Criteria-Based Identification of Important Fuels for Wildland Fire Emission Research
Abstract
:1. Introduction
1.1. Terminology and Scope
1.2. Background of Fuels Classification
1.3. Importance of Fuels Prioritization for Emissions Research
2. Developing Criteria for Fuels Prioritization
2.1. Splitting Versus Lumping: Two Possible Approaches
2.2. Total Emissions
2.3. Impacts
2.4. Availability and Uncertainty
2.5. Potential for Future Importance
3. Applying the Criteria
3.1. Magnitude of Carbon Emissions
3.2. Impacts of Fire Emissions: Economic and Regional Air Quality and Public Health
3.3. Availability/Uncertainty
3.4. Future Potential
3.5. Results of Joint Application of the Criteria
4. Discussion
Refining the Criteria for Future Use
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- NWCG Incident Operations Standards Working Team. Glossary of Wildland Fire Terminology; National Wildfire Coordinating Group (NWCG), National Interagency Fire Center, National Fire Equipment System: Boise, ID, USA, 2006; p. 183.
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D′Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; USDA Forest Service, Intermountain Experiment Station: Ogden, UT, USA, 1972; p. 46.
- Mell, W.E.; McDermott, R.J.; Forney, G.P. Wildland Fire Behavior Modeling: Perspectives, New Approaches and Applications. In Proceedings of the 3rd Fire Behavoir and Fuels Conference, Spokane, WA, USA, 25–29 October 2010. [Google Scholar]
- Prichard, S.J.; Ottmar, R.D. State of Fire Behavior Models and their Application to Ecosystem and Smoke Management Issues: Special Session Summary Report. In Proceedings of the Smoke Symposium, International Association of Wildland Fire, College Park, MD, USA, 24 October 2013; p. 56. [Google Scholar]
- Finney, M.A.; Cohen, J.D.; Forthofer, J.M.; McAllister, S.S.; Gollner, M.J.; Gorham, D.J.; Saito, K.; Akafuah, N.K.; Adam, B.A.; English, J.D. Role of Buoyant Flame Dynamics in Wildfire Spread. Proc. Natl. Acad. Sci. USA 2015, 112, 9833–9838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albini, F.A. Estimating Wildfire Behavior and Effects; Intermountain Forest and Range Experimental Station, Forest Service, Department of Agriculture: Ogden, UT, USA, 1976; Volume 30, p. 92.
- Scott, J.H.; Burgan, R.E. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model; General Technical Report RMRS-GTR-153; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005; p. 172.
- Ottmar, R.D.; Sandberg, D.V.; Riccardi, C.L.; Prichard, S.J. An Overview of the Fuel Characteristic Classification System—Quantifying, Classifying, and Creating Fuelbeds for Resource Planning. Can. J. For. Res. 2007, 37, 2383–2393. [Google Scholar] [CrossRef]
- Weise, D.R.; Wright, C.S. Wildland Fire Emissions, Carbon and Climate: Characterizing Wildland Fuels. For. Ecol. Manag. 2014, 317, 26–40. [Google Scholar] [CrossRef]
- Kochanski, A.; Fournier, A.; Mandel, J. Experimental Design of a Prescribed Burn Instrumentation. Atmosphere 2018, 9, 296. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Kochanski, A.; Baker, K.R.; Mell, W.; Linn, R.; Paugam, R.; Mandel, J.; Fournier, A.; Jenkins, M.A.; Goodrick, S.; et al. Fire Behaviour and Smoke Modelling: Model Improvement and Measurement Needs for Next-Generation Smoke Research and Forecasting Systems. Int. J. Wildland Fire 2019, 28, 570–588. [Google Scholar] [CrossRef] [Green Version]
- Prichard, S.; Larkin, S.N.; Ottmar, R.; French, H.N.; Baker, K.; Brown, T.; Clements, C.; Dickinson, M.; Hudak, A.; Kochanski, A.; et al. The Fire and Smoke Model Evaluation Experiment—A Plan for Integrated, Large Fire—Atmosphere Field Campaigns. Atmosphere 2019, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Goodrick, S.; Achtemeier, G. The Weather Conditions for Desired Smoke Plumes at a FASMEE Burn Site. Atmosphere 2018, 9, 259. [Google Scholar] [CrossRef] [Green Version]
- Mehadi, A.; Moosmüller, H.; Campbell, D.E.; Ham, W.; Schweizer, D.; Tarnay, L.; Hunter, J. Laboratory and Field Evaluation of Real-time and Near Real-time PM2.5 Smoke Monitors. J. Air Waste Manag. Assoc. 2020, 70, 158–179. [Google Scholar] [CrossRef]
- Nelson, K.N.; Boehmler, J.M.; Khlystov, A.Y.; Moosmüller, H.; Samburova, V.; Bhattarai, C.; Wilcox, E.M.; Watts, A.C. A Smoke Emissions Sensing and Sampling Instrument Package for Small Unmanned Aircraft Systems: Development and Testing. Fire 2019, 2, 32. [Google Scholar] [CrossRef] [Green Version]
- Engling, G.; Carrico, C.M.; Kreidenweis, S.M.; Collett, J.L., Jr.; Day, D.E.; Malm, W.C.; Lincoln, E.; Hao, W.M.; Iinuma, Y.; Herrmann, H. Determination of Levoglucosan in Biomass Combustion Aerosol by High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection. Atmos. Environ. 2006, 40, S299–S311. [Google Scholar] [CrossRef]
- Bytnerowicz, A.; Arbaugh, M.; Riebau, A.; Andersen, C. Wildland Fires and Air Pollution; Elsevier: Amsterdam, The Netherland, 2009; Volume 8. [Google Scholar]
- Liu, J.C.; Pereira, G.; Uhl, S.A.; Bravo, M.A.; Bell, M.L. A Systematic Review of the Physical Health Impacts from Non-Occupational Exposure to Wildfire Smoke. Environ. Res. 2015, 136, 120–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, F.H.; Henderson, S.B.; Chen, Y.; Randerson, J.T.; Marlier, M.; DeFries, R.S.; Kinney, P.; Bowman, D.M.J.S.; Brauer, M. Estimated Global Mortality Attributable to Smoke from Landscape Fires. Environ. Health Perspect. 2012, 120, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Ford, B.; Val Martin, M.; Zelasky, S.E.; Fischer, E.V.; Anenberg, S.C.; Heald, C.L.; Pierce, J.R. Future Fire Impacts on Smoke Concentrations, Visibility, and Health in the Contiguous United States. GeoHealth 2018, 2, 229–247. [Google Scholar] [CrossRef] [Green Version]
- Ottmar, R.D. Wildland Fire Emissions, Carbon, and Climate: Modeling Fuel Consumption. For. Ecol. Manag. 2014, 317, 41–50. [Google Scholar] [CrossRef]
- O’Halloran, T.L.; Law, B.E.; Goulden, M.L.; Wang, Z.S.; Barr, J.G.; Schaaf, C.; Brown, M.; Fuentes, J.D.; Gockede, M.; Black, A.; et al. Radiative Forcing of Natural Forest Disturbances. Glob. Chang. Biol. 2012, 18, 555–565. [Google Scholar] [CrossRef] [Green Version]
- Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; et al. The Impact of Boreal Forest Fire on Climate Warming. Science 2006, 314, 1130. [Google Scholar] [CrossRef] [Green Version]
- Westerling, A.L.; Gershunov, A.; Brown, T.J.; Cayan, D.R.; Dettinger, M.D. Climate and Wildfire in the Western United States. Bull. Am. Meteorol. Soc. 2003, 84, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and Earlier Spring Increase Western US Forest Wildfire Activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission Factors for Open and Domestic Biomass Burning for Use in Atmospheric Models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef] [Green Version]
- French, N.H.F.; McKenzie, D.; Erickson, T.; Koziol, B.; Billmire, M.; Endsley, K.A.; Yager Scheinerman, N.K.; Jenkins, L.; Miller, M.E.; Ottmar, R.; et al. Modeling Regional-Scale Wildland Fire Emissions with the Wildland Fire Emissions Information System. Earth Interact. 2014, 18, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Watson, J.G.; Cao, J.; Chen, L.W.A.; Wang, Q.; Tian, J.; Wang, X.; Gronstal, S.; Ho, S.S.H.; Watts, A.C.; Chow, J.C. Gaseous, PM2.5 Mass, and Speciated Emission Factors from Laboratory Chamber Peat Combustion. Atmos. Chem. Phys. 2019, 19, 14173–14193. [Google Scholar] [CrossRef] [Green Version]
- McMeeking, G.R.; Kreidenweis, S.M.; Baker, S.; Carrico, C.M.; Chow, J.C.; Collett, J.L., Jr.; Hao, W.M.; Holden, A.S.; Kirchstetter, T.W.; Malm, W.C.; et al. Emissions of Trace Gases and Aerosols during the Open Combustion of Biomass in the Laboratory. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-W.A.; Moosmüller, H.; Arnott, W.P.; Chow, J.C.; Watson, J.G.; Susott, R.A.; Babbitt, R.E.; Wold, C.E.; Lincoln, E.N.; Hao, W.M. Emissions from Laboratory Combustion of Wildland Fuels: Emission Factors and Source Profiles. Environ. Sci. Technol. 2007, 41, 4317–4325. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Quayle, B.; Geron, C.; Belote, A.; McKenzie, D.; Zhang, X.Y.; O′Neill, S.; Wynne, K.K. Estimating Emissions from Fires in North America for Air Quality Modeling. Atmos. Environ. 2006, 40, 3419–3432. [Google Scholar] [CrossRef]
- Conard, S.G.; Ivanova, G.A. Wildfire in Russian Boreal Forests—Potential Impacts of Fire Regime Characteristics on Emissions and Global Carbon Balance Estimates. Environ. Pollut. 1997, 98, 305–313. [Google Scholar] [CrossRef]
- Conard, S.G.; Sukhinin, A.I.; Stocks, B.J.; Cahoon, D.R.; Davidenko, E.P.; Ivanova, G.A. Determining Effects of Area Burned and Fire Severity on Carbon Cycling and Emissions in Siberia. Clim. Chang. 2002, 55, 197–211. [Google Scholar] [CrossRef]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to more wildfire in western North. American forests as climate changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef] [Green Version]
- Ward, D.E. Factors Influencing the Emissions of Gases and Particulate Matter from Biomass Burning. In Fire in the Tropical Biota; Goldammer, J.G., Ed.; Springer: Berlin/Heidelberg, Germany, 1990; Volume 84, pp. 418–436. [Google Scholar]
- Goodrick, S.L.; Brown, T.J.; Jolly, W.M. Weather, Fuels, Fire Behavior, Plumes, and Smoke—The Nexus of Fire Meteorology. Fire Manag. Today 2017, 75, 33–38. [Google Scholar]
- Kim, Y.H.; King, C.; Krantz, T.; Hargrove, M.M.; George, I.J.; McGee, J.; Copeland, L.; Hays, M.D.; Landis, M.S.; Higuchi, M.; et al. The Role of Fuel Type and Combustion Phase on the Toxicity of Biomass Smoke Following Inhalation Exposure in Mice. Arch. Toxicol. 2019, 93, 1501–1513. [Google Scholar] [CrossRef]
- Kim, Y.H.; Warren, S.H.; Krantz, Q.T.; King, C.; Jaskot, R.; Preston, W.T.; George, B.J.; Hays, M.D.; Landis, M.S.; Higuchi, M.; et al. Mutagenicity and Lung Toxicity of Smoldering vs. Flaming Emissions from Various Biomass Fuels: Implications for Health Effects from Wildland Fires. Environ. Health Perspect. 2018, 126, 017011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watts, A.C.; Kobziar, L.N. Smoldering Combustion and Ground Fires: Ecological Effects and Multi-Scale Significance. Fire Ecol. 2013, 9, 124–132. [Google Scholar] [CrossRef]
- Ferek, R.J.; Reid, J.S.; Hobbs, P.V.; Blake, D.R.; Liousse, C. Emission Factors of Hydrocarbons, Halocarbons, Trace gases and Particles from Biomass Burning in Brazil. J. Geophys. Res. 1998, 103, 32107–32118. [Google Scholar] [CrossRef] [Green Version]
- Hallquist, M.; Wenger, J.C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N.M.; George, C.; Goldstein, A.H.; et al. The Formation, Properties, and Impact of Secondary Organic Aerosol: Current and Emerging Issues. Atmos. Chem. Phys. Discuss. 2009, 9, 3555–3762. [Google Scholar] [CrossRef] [Green Version]
- Rudich, Y.; Donahue, N.M.; Mentel, T.F. Aging of Organic Aaerosol: Bridging the Gap Between Laboratory and Field Studies. Annu. Rev. Phys. Chem. 2007, 58, 321–352. [Google Scholar] [CrossRef] [PubMed]
- Abbatt, J.P.D.; Lee, A.K.Y.; Thornton, J.A. Quantifying Trace Gas Uptake to Tropospheric Aerosol: Recent Advances and Remaining Challenges. Chem. Soc. Rev. 2012, 41, 6555–6581. [Google Scholar] [CrossRef]
- Chakrabarty, R.K.; Moosmüller, H.; Garro, M.A.; Arnott, W.P.; Walker, J.W.; Susott, R.A.; Babbitt, R.E.; Wold, C.E.; Lincoln, E.N.; Hao, W.M. Emissions from the Laboratory Combustion of Wildland Fuels: Particle Morphology and Size. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.W.A.; Verburg, P.; Shackelford, A.; Zhu, D.; Susfalk, R.; Chow, J.C.; Watson, J.G. Moisture Effects on Carbon and Nitrogen Emission from Burning of Wildland Biomass. Atmos. Chem. Phys. 2010, 10, 6617–6625. [Google Scholar] [CrossRef] [Green Version]
- Menning, K.M.; Stephens, S.L. Fire Climbing in the Forest: A Semiqualitative, Semiquantitative Approach to Assessing Ladder Fuel Hazards. West. J. Appl. For. 2007, 22, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Benavent-Corai, J.; Rojo, C.; Suárez-Torres, J.; Velasco-García, L. Scaling Properties in Forest Fire Sequences: The Human Role in the Order of Nature. Ecol. Model. 2007, 205, 336–342. [Google Scholar] [CrossRef]
- Porterie, B.; Kaiss, A.; Clerc, J.-P.; Zekri, L.; Zekri, N. Universal Scaling In Wildfire Fractal Propagation. Appl. Phys. Lett. 2008, 93, 204101. [Google Scholar] [CrossRef]
- Ichoku, C.; Kaufman, Y.J. A Method to Derive Smoke Emission Rates from MODIS Fire Radiative Energy Measurements. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2636–2649. [Google Scholar] [CrossRef]
- Randerson, J.T.; Chen, Y.; van der Werf, G.R.; Rogers, B.M.; Morton, D.C. Global Burned Area and Biomass Burning Emissions from Small Fires. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.; van Leeuwen, T.T. Global Fire Emissions and the Contribution of Deforestation, Savanna, Forest, Agricultural, and Peat Fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R. Analysis of Daily, Monthly, and Annual Burned Area Using the Fourth-Generation Global Fire Emissions Database (GFED4). J. Geophys. Res. 2013, 118, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Congalton, G.R.; Gu, J.; Yadav, K.; Thenkabail, P.; Ozdogan, M. Global Land Cover Mapping: A Review and Uncertainty Analysis. Remote Sens. 2014, 6, 12070–12093. [Google Scholar] [CrossRef] [Green Version]
- Page, S.E.; Siegert, F.; Rieley, J.O.; Boehm, H.-D.V.; Jaya, A.; Limin, S. The Amount of Carbon Released from Peat and Forest Fires in Indonesia during 1997. Nature 2002, 420, 61–65. [Google Scholar] [CrossRef]
- French, N.H.F.; de Groot, W.J.; Jenkins, L.K.; Rogers, B.M.; Alvarado, E.; Amiro, B.; de Jong, B.; Goetz, S.; Hoy, E.; Hyer, E.; et al. Model Comparisons for Estimating Carbon Emissions from North American Wildland Fire. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Schultz, M.G.; Heil, A.; Hoelzemann, J.J.; Spessa, A.; Thonicke, K.; Goldammer, J.G.; Held, A.C.; Pereira, J.M.C.; van het Bolscher, M. Global Wildland Fire Emissions from 1960 to 2000. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef]
- Andreae, M.O. Emission of Trace Gases and Aerosols from Biomass Burning—An Updated Assessment. Atmos. Chem. Phys. 2019, 19, 8523–8546. [Google Scholar] [CrossRef] [Green Version]
- Duclos, P.; Sanderson, L.M.; Lipsett, M. The 1987 Forest Fire Disaster in California: Assessment of Emergency Room Visits. Arch. Environ. Health 1990, 45, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Künzli, N.; Avol, E.; Wu, J.; Gauderman, W.J.; Rappaport, E.; Millstein, J.; Bennion, J.; McConnell, R.; Gilliland, F.D.; Berhane, K.; et al. Health Effects of the 2003 Southern California Wildfires on Children. Am. J. Respir. Crit. Care Med. 2006, 174, 1221–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doerr, S.H.; Santín, C. Global Trends in Wildfire and its Impacts: Perceptions versus Realities in a Changing World. Phil. Trans. R. Soc. B 2016, 371, 20150345. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-K.; Jakus, P.M. Wildfire, National Park Visitation, and Changes in Regional Economic Activity. J. Outdoor Recreat. Tour. 2019, 26, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Kochi, I.; Champ, P.A.; Loomis, J.B.; Donovan, G.H. Valuing Morbidity Effects of Wildfire Smoke Exposure from the 2007 Southern California Wildfires. J. For. Econ. 2016, 25, 29–54. [Google Scholar] [CrossRef]
- Laursen, K.K.; Hobbs, P.V.; Radke, L.F.; Rasmussen, R.A. Some Trace Gas Emissions from North American Biomass Fires with an Assessment of Regional and Global Fluxes from Biomass Burning. J. Geophys. Res. 1992, 97, 20687–20701. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Forrister, H.; Liu, J.; Dibb, J.; Anderson, B.; Schwarz, J.P.; Perring, A.E.; Jimenez, J.L.; Campuzano-Jost, P.; Wang, Y.; et al. Top-of-Atmosphere Radiative Forcing Affected by Brown Carbon in the Upper Troposphere. Nat. Geosci. 2017, 10, 486–489. [Google Scholar] [CrossRef]
- Giglio, L.; Loboda, T.; Roy, D.P.; Quayle, B.; Justice, C.O. An Active-Fire Based Burned Area Mapping Algorithm for the MODIS Sensor. Remote Sens. Environ. 2009, 113, 408–420. [Google Scholar] [CrossRef]
- Simon, M.; Plummer, S.; Fierens, F.; Hoelzemann, J.J.; Arino, O. Burnt Area Detection at Global Scale Using ATSR-2: The GLOBSCAR Products and their Qualification. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Hoelzemann, J.J.; Schultz, M.G.; Brasseur, G.P.; Granier, C.; Simon, M. Global Wildland Fire Emission Model (GWEM): Evaluating the Use of Global Area Burnt Satellite Data. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Brown, T.; Clements, C.; Larkin, N.; Anderson, K.; Butler, B.; Goodrick, S.; Ichoku, C.; Lamb, B.; Mell, R.; Ottmar, R. Validating the Next Generation of Wildland Fire and Smoke Models for Operational and Research Use—A National Plan; Joint Fire Science Program: Boise, ID, USA, 2014; p. 73.
- Garofalo, L.; Pothier, M.A.; Levin, E.J.T.; Campos, T.; Kreidenweis, S.M.; Farmer, D.K. Emission and Evolution of Submicron Organic Aerosol in Smoke from Wildfires in the Western United States. ACS Earth Space Chem. 2019. [Google Scholar] [CrossRef] [Green Version]
- Warneke, C.; Schwarz, J.P.; Ryerson, T.; Crawford, J.; Dibb, J.; Lefer, B.; Roberts, J.; Trainer, M.; Murphy, D.; Brown, S.; et al. Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ): A NOAA/NASA Interagency Intensive Study of North American Fires: 2018; National Oceanic and Atmospheric Administration: Boulder, CO, USA, 2018. Available online: https://www.esrl.noaa.gov/csd/projects/firex/whitepaper.pdf (accessed on 14 June 2020).
- Prosser, I.P.; Williams, L. The Effect of Wildfire on Runoff and Erosion in Native Eucalyptus Forest. Hydrol. Process. 1998, 12, 251–265. [Google Scholar] [CrossRef]
- Miller, J.D.; Safford, H. Trends in Wildfire Severity: 1984 to 2010 in the Sierra Nevada, Modoc Plateau, and Southern Cascades, California, USA. Fire Ecol. 2012, 8, 41–57. [Google Scholar] [CrossRef]
- Baker, W.L. Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA? PLoS ONE 2015, 10, e0136147. [Google Scholar] [CrossRef]
- Baker, W.L. Correction: Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA? PLoS ONE 2015, 10, e0141936. [Google Scholar] [CrossRef] [PubMed]
- Abatzoglou, J.T.; Williams, A.P. Impact of Anthropogenic Climate Change on Wildfire across Western US Forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, T.J.; Hall, B.L.; Westerling, A.L. The Impact of Twenty-First Century Climate Change on Wildland Fire Danger in the Western United States: An Applications Perspective. Clim. Chang. 2004, 62, 365–388. [Google Scholar] [CrossRef]
- Liu, Y.; Stanturf, J.; Goodrick, S. Trends in Global Wildfire Potential in a Changing Climate. For. Ecol. Manag. 2010, 259, 685–697. [Google Scholar] [CrossRef]
- Moritz, M.A.; Parisien, M.-A.; Batllori, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate Change and Disruptions to Global Fire Activity. Ecosphere 2012, 3, art49. [Google Scholar] [CrossRef]
- Knorr, W.; Dentener, F.; Lamarque, J.F.; Jiang, L.; Arneth, A. Wildfire Air Pollution Hazard during the 21st Century. Atmos. Chem. Phys. 2017, 17, 9223–9236. [Google Scholar] [CrossRef] [Green Version]
- Knorr, W.; Jiang, L.; Arneth, A. Climate, CO2 and Human Population Impacts on Global Wildfire Emissions. Biogeosciences 2016, 13, 267–282. [Google Scholar] [CrossRef] [Green Version]
- Andela, N.; Morton, D.C.; Giglio, L.; Paugam, R.; Chen, Y.; Hantson, S.; Van Der Werf, G.R.; Randerson, J.T. The Global Fire Atlas of Individual Fire Size, Duration, Speed and Direction. Earth Syst. Sci. Data 2019, 11, 529–552. [Google Scholar] [CrossRef] [Green Version]
- Christian, T.J.; Kleiss, B.; Yokelson, R.J.; Holzinger, R.; Crutzen, P.J.; Hao, W.M.; Saharjo, B.H.; Ward, D.E. Comprehensive Laboratory Measurements of Biomass-Burning Emissions: 1 Emissions from Indonesian, African, and Other Fuels. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Cofer, W.R., III; Levine, J.S.; Sebacher, D.I.; Winstead, E.L.; Riggan, P.J.; Stocks, B.J.; Brass, J.A.; Ambrosia, V.G.; Boston, P.J. Trace Gas Emissions from Chaparral and Boreal Forest Fires. J. Geophys. Res. 1989, 94, 2255–2259. [Google Scholar] [CrossRef]
- Cofer, W.R., III; Levine, J.S.; Winstead, E.L.; Stocks, B.J. Gaseous Emissions from Canadian Boreal Forest Fires. Atmos. Environ. 1990, 24, 1653–1659. [Google Scholar] [CrossRef]
- Keene, W.C.; Lobert, R.M.; Crutzen, P.J.; Maben, J.R.; Scharffe, D.H.; Landmann, T.; Hély, C.; Brain, C. Emissions of Major Gaseous and Particulate Species during Experimental Burns of Southern African Biomass. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Lacaux, J.P.; Cachier, H.; Delmas, R. Biomass Burning in Africa: An Overview of its Impact on Atmospheric Chemistry. In Fire in the Environment: The Ecological, Atmospheric, and Climatic Importance of Vegetation Fires; Crutzen, P.J., Goldammer, J.G., Eds.; John Wiley: New York, NY, USA, 1993; pp. 159–191. [Google Scholar]
- May, A.A.; McMeeking, G.R.; Lee, T.; Taylor, J.W.; Craven, J.S.; Burling, I.; Sullivan, A.P.; Akagi, S.; Collett, J.L., Jr.; Flynn, M.; et al. Aerosol Emissions from Prescribed Fires in the United States: A Synthesis of Laboratory and Aircraft Measurements. J. Geophys. Res. 2014, 119, 11826–11849. [Google Scholar] [CrossRef] [Green Version]
- Nara, H.; Tanimoto, H.; Tohjima, Y.; Mukai, H.; Nojiri, Y.; Machida, T. Emission factors of CO2, CO and CH4 from Sumatran peatland fires in 2013 based on shipboard measurements. Tellus B Chem. Phys. Meteorol. 2017, 69, 1399047. [Google Scholar] [CrossRef] [Green Version]
- Radke, L.F.; Hegg, D.A.; Hobbs, P.V.; Nance, J.D.; Lyons, J.H.; Laursen, K.K.; Weiss, R.E.; Riggan, P.J.; Ward, D.E. Particulate and Trace Gas Emissions from Large Biomass Fires in North America. In Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications; Levine, J.S., Ed.; MIT Press: Cambridge, MA, USA, 1991; pp. 209–224. [Google Scholar]
- Sinha, P.; Hobbs, P.V.; Yokelson, R.J.; Bertschi, I.T.; Blake, D.R.; Simpson, I.J.; Gao, S.; Kirchstetter, T.W.; Novakov, T. Emissions of Trace Gases and Particles from Savanna Fires in Southern Africa. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Sinha, P.; Hobbs, P.V.; Yokelson, R.J.; Blake, D.R.; Gao, S.; Kirchstetter, T.W. Emissions from Miombo Woodland and Dambo Grassland Savanna Fires. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Smith, T.E.L.; Evers, S.; Yule, C.M.; Gan, J.Y. In Situ Tropical Peatland Fire Emission Factors and Their Variability, as Determined by Field Measurements in Peninsula Malaysia. Glob. Biogeochem. Cycles 2018, 32, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.E.L.; Paton-Walsh, C.; Meyer, C.P.; Cook, G.D.; Maier, S.W.; Russell-Smith, J.; Wooster, M.J.; Yates, C.P. New Emission Factors for Australian Vegetation Fires Measured Using Open-Path Fourier Transform Infrared Spectroscopy—Part 2: Australian Tropical Savanna Fires. Atmos. Chem. Phys. 2014, 14, 11335–11352. [Google Scholar] [CrossRef] [Green Version]
- Soares Neto, T.G.; Carvalho, J.A.; Cortez, E.V.; Azevedo, R.G.; Oliveira, R.A.; Fidalgo, W.R.R.; Santos, J.C. Laboratory Evaluation of Amazon Forest Biomass Burning Emissions. Atmos. Environ. 2011, 45, 7455–7461. [Google Scholar] [CrossRef]
- Soares Neto, T.G.; Carvalho, J.A.; Veras, C.A.G.; Alvarado, E.C.; Gielow, R.; Lincoln, E.N.; Christian, T.J.; Yokelson, R.J.; Santos, J.C. Biomass Consumption and CO2, CO and Main Hydrocarbon Gas Emissions in an Amazonian Forest Clearing Fire. Atmos. Environ. 2009, 43, 438–446. [Google Scholar] [CrossRef]
- Stockwell, C.E.; Jayarathne, T.; Cochrane, M.A.; Ryan, K.C.; Putra, E.I.; Saharjo, B.H.; Nurhayati, A.D.; Albar, I.; Blake, D.R.; Simpson, I.J.; et al. Field Measurements of Trace Gases and Aerosols Emitted by Peat Fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmos. Chem. Phys. 2016, 16, 11711–11732. [Google Scholar] [CrossRef] [Green Version]
- Strand, T.; Gullett, B.; Urbanski, S.; O′Neill, S.; Potter, B.; Aurell, J.; Holder, A.; Larkin, N.; Moore, M.; Rorig, M. Grassland and Forest Understorey Biomass Emissions from Prescribed Fires in the South-Eastern United States—RxCADRE 2012. Int. J. Wildland Fire 2016, 25, 102–113. [Google Scholar] [CrossRef]
- Yokelson, R.J.; Burling, I.R.; Gilman, J.B.; Warneke, C.; Stockwell, C.E.; de Gouw, J.; Akagi, S.K.; Urbanski, S.P.; Veres, P.; Roberts, J.M.; et al. Coupling Field and Laboratory Measurements to Estimate the Emission Factors of Identified and Unidentified Trace Gases for Prescribed Fires. Atmos. Chem. Phys. 2013, 13, 89–116. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O.; Merlet, P. Emission of Trace Gases and Aerosols from Biomass Burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Prichard, S.J.; Ottmar, R.D.; Anderson, G.K. Consume 3.0 User’s Guide; Pacific Wildland Fire Sciences Laboratory, USDA Forest Service, Pacific Northwest Research Station: Seattle, WA, USA, 2006.
- Olson, J.S.; Watts, J.A.; Allison, L.J. Carbon in Live Vegetation of Major World Ecosystems; ORNL-5862; Office of Energy Research, U.S. Department of Energy: Washington, DC, USA, 1983; p. 181.
- Gibbs, H.K. Olson’s Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: An Updated Database Using the GLC2000 Land Cover Product NDP-017b; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2006.
- Kasischke, E.S.; French, N.H.F.; Harrell, P.; Christensen, N.L., Jr.; Ustin, S.L.; Barry, D. Monitoring of Wildfires in Boreal Forests Using Large-Area AVHRR NDVI Composite Image Data. Remote Sens. Environ. 1993, 45, 61–71. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Hyer, E.J.; Novelli, P.C.; Bruhwiler, L.P.; French, N.H.F.; Sukhinin, A.I.; Hewson, J.H.; Stocks, B.J. Influences of Boreal Fire Emissions on Northern Hemisphere Atmospheric Carbon and Carbon Monoxide. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef]
- Hao, W.M.; Ward, D.E.; Olbu, G.; Baker, S.P. Emissions of CO2, CO, and hydrocarbons from fires in diverse African savanna ecosystems. J. Geophys. Res. 1996, 101, 23577–23584. [Google Scholar] [CrossRef]
- Bian, Q.; Jathar, S.H.; Kodros, J.K.; Barsanti, K.C.; Hatch, L.E.; May, A.A.; Kreidenweis, S.M.; Pierce, J.R. Secondary Organic Aerosol Formation in Biomass-Burning Plumes: Theoretical Analysis of Lab Studies and Ambient Plumes. Atmos. Chem. Phys. 2017, 17, 5459–5475. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, D.A.; Wigder, N.L. Ozone Production from Wildfires: A Critical Review. Atmos. Environ. 2012, 51, 1–10. [Google Scholar] [CrossRef]
- Jaffe, D.A.; O’Neill, S.M.; Larkin, N.K.; Holder, A.L.; Peterson, D.L.; Halofsky, J.E.; Rappold, A.G. Wildfire and Prescribed Burning Impacts on Air Quality in the United States. J. Air Waste Manag. Assoc. 2020. [Google Scholar] [CrossRef]
- Oliveira, M.; Delerue-Matos, C.; Pereira, M.C.; Morais, S. Environmental Particulate Matter Levels during 2017 Large Forest Fires and Megafires in the Center Region of Portugal: A Public Health Concern? Int. J. Environ. Res. Public Health 2020, 17, 1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, G.J.; Prior, L.D.; Jolly, W.M.; Cochrane, M.A.; Murphy, B.P.; Bowman, D.M.J.S. Measurement of Inter- and Intra-Annual Variability of Landscape Fire Activity at a Continental Scale: The Australian Case. Environ. Res. Lett. 2016, 11, 035003. [Google Scholar] [CrossRef] [Green Version]
- See, S.W.; Balasubramanian, R.; Rianawati, E.; Karthikeyan, S.; Streets, D.G. Characterization and Source Apportionment of Particulate Matter ≤2.5 μm in Sumatra, Indonesia, during a Recent Peat Fire Episode. Environ. Sci. Technol. 2007, 41, 3488–3494. [Google Scholar] [CrossRef]
- Cui, M.; Chen, Y.; Zheng, M.; Li, J.; Tang, J.; Han, Y.; Song, D.; Yan, C.; Zhang, F.; Tian, C.; et al. Emissions and Characteristics of Particulate Matter from Rainforest Burning in the Southeast Asia. Atmos. Environ. 2018, 191, 194–204. [Google Scholar] [CrossRef]
- Engling, G.; He, J.; Betha, R.; Balasubramanian, R. Assessing the Regional Impact of Indonesian Biomass Burning Emissions Based on Organic Molecular Tracers and Chemical Mass Balance Modeling. Atmos. Chem. Phys. 2014, 14, 8043–8054. [Google Scholar] [CrossRef] [Green Version]
- Betha, R.; Behera, S.N.; Balasubramanian, R. 2013 Southeast Asian Smoke Haze: Fractionation of Particulate-Bound Elements and Associated Health Risk. Environ. Sci. Technol. 2014, 48, 4327–4335. [Google Scholar] [CrossRef]
- Heil, A.; Langmann, B.; Aldrian, E. Indonesian Peat and Vegetation Fire Emissions: Study on Factors Influencing Large-Scale Smoke Haze Pollution Using a Regional Atmospheric Chemistry Model. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 113–133. [Google Scholar] [CrossRef]
- Sastry, N. Forest Fires, Air Pollution, and Mortality in Southeast Asia. Demography 2002, 39, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.; Donato, D.; Azuma, D.; Law, B. Pyrogenic Carbon Emission from a Large Wildfire in Oregon, United States. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.; Urbanski, S.P.; Dixit, P.; Qi, L.; Burling, I.R.; Yokelson, R.J.; Johnson, T.J.; Shrivastava, M.; Jung, H.S.; Weise, D.R.; et al. Laboratory Characterization of PM Emissions from Combustion of Wildland Biomass Fuels. J. Geophys. Res. 2013, 118, 9914–9929. [Google Scholar] [CrossRef]
- Urbanski, S. Wildland Fire Emissions, Carbon, and Climate: Emission Factors. For. Ecol. Manag. 2014, 317, 51–60. [Google Scholar] [CrossRef]
- Aurell, J.; Gullett, B.K.; Tabor, D. Emissions from Southeastern U.S. Grasslands and Pine Savannas: Comparison of Aerial and Ground Field Measurements with Laboratory Burns. Atmos. Environ. 2015, 111, 170–178. [Google Scholar] [CrossRef]
- Chakrabarty, R.K.; Moosmüller, H.; Chen, L.-W.A.; Lewis, K.; Arnott, W.P.; Mazzoleni, C.; Dubey, M.K.; Wold, C.E.; Hao, W.M.; Kreidenweis, S.M. Brown Carbon in Tar Balls from Smoldering Biomass Combustion. Atmos. Chem. Phys. 2010, 10, 6363–6370. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-W.A.; Moosmüller, H.; Arnott, W.P.; Chow, J.C.; Watson, J.G.; Susott, R.A.; Babbitt, R.E.; Wold, C.E.; Lincoln, E.N.; Hao, W.M. Particle Emissions from Laboratory Combustion of Wildland Fuels: In Situ Optical and Mass Measurements. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Engling, G.; Moosmüller, H.; Arnott, W.P.; Chen, A.L.W.; Wold, C.E.; Hao, W.M.; He, K.B. Light Absorption by Biomass Burning Source Emissions. Atmos. Environ. 2016, 127, 347–354. [Google Scholar] [CrossRef]
- DeMott, P.J.; Petters, M.D.; Prenni, A.J.; Carrico, C.M.; Kreidenweis, S.M.; Collett, J.L.; Moosmüller, H. Ice Nucleation Behavior of Biomass Combustion Particles at Cirrus Temperatures. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Levin, E.J.T.; McMeeking, G.R.; Carrico, C.M.; Mack, L.E.; Kreidenweis, S.M.; Wold, C.E.; Moosmüller, H.; Arnott, W.P.; Hao, W.M.; Collett, J.; et al. Biomass Burning Smoke Aerosol Properties Measured during FLAME. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Lewis, K.; Arnott, W.P.; Moosmüller, H.; Chakrabarty, R.K.; Carrico, C.M.; Kreidenweis, S.M.; Day, D.E.; Malm, W.C.; Laskin, A.; Jimenez, J.L.; et al. Reduction in Biomass Burning Aerosol Light Absorption upon Humidification: Roles of Inorganically-Induced Hygroscopicity, Particle Collapse, and Photoacoustic Heat and Mass Transfer. Atmos. Chem. Phys. 2009, 9, 8949–8966. [Google Scholar] [CrossRef] [Green Version]
- Lewis, K.; Arnott, W.P.; Moosmüller, H.; Wold, C.E. Strong Spectral Variation of Biomass Smoke Light Absorption and Single Scattering Albedo Observed with a Novel Dual-Wavelength Photoacoustic Instrument. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Mack, L.A.; Levin, E.J.T.; Kreidenweis, S.M.; Obrist, D.; Moosmüller, H.; Lewis, K.A.; Arnott, W.P.; McMeeking, G.R.; Sullivan, A.P.; Wold, C.E.; et al. Optical Closure Experiments for Biomass Smoke Aerosols. Atmos. Chem. Phys. 2010, 10, 9017–9026. [Google Scholar] [CrossRef] [Green Version]
- Mazzoleni, L.R.; Zielinska, B.; Moosmüller, H. Emissions of Levoglucosan, Methoxy Phenols, and Organic Acids from Prescribed Burns, Laboratory Combustion of Wildland Fuels, and Residential Wood Combustion. Environ. Sci. Technol. 2007, 41, 2115–2122. [Google Scholar] [CrossRef]
- Obrist, D.; Moosmuller, H.; Schurmann, R.; Chen, L.W.A.; Kreidenweis, S.M. Particulate-Phase and Gaseous Elemental Mercury Emissions during Biomass Combustion: Controlling Factors and Correlation with Particulate Matter Emissions. Environ. Sci. Technol. 2008, 42, 721–727. [Google Scholar] [CrossRef]
- Petters, M.D.; Carrico, C.M.; Kreidenweis, S.M.; Prenni, A.J.; DeMott, P.J.; Collett, J.L.; Moosmüller, H. Cloud Condensation Nucleation Activity of Biomass Burning Aerosol. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Petters, M.D.; Parsons, M.T.; Prenni, A.J.; DeMott, P.J.; Kreidenweis, S.M.; Carrico, C.M.; Sullivan, A.P.; McMeeking, G.R.; Levin, E.; Wold, C.E.; et al. Ice Nuclei Emissions from Biomass Burning. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Watson, J.G.; Chow, J.C.; Chen, L.-W.A.; Lowenthal, D.H.; Fujita, E.M.; Kuhns, H.D.; Sodeman, D.A.; Campbell, D.E.; Moosmüller, H.; Zhu, D.; et al. Particulate Emission Factors for Mobile Fossil Fuel and Biomass Combustion Sources. Sci. Total Environ. 2011, 409, 2384–2396. [Google Scholar] [CrossRef] [PubMed]
- Langmann, B.; Heil, A. Release and Dispersion of Vegetation and Peat Fire Emissions in the Atmosphere over Indonesia 1997/1998. Atmos. Chem. Phys. 2004, 4, 2145–2160. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, C.; Samburova, V.; Sengupta, D.; Iaukea-Lum, M.; Watts, A.C.; Moosmüller, H.; Khlystov, A.Y. Physical and Chemical Characterization of Aerosol in Fresh and Aged Emissions from Open Combustion of Biomass Fuels. Aerosol Sci. Technol. 2018, 52, 1266–1282. [Google Scholar] [CrossRef]
- Sengupta, D.; Samburova, V.; Bhattarai, C.; Kirillova, E.; Mazzoleni, L.; Iaukea-Lum, M.; Watts, A.; Moosmüller, H.; Khlystov, A. Light Absorption by Polar and Non-Polar Aerosol Compounds from Laboratory Biomass Combustion. Atmos. Chem. Phys. 2018, 18, 10849–10867. [Google Scholar] [CrossRef] [Green Version]
- Yatavelli, R.L.N.; Chen, L.W.A.; Knue, J.; Samburova, V.; Gyawali, M.; Watts, A.C.; Chakrabarty, R.K.; Moosmüller, H.; Hodzic, A.; Wang, X.; et al. Emissions and Partitioning of Intermediate-Volatility and Semi-Volatile Polar Organic Compounds (I/SV-POCs) during Laboratory Combustion of Boreal and Sub-Tropical Peat. Aerosol Sci. Eng. 2017. [Google Scholar] [CrossRef] [Green Version]
- Jayarathne, T.; Stockwell, C.E.; Gilbert, A.A.; Daugherty, K.; Cochrane, M.A.; Ryan, K.C.; Putra, E.I.; Saharjo, B.H.; Nurhayati, A.D.; Albar, I.; et al. Chemical Characterization of Fine Particulate Matter Emitted by Peat Fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmos. Chem. Phys. 2018, 18, 2585–2600. [Google Scholar] [CrossRef] [Green Version]
- Roulston, C.; Paton-Walsh, C.; Smith, T.E.L.; Guérette, É.A.; Evers, S.; Yule, C.M.; Rein, G.; Van der Werf, G.R. Fine Particle Emissions from Tropical Peat Fires Decrease Rapidly with Time Since Ignition. J. Geophys. Res. Atmos. 2018, 123, 5607–5617. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.; Cao, J.; Antony Chen, L.W.; Wang, X.; Wang, Q.; Tian, J.; Ho, S.S.H.; Watts, A.C.; Carlson, T.B.; Kohl, S.D.; et al. Changes in PM2.5 Peat Combustion Source Profiles with Atmospheric Aging in an Oxidation Flow Reactor. Atmos. Meas. Tech. 2019, 12, 5475–5501. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, D.; Samburova, V.; Bhattarai, C.; Watts, A.C.; Moosmüller, H.; Khlystov, A.Y. Polar Fraction of Semi-Volatile Organic Compounds in Biomass Burning Emissions and their Chemical Transformations during Aging with an Oxidation Flow Reactor. Atmos. Chem. Phys. Discuss. 2020. [Google Scholar] [CrossRef] [Green Version]
- Wieder, R.K.; Scott, K.D.; Kamminga, K.; Vile, M.A.; Vitt, D.H.; Bone, T.; Xu, B.I.N.; Benscoter, B.W.; Bhatti, J.S. Postfire Carbon Balance in Boreal Bogs of Alberta, Canada. Glob. Chang. Biol. 2009, 15, 63–81. [Google Scholar] [CrossRef]
- Benscoter, B.W.; Thompson, D.K.; Waddington, J.M.; Flannigan, M.D.; Wotton, B.M.; de Groot, W.J.; Turetsky, M.R. Interactive Effects of Vegetation, Soil Moisture and Bulk Density on Depth of Burning of Thick Organic Soils. Int. J. Wildland Fire 2011, 20, 418–429. [Google Scholar] [CrossRef] [Green Version]
- Watts, A.C.; Schmidt, C.A.; McLaughlin, D.L.; Kaplan, D.A. Hydrologic Implications of Smoldering Fires in Wetland Landscapes. Freshw. Sci. 2015, 34, 1394–1405. [Google Scholar] [CrossRef] [Green Version]
- Hadden, R.M.; Rein, G.; Belcher, C.M. Study of the Competing Chemical Reactions in the Initiation and Spread of Smouldering Combustion in Peat. Proc. Combust. Inst. 2013, 34, 2547–2553. [Google Scholar] [CrossRef]
- Rein, G. Smouldering Combustion Phenomena in Science and Technology. Int. Rev. Chem. Eng. 2009, 1, 3–18. [Google Scholar]
- Prat-Guitart, N.; Rein, G.; Hadden, R.M.; Belcher, C.M.; Yearsley, J.M. Propagation Probability and Spread Rates of Self-Sustained Smouldering Fires under Controlled Moisture Content and Bulk Density Conditions. Int. J. Wildland Fire 2016, 25, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Restuccia, F.; Gramola, M.; Rein, G. Experimental Study of the Formation and Collapse of an Overhang in the Lateral Spread of Smouldering Peat Fires. Combust. Flame 2016, 168, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Rein, G. Downward Spread of Smouldering Peat Fire: The Role of Moisture, Density and Oxygen Supply. Int. J. Wildland Fire 2017, 26, 907–918. [Google Scholar] [CrossRef]
- Hu, Y.; Christensen, E.; Restuccia, F.; Rein, G. Transient Gas and Particle Emissions from Smouldering Combustion of Peat. Proc. Combust. Inst. 2019, 37, 4035–4042. [Google Scholar] [CrossRef]
- Stockwell, C.E. Advanced Measurements of Undersampled Globally Significant Biomass Burning Sources. Ph.D. Thesis, University of Montana, Missoula, MT, USA, 2016. [Google Scholar]
- Cofer, W.R., III; Winstead, E.L.; Stocks, B.J.; Overbay, L.W.; Goldammer, J.G.; Cahoon, D.R.; Levine, J.S. Emissions from Boreal Forest Fires: Are the Atmospheric Impacts Underestimated. In Biomass Burning and Global Change; Levine, J.S., Ed.; MIT Press: Cambridge, MA, USA, 1996. [Google Scholar]
- French, N.H.F.; Goovaerts, P.; Kasischke, E.S. Uncertainty in Estimating Carbon Emissions from Boreal Forest Fires. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Kreye, J.K.; Brewer, N.W.; Morgan, P.; Varner, J.M.; Smith, A.M.S.; Hoffman, C.M.; Ottmar, R.D. Fire Behavior in Masticated Fuels: A Review. For. Ecol. Manag. 2014, 314, 193–207. [Google Scholar] [CrossRef]
- Knapp, E.E.; Varner, J.M.; Busse, M.D.; Skinner, C.N.; Shestak, C.J. Behaviour and Effects of Prescribed Fire in Masticated Fuelbeds. Int. J. Wildland Fire 2011, 20, 932–945. [Google Scholar] [CrossRef]
- Kane, J.M.; Knapp, E.E.; Varner, J.M. Variability in Loading of Mechanically Masticated Fuel Beds in Northern California and Southwestern Oregon. In Proceedings of the Fuels Management—How to Measure Success, Portland, OR, USA, 28–30 March 2006; pp. 341–350. [Google Scholar]
- Kreye, J.K.; Varner, J.M.; Knapp, E.E. Effects of Particle Fracturing and Moisture Content on Fire Behaviour in Masticated Fuelbeds Burned in a Laboratory. Int. J. Wildland Fire 2011, 20, 308–317. [Google Scholar] [CrossRef]
- Kane, J.M.; Varner, J.M.; Knapp, E.E. Novel Fuelbed Characteristics Associated with Mechanical Mastication Treatments in Northern California and South-Western Oregon, USA. Int. J. Wildland Fire 2009, 18, 686–697. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Huey, L.G.; Yokelson, R.J.; Selimovic, V.; Simpson, I.J.; Müller, M.; Jimenez, J.L.; Campuzano-Jost, P.; Beyersdorf, A.J.; Blake, D.R.; et al. Airborne Measurements of Western U.S. Wildfire Emissions: Comparison with Prescribed Burning and Air Quality Implications. J. Geophys. Res. 2017, 122, 6108–6129. [Google Scholar] [CrossRef]
- Barbero, R.; Abatzoglou, J.T.; Larkin, N.K.; Kolden, C.A.; Stocks, B.J. Climate Change Presents Increased Potential for Very Large Fires in the Contiguous United States. Int. J. Wildland Fire 2015, 24, 892–899. [Google Scholar] [CrossRef]
- Spracklen, D.V.; Mickley, L.J.; Logan, J.A.; Hudman, R.C.; Yevich, R.; Flannigan, M.D.; Westerling, A.L. Impacts of Climate Change from 2000 to 2050 on Wildfire Activity and Carbonaceous Aerosol Concentrations in the Western United States. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Liu, Y.; Goodrick, S.L.; Stanturf, J.A.; Future, U.S. Wildfire Potential Trends Projected Using a Dynamically Downscaled Climate Change Scenario. For. Ecol. Manag. 2013, 294, 120–135. [Google Scholar] [CrossRef]
- Fox-Hughes, P.; Harris, R.; Lee, G.; Grose, M.; Bindoff, N. Future Fire Danger Climatology for Tasmania, Australia, Using a Dynamically Downscaled Regional Climate Model. Int. J. Wildland Fire 2014, 23, 309–321. [Google Scholar] [CrossRef]
- Sharples, J.J.; Cary, G.J.; Fox-Hughes, P.; Mooney, S.; Evans, J.P.; Fletcher, M.-S.; Fromm, M.; Grierson, P.F.; McRae, R.; Baker, P. Natural Hazards in Australia: Extreme Bushfire. Clim. Chang. 2016, 139, 85–99. [Google Scholar] [CrossRef]
- De Groot, W.J.; Bothwell, P.M.; Carlsson, D.H.; Logan, K.A. Simulating the Effects of Future Fire Regimes on Western Canadian Boreal Forests. J. Veg. Sci. 2003, 14, 355–364. [Google Scholar] [CrossRef]
- Flannigan, M.; Stocks, B.; Turetsky, M.; Wotton, M. Impacts of Climate Change on Fire Activity and Fire Management in the Circumboreal Forest. Glob. Chang. Biol. 2009, 15, 549–560. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of Changing Climate for Global Wildland Fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- De Groot, W.J.; Flannigan, M.D.; Cantin, A.S. Climate Change Impacts on Future Boreal Fire Regimes. For. Ecol. Manag. 2013, 294, 35–44. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Benscoter, B.; Page, S.; Rein, G.; van der Werf, G.R.; Watts, A. Global Vulnerability of Peatlands to Fire and Carbon Loss. Nat. Geosci. 2015, 8, 11–14. [Google Scholar] [CrossRef]
- Yu, Z.C. Northern Peatland Carbon Stocks and Dynamics: A Review. Biogeosciences 2012, 9, 4071–4085. [Google Scholar] [CrossRef] [Green Version]
- Page, S.E.; Rieley, J.O.; Banks, C.J. Global and Regional Importance of the Tropical Peatland Carbon Pool. Glob. Chang. Biol. 2011, 17, 798–818. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Turetsky, M.R.; Kane, E.S.; Harden, J.W.; Ottmar, R.D.; Manies, K.L.; Hoy, E.; Kasischke, E.S. Recent Acceleration of Biomass Burning and Carbon Losses in Alaskan Forests and Peatlands. Nat. Geosci. 2011, 4, 27–31. [Google Scholar] [CrossRef]
- Laurance, S.G.; Laurance, W.F. Peat Fires: Emissions Likely to Worsen. Nature 2015, 527, 305. [Google Scholar] [CrossRef]
- Nepstad, D.C.; Verssimo, A.; Alencar, A.; Nobre, C.; Lima, E.; Lefebvre, P.; Schlesinger, P.; Potter, C.; Moutinho, P.; Mendoza, E.; et al. Large-Scale Impoverishment of Amazonian Forests by Logging And Fire. Nature 1999, 398, 505–508. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Alencar, A.; Schulze, M.D.; Souza, C.M.; Nepstad, D.C.; Lefebvre, P.; Davidson, E.A. Positive Feedbacks in the Fire Dynamic of Closed Canopy Tropical Forests. Science 1999, 284, 1832. [Google Scholar] [CrossRef]
- Lehsten, V.; Tansey, K.; Balzter, H.; Thonicke, K.; Spessa, A.; Weber, U.; Smith, B.; Arneth, A. Estimating Carbon Emissions from African Wildfires. Biogeosciences 2009, 6, 349–360. [Google Scholar] [CrossRef] [Green Version]
- Scholes, R.J.; Archibald, S.; von Maltitz, G. Emissions from Fire in Sub-Saharan Africa: The Magnitude of Sources, their Variability and Uncertainty. Glob. Environ. Res. 2011, 15, 53–63. [Google Scholar]
- Nepstad, D.; Carvalho, G.; Cristina Barros, A.; Alencar, A.; Paulo Capobianco, J.; Bishop, J.; Moutinho, P.; Lefebvre, P.; Lopes Silva, U.; Prins, E. Road Paving, Fire Regime Feedbacks, and the Future of Amazon Forests. For. Ecol. Manag. 2001, 154, 395–407. [Google Scholar] [CrossRef]
- Cardoso, M.F.; Hurtt, G.C.; Moore Iii, B.; Nobre, C.A.; Prins, E.M. Projecting Future Fire Activity in Amazonia. Glob. Chang. Biol. 2003, 9, 656–669. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Barber, C.P. Climate Change, Human Land Use and Future Fires in the Amazon. Glob. Chang. Biol. 2009, 15, 601–612. [Google Scholar] [CrossRef]
- Silva, J.M.N.; Carreiras, J.M.B.; Rosa, I.; Pereira, J.M.C. Greenhouse Gas Emissions from Shifting Cultivation in the Tropics, Including Uncertainty and Sensitivity Analysis. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Aurell, J.; Gullett, B.K.; Holder, A.; Kiros, F.; Watts, A.; Ottmar, R. Wildland Fire Emission Sampling at Fishlake National Forest, Utah, Using an Unmanned Aircraft System. Atmos. Environ. 2020. submitted. [Google Scholar]
Fuel Type (Biome, Community, Source) | Location | Emissions 1 | References |
---|---|---|---|
Tropical Forest | S. America, Africa | 4670 Tg yr−1 CO2 | [52,58,106] |
Savanna/Grasslands | Sub-Saharan/Southern Africa | 3980 Tg yr−1 CO2 | [52,58,82,83] |
Boreal Forest | Russia, Canada, Alaska USA | 690 Tg yr−1 CO2 | [34,52,82,100,105] |
Temperate evergreen forests | NW USA/SW Canada | 470 Tg yr−1 CO2 | [52,58,100] |
Peatlands | Russia; N. Europe, N. America, SE Asia | 270 Tg yr−1 CO2 | [52,55,58,105] |
Fuel Type (Biome, Community, Source) | Location/Region of Impact | References |
---|---|---|
Tropical Forest | S. America, Africa | [20,52,58,106] |
Savanna/grasslands | Sub-Saharan/Southern Africa | [20,52,58,83] |
Peatlands | Russia; N. Europe, N. America, SE Asia | [52,55,58,105,108,112,113,114] |
Temperate evergreen forests | NW USA/SW Canada | [52,58,100,109] |
Mediterranean and N. American Chaparral | Mediterranean Europe; California USA | [59,60,63,110] |
Eucalypt Forest | Australia; Portugal | [110,111] |
Fuel Type (Biome, Community, Source) | Location | Characterization Type | References |
---|---|---|---|
Boreal and tropical peat | Russia; N. Europe, N. America, SE Asia | Laboratory (Emissions); Field (Ecological) | [55,104,135,136,137,138,139,140,141,142,143,144,145] |
Mixed-conifer | Northwestern USA; Southern Rocky Mountains/Wasatch USA | Laboratory (Chemical); Field (Physical, Ecological) | [13,30,119] |
Commercial Irish Peat | Ireland | Laboratory (Physical) | [146,147,148,149,150] |
Masticated fuels | Worldwide; N. America | Laboratory (Physical) | [155,156,157,158,159] |
Southeastern (“Southern Rough”) | SE USA | Laboratory (Physical, Chemical); Field (Physical, Chemical, Ecological) | [98,121,160] |
Fuel Type (Biome, Community, Source) | Location | Type of/Reason for Projected Increase | References |
---|---|---|---|
Tropical Forest | S. America, Africa | Climate-driven fire activity; Land-use changes | [170,176,177,178,179,180,181,182,183] |
Boreal and tropical peat | Russia; N. Europe, N. America, SE Asia | Climate-driven fire activity; Land-use changes | [79,174,175] |
Boreal Forest | Russia, Canada, Alaska USA | Climate-driven fire activity | [33,34,79,166,167,168,169] |
Mixed-conifer | Western N. America | Climate-driven fire activity | [26,76,77,162,163] |
Eucalypt | Australia | Climate-driven fire activity | [164,165] |
Biome | Location | Criteria | References |
---|---|---|---|
Boreal Forest | Russia, Canada, Alaska USA | Emissions; Impact; Availability; Potential | [28,33,34,52,79,100,102,104,105,166,167,168,169] |
Peatlands (Boreal) | Russia; N. Europe | Emissions; Impact; Availability; Potential | [28,52,105,138,141,143,144] |
Peatlands (tropical) | SE Asia | Emissions; Impact; Availability; Potential | [112,115,116,117,138,139,141] |
Savanna/grasslands | Sub-Saharan Southern Africa | Emissions; Impact; Availability; Potential | [20,58,82,83,106] |
Temperate evergreen forests | NW USA/ SW Canada | Emissions; Impact; Availability; Potential | [52,58,100,109] |
Tropical Forest | S. America, Africa | Emissions; Impact; Potential | [20,52,58,106,170,176,177,178,179,180,181,182,183] |
Chaparral | California USA; Mediterranean Europe | Impact; Availability; Potential | [57,59,63] |
Eucalypt Forests | Australia; California USA | Impact; Potential | [52,53,54,59,110,111,164,165] |
Southeastern (“Southern Rough”) | SE USA | Availability; Potential | [16,98,119,120,121] |
Masticated Fuels | W and SE USA | Availability; Potential | [155,156,157,158,159] |
Commercial Irish peat | Ireland | Availability | [146,148,149,150,151] |
FASMEE fuels | Utah USA; SE USA | Availability | [12,13,136,137,142] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watts, A.C.; Samburova, V.; Moosmüller, H. Criteria-Based Identification of Important Fuels for Wildland Fire Emission Research. Atmosphere 2020, 11, 640. https://doi.org/10.3390/atmos11060640
Watts AC, Samburova V, Moosmüller H. Criteria-Based Identification of Important Fuels for Wildland Fire Emission Research. Atmosphere. 2020; 11(6):640. https://doi.org/10.3390/atmos11060640
Chicago/Turabian StyleWatts, Adam C., Vera Samburova, and Hans Moosmüller. 2020. "Criteria-Based Identification of Important Fuels for Wildland Fire Emission Research" Atmosphere 11, no. 6: 640. https://doi.org/10.3390/atmos11060640
APA StyleWatts, A. C., Samburova, V., & Moosmüller, H. (2020). Criteria-Based Identification of Important Fuels for Wildland Fire Emission Research. Atmosphere, 11(6), 640. https://doi.org/10.3390/atmos11060640