CNRM-CM5 | −0.76 | −1.41 | −0.34 | −1.20 | −1.23 | −0.07 | −1.36 | −0.63 | −0.25 | −1.45 |
12 | CSIRO-MK3-6-0 | −0.94 | −0.89 | −1.24 | −0.97 | −1.26 | −0.12 | −1.29 | −0.09 | −0.12 | −0.81 |
13 | EC-EARTH | −0.57 | −0.81 | −1.66 | −1.46 | −1.66 | −0.08 | −0.27 | −1.15 | −0.02 | −1.14 |
14 | FGOALS-G2 | −1.60 | −5.86 | −1.43 | 11.91 | −1.21 | −0.28 | −0.67 | −1.08 | −0.17 | −1.89 |
15 | GFDL-CM3 | −1.05 | −1.81 | −1.91 | −4.58 | −1.12 | −0.22 | −1.41 | −0.60 | −0.24 | −1.49 |
16 | GFDL-ESM2G | −1.30 | −1.74 | −1.46 | 10.41 | −1.27 | −0.07 | −1.78 | −1.01 | −0.01 | −2.27 |
17 | GFDL-ESM2M | −0.83 | −1.08 | −1.39 | −5.46 | −0.44 | −0.05 | −0.64 | −1.27 | −0.29 | −0.95 |
18 | GISS-E2-H | −1.12 | −0.97 | −2.20 | −0.95 | −1.01 | −0.01 | −1.22 | −0.85 | −0.18 | −1.65 |
19 | GISS-E2-R | −0.45 | −0.54 | −1.17 | −0.86 | −1.68 | 0.09 | −0.47 | −1.04 | −0.16 | −0.83 |
20 | HADGEM2-AO | −1.40 | −0.83 | −2.31 | −1.34 | −0.90 | −0.03 | −0.43 | −1.10 | −0.07 | −0.69 |
21 | HADGEM2-CC | −1.12 | −5.84 | −1.13 | −0.51 | −0.82 | −0.18 | −1.06 | −0.31 | −1.01 | −1.10 |
22 | HADGEM2-ES | −0.47 | −0.83 | −1.70 | −4.94 | −1.12 | −0.04 | −1.35 | −0.54 | −0.07 | −1.22 |
23 | INMCM4 | −0.62 | −4.12 | −1.42 | −7.61 | −5.03 | −0.14 | −0.80 | −1.36 | −0.18 | −0.52 |
24 | IPSL-CM5A-LR | −0.83 | −0.59 | −1.26 | −1.54 | −1.53 | −0.15 | −0.56 | −0.58 | −0.38 | −0.32 |
25 | IPSL-CM5A-MR | −1.28 | −1.45 | −0.93 | −4.03 | −0.80 | −0.08 | −0.83 | −1.12 | −0.12 | −1.01 |
26 | MIROC-ESM | −0.73 | −1.20 | −0.60 | −0.97 | −1.02 | 0.05 | −1.65 | −1.08 | −0.24 | −1.57 |
27 | MIROC-ESM-CHEM | −1.10 | −0.38 | −1.50 | 14.08 | −0.97 | −0.19 | −0.91 | −0.93 | −0.29 | −0.89 |
28 | MIROC5 | −1.10 | −0.86 | −1.41 | −8.38 | −1.51 | −0.26 | −1.03 | −0.78 | −0.04 | −2.12 |
29 | MPI-ESM-LR | −0.37 | −0.96 | −1.29 | −1.03 | −0.88 | −0.13 | −0.97 | −0.76 | −0.05 | −1.21 |
30 | MPI-ESM-MR | −0.35 | −0.71 | −0.51 | −4.47 | −1.17 | −0.19 | −1.34 | −1.17 | −0.06 | −0.48 |
31 | MRI-CGCM3 | −0.69 | −0.59 | −1.90 | −0.97 | −0.98 | −0.06 | −1.61 | −1.44 | −0.29 | −1.02 |
32 | NORESM1-M | −1.26 | −1.21 | −1.49 | 18.23 | −0.79 | −0.21 | −1.41 | −1.60 | −0.13 | −1.78 |
33 | Median_GCM | −1.11 | −0.85 | −0.59 | −0.24 | −0.83 | −0.07 | −1.58 | −0.92 | −0.24 | −1.55 |
Model No | GCM Name | BAL | BIS | COL | DAL | DES | MIA | NYC | PHO | POR | SYR |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ACCESS1-0 | 0.32 | 0.689 | 0.204 | 0.934 | 0.525 | 0.737 | 0.523 | 0.501 | 0.794 | 0.335 |
2 | ACCESS1-3 | 0.778 | 0.833 | 0.584 | 0.602 | 0.422 | 0.75 | 0.78 | 0.349 | 0.556 | 0.695 |
3 | BCC-CSM1-1 | 0.607 | 0.693 | 0.217 | 0.721 | 0.582 | 0.745 | 0.49 | 0.746 | 0.658 | 0.579 |
4 | BCC-CSM1-1-M | 0.692 | 0.846 | 0.496 | 0.89 | 0.715 | 0.775 | 0.619 | 0.601 | 0.753 | 0.654 |
5 | CANESM2 | 0.492 | 0.786 | 0.746 | 0.862 | 0.806 | 0.798 | 0.739 | 0.591 | 0.815 | 0.541 |
6 | CCSM4 | 0.523 | 0.658 | 0.564 | 0.891 | 0.807 | 0.761 | 0.639 | 0.844 | 0.72 | 0.51 |
7 | CESM1-BGC | 0.587 | 0.8 | 0.544 | 0.809 | 0.698 | 0.706 | 0.44 | 0.729 | 0.73 | 0.37 |
8 | CESM1-CAM5 | 0.649 | 0.505 | 0.565 | 0.601 | 0.616 | 0.073 | 0.628 | 0.541 | 0.795 | 0.736 |
9 | CMCC-CM | 0.494 | 0.853 | 0.929 | 0.7 | 0.89 | 0.765 | 0.512 | 0.622 | 0.803 | 0.312 |
10 | CMCC-CMS | 0.427 | 0.766 | 0.253 | 0.662 | 0.678 | 0.631 | 0.615 | 0.766 | 0.572 | 0.514 |
11 | CNRM-CM5 | 0.563 | 0.499 | 0.607 | 0.905 | 0.58 | 0.509 | 0.466 | 0.652 | 0.675 | 0.453 |
12 | CSIRO-MK3-6-0 | 0.694 | 0.592 | 0.615 | 0.724 | 0.69 | 0.561 | 0.437 | 0.823 | 0.749 | 0.446 |
13 | EC-EARTH | 0.883 | 0.905 | 0.554 | 0.816 | 0.722 | 0.723 | 0.855 | 0.604 | 0.528 | 0.858 |
14 | FGOALS-G2 | 0.222 | 0.36 | 0.47 | 0.447 | 0.754 | 0.49 | 0.649 | 0.335 | 0.501 | 0.458 |
15 | GFDL-CM3 | 0.595 | 0.545 | 0.353 | 0.684 | 0.473 | 0.666 | 0.572 | 0.679 | 0.636 | 0.632 |
16 | GFDL-ESM2G | 0.416 | 0.429 | 0.278 | 0.515 | 0.729 | 0.742 | 0.42 | 0.269 | 0.62 | 0.32 |
17 | GFDL-ESM2M | 0.628 | 0.743 | 0.654 | 0.473 | 0.937 | 0.756 | 0.663 | 0.246 | 0.662 | 0.778 |
18 | GISS-E2-H | 0.499 | 0.642 | 0.536 | 0.87 | 0.584 | 0.64 | 0.533 | 0.675 | 0.63 | 0.34 |
19 | GISS-E2-R | 0.535 | 0.76 | 0.593 | 0.8 | 0.751 | 0.892 | 0.524 | 0.436 | 0.751 | 0.464 |
20 | HADGEM2-AO | 0.403 | 0.829 | 0.409 | 0.627 | 0.488 | 0.623 | 0.744 | 0.649 | 0.808 | 0.688 |
21 | HADGEM2-CC | 0.643 | 0.288 | 0.333 | 0.813 | 0.495 | 0.528 | 0.539 | 0.756 | 0.184 | 0.611 |
22 | HADGEM2-ES | 0.675 | 0.501 | 0.458 | 0.517 | 0.609 | 0.862 | 0.652 | 0.539 | 0.552 | 0.63 |
23 | INMCM4 | 0.667 | 0.481 | 0.248 | 0.596 | 0.446 | 0.676 | 0.741 | 0.387 | 0.736 | 0.68 |
24 | IPSL-CM5A-LR | 0.683 | 0.665 | 0.658 | 0.704 | 0.684 | 0.715 | 0.63 | 0.646 | 0.506 | 0.773 |
25 | IPSL-CM5A-MR | 0.497 | 0.605 | 0.629 | 0.865 | 0.779 | 0.641 | 0.565 | 0.376 | 0.559 | 0.633 |
26 | MIROC-ESM | 0.647 | 0.832 | 0.786 | 0.778 | 0.777 | 0.844 | 0.548 | 0.734 | 0.79 | 0.465 |
27 | MIROC-ESM-CHEM | 0.502 | 0.852 | 0.382 | 0.187 | 0.682 | 0.788 | 0.557 | 0.713 | 0.539 | 0.666 |
28 | MIROC5 | 0.638 | 0.85 | 0.394 | 0.407 | 0.833 | 0.654 | 0.247 | 0.737 | 0.849 | 0.376 |
29 | MPI-ESM-LR | 0.761 | 0.579 | 0.455 | 0.932 | 0.929 | 0.645 | 0.54 | 0.576 | 0.89 | 0.677 |
30 | MPI-ESM-MR | 0.685 | 0.662 | 0.643 | 0.595 | 0.762 | 0.624 | 0.682 | 0.629 | 0.888 | 0.735 |
31 | MRI-CGCM3 | 0.688 | 0.722 | 0.566 | 0.653 | 0.835 | 0.569 | 0.464 | 0.467 | 0.625 | 0.517 |
32 | NORESM1-M | 0.46 | 0.831 | 0.339 | 0.222 | 0.855 | 0.734 | 0.624 | 0.353 | 0.618 | 0.646 |
33 | Median_GCM | 0.495 | 0.83 | 0.655 | 0.815 | 0.834 | 0.634 | 0.538 | 0.657 | 0.633 | 0.524 |
References
- Lyon, B.; Barnston, A.G. Diverse characteristics of U.S. summer heat waves. J. Clim. 2017, 30, 7827–7845. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Klein Tank, A.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Surface and Atmospheric Climate Change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Qin, D., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2014 Synthesis Report Summary for Policymakers; Stocker, T.F., Qin, D., Plattner, G., Tigno, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Kunkel, K.E.; Stevens, L.E.; Stevens, S.E.; Sun, L.; Janssen, E.; Wuebbles, D.; Dobson, J.G. Regional Climate Trends and Scenarios for the U.S. National Climate Assessment Part 9. Climate of the Contiguous United States; NOAA: Washington, DC, USA, 2013. [Google Scholar]
- Melillo, J.M.; Terese, T.C.; Yohe, G.W. (Eds.) Climate Change Impacts in the United States: The Third National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2014; ISBN 9780160924026. [Google Scholar]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Chang. 2013, 119, 345–357. [Google Scholar] [CrossRef]
- Horton, R.; Yohe, G.; Easterling, W.; Kates, R.; Ruth, M.; Sussman, E.; Whelchel, A.; Wolfe, D.; Lipschultz, F. Ch. 16: Northeast. In Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Terese, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 371–395. [Google Scholar]
- Carter, L.M.; Jones, J.W.; Berry, L.; Burkett, V.; Murley, J.F.; Obeysekera, J.; Schramm, P.J.; Wear, D. Ch. 17: Southeast and the Caribbean. In Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Terese, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 396–417. [Google Scholar]
- Pryor, S.; Scavia, D.; Downer, C.; Gaden, M.; Iverson, L.; Nordstrom, R.; Patz, J.; Roberson, G. Ch. 18: Mid- west. In Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Terese, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 418–440. [Google Scholar]
- Shafer, M.; Ojima, D.; Antle, J.M.; Kluck, D.; McPherson, R.A.; Petersen, S.; Scanlon, B.; Shermand, K. Ch. 19: Great Plains. In Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Terese, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 441–461. [Google Scholar]
- Mote, P.; Snover, A.K.; Capalbo, S.; Eigenbrode, S.D.; Glick, P.; Littell, J.; Raymondi, R.; Reeder, S. Ch. 21: North- west. In Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Terese, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 487–513. [Google Scholar]
- Garfin, G.; Franco, G.; Blanco, H.; Comrie, P.; Gonzalez, T.; Piechota, T.; Smyth, R.; Waskom, R. Ch. 20: Southwest. In Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Terese, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 462–486. [Google Scholar]
- Meehl, G.A.; Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 2014, 119, 12500–12512. [Google Scholar] [CrossRef] [Green Version]
- Hansen, C.; McDonald, S.; Nabors, A.; Shafiei Shiva, J. Using the National Water Model Forecasts to Plan for and Manage Ecological Flow and Low-Flow during Drought. In National Water Center Innovators Program Summer Institute Report 2017; Johnson, J.M., Coll, J.M., Maidment, D.R., Cohen, S., Nelson, J., Ogden, F., Praskievicz, S., Clark, E.P., Eds.; CUAHSI: Cambridge, MA, USA, 2017; pp. 66–74. [Google Scholar]
- Hansen, C.; Shafiei Shiva, J.; McDonald, S.; Nabros, A. Assessing Retrospective National Water Model Streamflow with Respect to Droughts and Low Flows in the Colorado River Basin. J. Am. Water Resour. Assoc. 2019, 55, 964–975. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Cheng, L.; Mazdiyasni, O.; Farahmand, A. Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophys. Res. Lett. 2014, 41, 8847–8852. [Google Scholar] [CrossRef] [Green Version]
- Cox, R.A.; Drews, M.; Rode, C.; Nielsen, S.B. Simple future weather files for estimating heating and cooling demand. Build. Environ. 2015, 83, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Russo, S.; Sterl, A. Global changes in indices describing moderate temperature extremes from the daily output of a climate model. J. Geophys. Res. Atmos. 2011, 116, 1–12. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Ashfaq, M. Intensification of hot extremes in the United States. Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kunkel, K.E.; Liang, X.Z.; Zhu, J. Regional climate model projections and uncertainties of U.S. summer heat waves. J. Clim. 2010, 23, 4447–4458. [Google Scholar] [CrossRef]
- Zubler, E.M.; Fischer, A.M.; Liniger, M.A.; Croci-Maspoli, M.; Scherrer, S.C.; Appenzeller, C. Localized climate change scenarios of mean temperature and precipitation over Switzerland. Clim. Chang. 2014, 125, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Gershunov, A.; Guirguis, K. California heat waves in the present and future. Geophys. Res. Lett. 2012, 39, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, C.; Solecki, W.D.; Parshall, L.; Chopping, M.; Pope, G.; Goldberg, R. Characterizing the urban heat island in current and future climates in New Jersey. Environ. Hazards 2005, 6, 51–62. [Google Scholar] [CrossRef]
- Pierce, D.W.; Cayan, D.R.; Thrasher, B.L. Statistical Downscaling Using Localized Constructed Analogs (LOCA). J. Hydrometeorol. 2014, 15, 2558–2585. [Google Scholar] [CrossRef]
- Hazeleger, W.; Van Den Hurk, B.J.J.M.; Min, E.; Van Oldenborgh, G.J.; Petersen, A.C.; Stainforth, D.A.; Vasileiadou, E.; Smith, L.A. Tales of future weather. Nat. Clim. Chang. 2015, 5, 107–113. [Google Scholar] [CrossRef]
- Smith, L.A. What might we learn from climate forecasts? Proc. Natl. Acad. Sci. USA 2002, 99, 2487–2492. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, E.; Sutton, R. The Potential to Narrow Uncertainty in Regional Climate Predictions. Bull. Am. Meteorol. Soc. 2009, 90, 1095–1108. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, R.; Herger, N.; Sedláček, J.; Eyring, V.; Fischer, E.M.; Knutti, R. Prospects and Caveats of Weighting Climate Models for Summer Maximum Temperature Projections Over North America. J. Geophys. Res. Atmos. 2018, 123, 4509–4526. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Zwiers, F.W.; Song, L.; Wan, H.; Hu, T.; Yin, H.; Ren, G. Rapid increase in the risk of extreme summer heat in Eastern China. Nat. Clim. Chang. 2014, 4, 1082–1085. [Google Scholar] [CrossRef]
- Teng, H.; Branstator, G.; Meehl, G.A.; Washington, W.M. Projected intensification of subseasonal temperature variability and heat waves in the Great Plains. Geophys. Res. Lett. 2016, 43, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cowan, T.; Purich, A.; Perkins, S.; Pezza, A.; Boschat, G.; Sadler, K. More frequent, longer, and hotter heat waves for Australia in the Twenty-First Century. J. Clim. 2014, 27, 5851–5871. [Google Scholar] [CrossRef]
- Knutti, R.; Furrer, R.; Tebaldi, C.; Cermak, J.; Meehl, G.A. Challenges in combining projections from multiple climate models. J. Clim. 2010, 23, 2739–2758. [Google Scholar] [CrossRef] [Green Version]
- McSweeney, C.F.; Jones, R.G. How representative is the spread of climate projections from the 5 CMIP5 GCMs used in ISI-MIP? Clim. Serv. 2016, 1, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Annan, J.D.; Hargreaves, J.C. Reliability of the CMIP3 ensemble. Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef]
- Abramowitz, G.; Bishop, C.H. Climate model dependence and the ensemble dependence transformation of CMIP projections. J. Clim. 2015, 28, 2332–2348. [Google Scholar] [CrossRef]
- Hazeleger, W.; Severijns, C.; Tido, S.; Stefanescu, S.; Yang, S.; Wang, X.; Wyser, K.; Dutra, E.; Baldasano, J.M.; Bintanja, R.; et al. EC-Earth V2.2: Description and validation of a new seamless earth system prediction model. Am. Meteorol. Soc. 2010, 39, 1357–1363. [Google Scholar] [CrossRef] [Green Version]
- Johnston, M.S.; Eriksson, P.; Eliasson, S.; Jones, C.G.; Forbes, R.M.; Murtagh, D.P. The representation of tropical upper tropospheric water in EC Earth V2. Clim. Dyn. 2012, 39, 2713–2731. [Google Scholar] [CrossRef] [Green Version]
- Annan, J.D.; Hargreaves, J.C. Understanding the CMIP3 multimodel ensemble. J. Clim. 2011, 24, 4529–4538. [Google Scholar] [CrossRef]
- Knutti, R.; Masson, D.; Gettelman, A. Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett. 2013, 40, 1194–1199. [Google Scholar] [CrossRef]
- Mahlstein, I.; Knutti, R. September Arctic sea ice predicted to disappear near 2°C global warming above present. J. Geophys. Res. Atmos. 2012, 117, 1–11. [Google Scholar] [CrossRef]
- Huber, M.; Mahlstein, I.; Wild, M.; Fasullo, J.; Knutti, R. Constraints on climate sensitivity from radiation patterns in climate models. J. Clim. 2011, 24, 1034–1052. [Google Scholar] [CrossRef] [Green Version]
- Boé, J.; Hall, A.; Qu, X. Deep ocean heat uptake as a major source of spread in transient climate change simulations. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar] [CrossRef]
- Cox, P.M.; Pearson, D.; Booth, B.B.; Friedlingstein, P.; Huntingford, C.; Jones, C.D.; Luke, C.M. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 2013, 494, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Aghakouchak, A.; Ragno, E.; Love, C.; Moftakhari, H.R. Projected Changes in California’s Precipitation Intensity-Duration-Frequency Curves; Energy Commision of Satet of California: Sacramento, CA, USA, 2018.
- Herger, N.; Abramowitz, G.; Knutti, R.; Angélil, O.; Lehmann, K.; Sanderson, B.M. Selecting a climate model subset to optimise key ensemble properties. Earth Syst. Dyn. 2018, 9, 135–151. [Google Scholar] [CrossRef] [Green Version]
- Karpechko, A.Y.; Maraun, D.; Eyring, V. Improving Antarctic Total Ozone Projections by a Process-Oriented Multiple Diagnostic Ensemble Regression. J. Atmos. Sci. 2013, 70, 3959–3976. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Arblaster, J.M.; Cionni, I.; Sedláček, J.; Perlwitz, J.; Young, P.J.; Bekki, S.; Bergmann, D.; Cameron-Smith, P.; Collins, W.J.; et al. Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. Atmos. 2013, 118, 5029–5060. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, B.M.; Knutti, R.; Caldwell, P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 2015, 28, 5171–5194. [Google Scholar] [CrossRef] [Green Version]
- Geil, K.L.; Serra, Y.L.; Zeng, X. Assessment of CMIP5 model simulations of the North American monsoon system. J. Clim. 2013, 26, 8787–8801. [Google Scholar] [CrossRef]
- Knutti, R.; Sedláček, J.; Sanderson, B.M.; Lorenz, R.; Fischer, E.M.; Eyring, V. A climate model projection weighting scheme accounting for performance and interdependence. Geophys. Res. Lett. 2017, 44, 1909–1918. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Livneh, B.; Bohn, T.J.; Pierce, D.W.; Munoz-Arriola, F.; Nijssen, B.; Vose, R.; Cayan, D.R.; Brekke, L. A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950–2013. Sci. Data 2015, 2, 150042. [Google Scholar] [CrossRef] [PubMed]
- Pierce, D.; Cayan, D. High-Resolution LOCA Downscaled Climate Projections Aim to Better Represent Extreme Weather Events; Scripps Institution of Oceanography (SIO): La Jolla, CA, USA, 2017. [Google Scholar]
- Guirguis, K.; Gershunov, A.; Cayan, D.R.; Pierce, D.W. Heat wave probability in the changing climate of the Southwest US. Clim. Dyn. 2018, 50, 3853–3864. [Google Scholar] [CrossRef]
- Engström, J.; Keellings, D. Drought in the Southeastern USA: An assessment of downscaled CMIP5 models. Clim. Res. 2018, 74, 251–262. [Google Scholar] [CrossRef]
- Hu, H.; Ayyub, B.M. Validating and Enhancing Extreme Precipitation Projections by Downscaled Global Climate Model Results and Copula Methods. J. Hydrol. Eng. 2019, 24, 1–14. [Google Scholar] [CrossRef]
- Praskievicz, S. Downscaling climate-model output in mountainous terrain using local topographic lapse rates for hydrologic modeling of climate-change impacts. Phys. Geogr. 2018, 39, 99–117. [Google Scholar] [CrossRef]
- Bi, D.; Dix, M.; Marsland, S.J.; O’Farrell, S.; Rashid, H.A.; Uotila, P.; Hirst, A.C.; Kowalczyk, E.; Golebiewski, M.; Sullivan, A.; et al. The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteorol. Oceanogr. J. 2013, 63, 41–64. [Google Scholar] [CrossRef]
- Robinson, P.J. On the definition of a heat wave. J. Appl. Meteorol. 2001, 40, 762–775. [Google Scholar] [CrossRef]
- McPhillips, L.E.; Chang, H.; Chester, M.V.; Depietri, Y.; Friedman, E.; Grimm, N.B.; Kominoski, J.S.; Mcphearson, T.; Méndez-lázaro, P.; Rosi, E.J.; et al. Defining Extreme Events: A Cross-Disciplinary Review. Earth’s Future 2018, 6, 441–455. [Google Scholar] [CrossRef]
- Smith, T.T.; Zaitchik, B.F.; Gohlke, J.M. Heat waves in the United States: Definitions, patterns and trends. Clim. Chang. 2013, 118, 811–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keellings, D.; Waylen, P. Increased risk of heat waves in Florida: Characterizing changes in bivariate heat wave risk using extreme value analysis. Appl. Geogr. 2014, 46, 90–97. [Google Scholar] [CrossRef]
- Shafiei Shiva, J.; Chandler, D.G.; Kunkel, K.E. Localized Changes in Heat Wave Properties Across the United States. Earth’s Future 2019, 7, 300–319. [Google Scholar] [CrossRef] [Green Version]
- Shafiei Shiva, J. R Code for Calculating Heatwave Properties Using Ambient Temperature (v1.0). Available online: https://zenodo.org/record/1314762 (accessed on 20 December 2019).
- Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Marler, R.T.; Arora, J.S. The weighted sum method for multi-objective optimization: New insights. Struct. Multidiscip. Optim. 2010, 41, 853–862. [Google Scholar] [CrossRef]
- Mardani, A.; Jusoh, A.; Nor, K.M.D.; Khalifah, Z.; Zakwan, N.; Valipour, A. Multiple criteria decision-making techniques and their applications—A review of the literature from 2000 to 2014. Econ. Res. Istraz. 2015, 28, 516–571. [Google Scholar] [CrossRef]
- Boran, F.E.; Genç, S.; Kurt, M.; Akay, D. A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Syst. Appl. 2009, 36, 11363–11368. [Google Scholar] [CrossRef]
- Sun, C.C. A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods. Expert Syst. Appl. 2010, 37, 7745–7754. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, Y.W.; Tang, D.W.; Chen, Y.W. TOPSIS with Belief Structure for Group Belief Multiple Criteria Decision Making. Int. J. Autom. Comput. 2010, 7, 359–364. [Google Scholar] [CrossRef]
- Behzadian, M.; Khanmohammadi Otaghsara, S.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Cheng, C.T.; Zhao, M.Y.; Chau, K.W.; Wu, X.Y. Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure. J. Hydrol. 2006, 316, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.V. Decision Making in the Manufacturing Environment: Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods; Springer: London, UK, 2007; ISBN 9781846288180. [Google Scholar]
- Nyimbili, P.H.; Erden, T.; Karaman, H. Integration of GIS, AHP and TOPSIS for earthquake hazard analysis. Nat. Hazards 2018, 92, 1523–1546. [Google Scholar] [CrossRef]
- Navarro-Estupiñan, J.; Robles-Morua, A.; Vivoni, E.R.; Zepeda, J.E.; Montoya, J.A.; Verduzco, V.S. Observed trends and future projections of extreme heat events in Sonora, Mexico. Int. J. Climatol. 2018, 38, 5168–5181. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Hazeleger, W.; Bintanja, R. EC-Earth: A seamless Earth-system prediction approach in action. Clim. Dyn. 2012, 39, 2609–2661. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; van den Hurk, B.; Haarsma, R.; Hazeleger, W. Impact of vegetation variability on potential predictability and skill of EC-Earth simulations. Clim. Dyn. 2012, 39, 2733–2746. [Google Scholar] [CrossRef]
- Semmler, T.; McGrath, R.; Wang, S. The impact of Arctic sea ice on the Arctic energy budget and on the climate of the Northern mid-latitudes. Clim. Dyn. 2012, 39, 2675–2694. [Google Scholar] [CrossRef] [Green Version]
- Sterl, A.; Bintanja, R.; Brodeau, L.; Gleeson, E.; Koenigk, T.; Schmith, T.; Semmler, T.; Severijns, C.; Wyser, K.; Yang, S. A look at the ocean in the EC-Earth climate model. Clim. Dyn. 2012, 39, 2631–2657. [Google Scholar] [CrossRef]
- Herring, S.C.; Hoell, A.; Hoerling, M.P.; Kossin, J.P.; Schreck, C.J.; Stott, P.A. Introduction to explaining extreme events of 2015 from a climate perspective. Bull. Am. Meteorol. Soc. 2016, 97, S1–S3. [Google Scholar] [CrossRef] [Green Version]
- Prodhomme, C.; Batté, L.; Massonnet, F.; Davini, P.; Bellprat, O.; Guemas, V.; Doblas-Reyes, F.J. Benefits of increasing the model resolution for the seasonal forecast quality in EC-earth. J. Clim. 2016, 29, 9141–9162. [Google Scholar] [CrossRef] [Green Version]
- Shafiei Shiva, J.; Chandler, D.G. Projection of Future Heat Waves in the United States Based on Locally Selected GCMs; AGU: San Francisco, CA, USA, 2019. [Google Scholar]
- Fayaz, N.; Condon, L.E.; Chandler, D.G. Evaluating the Sensitivity of Projected Reservoir Reliability to the Choice of Climate Projection: A Case Study of Bull Run Watershed, Portland, Oregon. Water Resour. Manag. 2020, 34, 1991–2009. [Google Scholar] [CrossRef]
- Gyawali, R.; Garbrecht, J.; Zhang, J.X. Suitability of global circulation model downscaled BCCA daily precipitation for local hydrologic applications. J. Hydrol. Eng. 2016, 21, 1–8. [Google Scholar] [CrossRef]
- Parker, W.S. II - Confirmation and adequacy-for-purpose in climate modelling. Proc. Aristot. Soc. Suppl. Vol. 2009, 83, 233–249. [Google Scholar] [CrossRef]
GCM Number | GCM Name | GCM Run (RCP4.5) | GCM Run (RCP8.5) | Atmospheric Grid Resolution | Origin Country |
---|---|---|---|---|---|
1 | ACCESS1-0 | 1 | 1 | 192 × 288 | Australia |
2 | ACCESS1-3 | 1 | 1 | 192 × 288 | Australia |
3 | BCC-CSM1-1 | 1 | 1 | 128 × 64 | China |
4 | BCC-CSM1-1-M | 1 | 1 | 128 × 64 | China |
5 | CANESM2 | 1 | 1 | 128 × 64 | Canada |
6 | CCSM4 | 6 | 6 | 288 × 200 | USA |
7 | CESM1-BGC | 1 | 1 | 288 × 382 | USA |
8 | CESM1-CAM5 | 1 | 1 | 288 × 382 | USA |
9 | CMCC-CM | 1 | 1 | 480 × 480 | Italy |
10 | CMCC-CMS | 1 | 1 | 96 × 96 | Italy |
11 | CNRM-CM5 | 1 | 1 | 256 × 128 | France |
12 | CSIRO-MK3-6–0 | 1 | 1 | 192 × 96 | Australia |
13 | EC-EARTH | 8 | 2 | 320 × 320 | European Community |
14 | FGOALS-G2 | 1 | 1 | 128 × 128 | China |
15 | GFDL-CM3 | 1 | 1 | 144 × 90 | USA |
16 | GFDL-ESM2G | 1 | 1 | 144 × 90 | USA |
17 | GFDL-ESM2M M | 1 | 1 | 144 × 90 | USA |
18 | GISS-E2-H | 6 | 2 | 144 × 90 | USA |
19 | GISS-E2-R | 6 | 2 | 144 × 90 | USA |
20 | HADGEM2-AO | 1 | 1 | 192 × 145 | UK |
21 | HADGEM2-CC | 1 | 1 | 192 × 145 | UK |
22 | HADGEM2-ES | 1 | 1 | 192 × 145 | UK |
23 | INMCM4 | 1 | 1 | 180 × 120 | Russia |
24 | IPSL-CM5A-LR | 1 | 1 | 96 × 96 | France |
25 | IPSL-CM5A-MR | 1 | 1 | 144 × 144 | France |
26 | MIROC-ESM | 1 | 1 | 128 × 64 | Japan |
27 | MIROC-ESM-CHEM | 1 | 1 | 128 × 64 | Japan |
28 | MIROC5 | 1 | 1 | 256 × 128 | Japan |
29 | MPI-ESM-LR | 1 | 1 | 192 × 96 | Germany |
30 | MPI-ESM-MR | 1 | 1 | 192 × 96 | Germany |
31 | MRI-CGCM3 | 1 | 1 | 320 × 160 | Japan |
32 | NORESM1-M | 1 | 1 | 144 × 96 | Norway |
Heatwave Property | Baltimore | Bismarck | Colorado Springs | Dallas | Des Moines | Miami | NYC | Phoenix | Portland | Syracuse |
---|---|---|---|---|---|---|---|---|---|---|
Best for Days | EC-EARTH | NORESM1-M | CMCC-CM | ACCESS1-0 | GFDL-ESM2M M | GISS-E2-R | CCSM4 | MPI-ESM-LR | EC-EARTH | EC-EARTH |
Best for waves | BCC-CSM1-1-M | MIROC5 | CNRM-CM5 | BCC-CSM1-1 | GFDL-ESM2M M | ACCESS1-3 | GISS-E2-R | IPSL-CM5A-LR | MPI-ESM-MR | EC-EARTH |
Best for total | EC-EARTH | EC-EARTH | CMCC-CM | MPI-ESM-LR | GFDL-ESM2M M | HADGEM2-ES | HADGEM2-ES | CCSM4 | MPI-ESM-MR | EC-EARTH |
Best for longest | CESM1-CAM5 | BCC-CSM1-1-M | CMCC-CM | IPSL-CM5A-MR | INMCM4 | HADGEM2-ES | CESM1-CAM5 | BCC-CSM1-1 | CESM1-BGC | EC-EARTH |
Best for Intensity | EC-EARTH | Median_GCM | Median_GCM | MPI-ESM-LR | Median_GCM | HADGEM2-ES | EC-EARTH | CCSM4 | MPI-ESM-MR | EC-EARTH |
Best for Night | EC-EARTH | NORESM1-M | Median_GCM | Median_GCM | MPI-ESM-LR | HADGEM2-ES | EC-EARTH | BCC-CSM1-1 | INMCM4 | GFDL-ESM2M M |
Best for First | NORESM1-M | MIROC-ESM | CSIRO-MK3-6–0 | CNRM-CM5 | MIROC5 | EC-EARTH | NORESM1-M | EC-EARTH | ACCESS1-0 | EC-EARTH |
Best for Last | MPI-ESM-MR | CMCC-CMS | CANESM2 | BCC-CSM1-1-M | CMCC-CM | GISS-E2-R | EC-EARTH | CSIRO-MK3-6–0 | CMCC-CM | IPSL-CM5A-LR |
Least fit for Days | FGOALS-G2 | CNRM-CM5 | BCC-CSM1-1 | MIROC-ESM-CHEM | HADGEM2-AO | CESM1-CAM5 | FGOALS-G2 | EC-EARTH | MIROC5 | FGOALS-G2 |
Least fit for waves | MIROC-ESM-CHEM | GFDL-ESM2G | BCC-CSM1-1 | FGOALS-G2 | HADGEM2-ES | CESM1-CAM5 | CSIRO-MK3-6–0 | GFDL-ESM2M M | FGOALS-G2 | CESM1-BGC |
Least fit for total | ACCESS1-0 | CNRM-CM5 | BCC-CSM1-1 | MIROC5 | HADGEM2-AO | CESM1-CAM5 | CMCC-CM | ACCESS1-3 | FGOALS-G2 | MIROC5 |
Least fit for longest | ACCESS1-0 | CESM1-CAM5 | CMCC-CMS | GFDL-ESM2M M | HADGEM2-CC | GISS-E2-H | MIROC5 | GFDL-ESM2M M | IPSL-CM5A-MR | CMCC-CM |
Least fit for Intensity | ACCESS1-0 | CNRM-CM5 | BCC-CSM1-1 | MIROC-ESM-CHEM | HADGEM2-AO | CESM1-CAM5 | MIROC5 | ACCESS1-3 | FGOALS-G2 | MIROC5 |
Least fit for Night | ACCESS1-0 | GFDL-ESM2G | HADGEM2-CC | MIROC-ESM-CHEM | HADGEM2-AO | CESM1-CAM5 | MIROC5 | GFDL-ESM2G | FGOALS-G2 | GISS-E2-H |
Least fit for First | MIROC-ESM-CHEM | HADGEM2-CC | BCC-CSM1-1 | NORESM1-M | INMCM4 | MIROC5 | GFDL-ESM2G | MPI-ESM-LR | EC-EARTH | MIROC-ESM |
Least fit for Last | CMCC-CMS | FGOALS-G2 | ACCESS1-0 | NORESM1-M | ACCESS1-3 | CESM1-CAM5 | GFDL-ESM2G | ACCESS1-3 | HADGEM2-CC | GFDL-ESM2G |
Model No | GCM Name | BAL | BIS | COL | DAL | DES | MIA | NYC | PHO | POR | SYR |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ACCESS1-0 | 32 | 18 | 33 | 1 | 28 | 13 | 25 | 24 | 8 | 31 |
2 | ACCESS1-3 | 2 | 6 | 12 | 23 | 33 | 10 | 2 | 30 | 27 | 6 |
3 | BCC-CSM1-1 | 16 | 17 | 32 | 16 | 26 | 11 | 27 | 5 | 18 | 17 |
4 | BCC-CSM1-1-M | 5 | 5 | 19 | 5 | 17 | 6 | 14 | 19 | 10 | 11 |
5 | CANESM2 | 27 | 12 | 3 | 8 | 9 | 4 | 5 | 20 | 4 | 18 |
6 | CCSM4 | 21 | 21 | 15 | 4 | 8 | 8 | 10 | 1 | 15 | 22 |
7 | CESM1-BGC | 18 | 11 | 17 | 12 | 18 | 17 | 30 | 8 | 14 | 29 |
8 | CESM1-CAM5 | 11 | 27 | 14 | 24 | 23 | 33 | 12 | 22 | 7 | 4 |
9 | CMCC-CM | 26 | 2 | 1 | 18 | 3 | 7 | 26 | 17 | 6 | 33 |
10 | CMCC-CMS | 29 | 13 | 30 | 20 | 22 | 25 | 15 | 3 | 25 | 21 |
11 | CNRM-CM5 | 19 | 29 | 10 | 3 | 27 | 31 | 28 | 13 | 16 | 26 |
12 | CSIRO-MK3-6–0 | 4 | 24 | 9 | 15 | 19 | 29 | 31 | 2 | 12 | 27 |
13 | EC-EARTH | 1 | 1 | 16 | 9 | 16 | 15 | 1 | 18 | 30 | 1 |
14 | FGOALS-G2 | 33 | 32 | 20 | 30 | 13 | 32 | 9 | 31 | 32 | 25 |
15 | GFDL-CM3 | 17 | 26 | 26 | 19 | 31 | 19 | 16 | 10 | 19 | 14 |
16 | GFDL-ESM2G | 30 | 31 | 29 | 28 | 15 | 12 | 32 | 32 | 23 | 32 |
17 | GFDL-ESM2M M | 15 | 15 | 6 | 29 | 1 | 9 | 7 | 33 | 17 | 2 |
18 | GISS-E2-H | 23 | 22 | 18 | 6 | 25 | 23 | 23 | 11 | 21 | 30 |
19 | GISS-E2-R | 20 | 14 | 11 | 13 | 14 | 1 | 24 | 26 | 11 | 24 |
20 | HADGEM2-AO | 31 | 10 | 23 | 22 | 30 | 27 | 3 | 14 | 5 | 7 |
21 | HADGEM2-CC | 13 | 33 | 28 | 11 | 29 | 30 | 21 | 4 | 33 | 16 |
22 | HADGEM2-ES | 9 | 28 | 21 | 27 | 24 | 2 | 8 | 23 | 28 | 15 |
23 | INMCM4 | 10 | 30 | 31 | 25 | 32 | 18 | 4 | 27 | 13 | 8 |
24 | IPSL-CM5A-LR | 8 | 19 | 4 | 17 | 20 | 16 | 11 | 15 | 31 | 3 |
25 | IPSL-CM5A-MR | 24 | 23 | 8 | 7 | 10 | 22 | 17 | 28 | 26 | 13 |
26 | MIROC-ESM | 12 | 7 | 2 | 14 | 11 | 3 | 19 | 7 | 9 | 23 |
27 | MIROC-ESM-CHEM | 22 | 3 | 25 | 33 | 21 | 5 | 18 | 9 | 29 | 10 |
28 | MIROC5 | 14 | 4 | 24 | 31 | 7 | 20 | 33 | 6 | 3 | 28 |
29 | MPI-ESM-LR | 3 | 25 | 22 | 2 | 2 | 21 | 20 | 21 | 1 | 9 |
30 | MPI-ESM-MR | 7 | 20 | 7 | 26 | 12 | 26 | 6 | 16 | 2 | 5 |
31 | MRI-CGCM3 | 6 | 16 | 13 | 21 | 5 | 28 | 29 | 25 | 22 | 20 |
32 | NORESM1-M | 28 | 8 | 27 | 32 | 4 | 14 | 13 | 29 | 24 | 12 |
33 | Median_GCM | 25 | 9 | 5 | 10 | 6 | 24 | 22 | 12 | 20 | 19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafiei Shiva, J.; Chandler, D.G. Projection of Future Heat Waves in the United States. Part I: Selecting a Climate Model Subset. Atmosphere 2020, 11, 587. https://doi.org/10.3390/atmos11060587
Shafiei Shiva J, Chandler DG. Projection of Future Heat Waves in the United States. Part I: Selecting a Climate Model Subset. Atmosphere. 2020; 11(6):587. https://doi.org/10.3390/atmos11060587
Chicago/Turabian StyleShafiei Shiva, Javad, and David G. Chandler. 2020. "Projection of Future Heat Waves in the United States. Part I: Selecting a Climate Model Subset" Atmosphere 11, no. 6: 587. https://doi.org/10.3390/atmos11060587
APA StyleShafiei Shiva, J., & Chandler, D. G. (2020). Projection of Future Heat Waves in the United States. Part I: Selecting a Climate Model Subset. Atmosphere, 11(6), 587. https://doi.org/10.3390/atmos11060587