The Polar Vortex and Extreme Weather: The Beast from the East in Winter 2018
Abstract
:1. Introduction
2. Stratospheric Polar Vortex: February–March, 2018
3. Surface Weather Response
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Waugh, D.W.; Sobel, A.H.; Polvani, L.M. What is the polar vortex and how does it influence weather? Bull. Am. Meteorol. Soc. 2017, 98, 37–44. [Google Scholar] [CrossRef]
- Kidston, J.; Scaife, A.A.; Hardiman, S.C.; Mitchell, D.M.; Butchart, N.; Baldwin, M.P.; Gray, L.J. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci. 2015, 8, 433–440. [Google Scholar] [CrossRef]
- Kretschmer, M.; Cohen, J.; Matthias, V.; Runge, J.; Coumou, D. The different stratospheric influence on cold-extremes in Eurasia and North America. Nat. Clim. Atmos. Sci. 2018, 1, 44. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Pfeiffer, K.; Francis, J.A. Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States. Nat. Commun. 2018, 9, 869. [Google Scholar] [CrossRef]
- Overland, J.E.; Wang, M. Impact of the winter polar vortex on greater North America. Int. J. Climatol. 2019, 39, 5815–5821. [Google Scholar] [CrossRef] [Green Version]
- King, A.D.; Butler, A.H.; Jucker, M.; Earl, N.O.; Rudeva, I. Observed relationships between sudden stratospheric warmings and European climate extremes. J. Geophys. Res. Atmos. 2019, 124, 13943–13961. [Google Scholar] [CrossRef]
- Greening, K.; Hodgson, A. Atmospheric analysis of the cold late February and early March 2018 over the UK. Weather 2019, 74, 79–85. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Yamazaki, K.; Sato, T.; Ukita, J. Memory effects of Eurasian land processes cause enhanced cooling in response to sea ice loss. Nat. Commun. 2019, 10, 5111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, M.P.; Dunkerton, T.J. Stratospheric harbingers of anomalous weather regimes. Science 2001, 294, 581–584. [Google Scholar] [CrossRef] [PubMed]
- Charlton, A.J.; Polvani, L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Clim. 2007, 20, 449–469. [Google Scholar] [CrossRef]
- Seviour, W.M.J.; Gray, L.J.; Mitchell, D.M. Stratospheric polar vortex splits and displacements in the high-top CMIP5 climate models. J. Geophys. Res. Atmos. 2016, 121. [Google Scholar] [CrossRef] [Green Version]
- Karpechko, A.Y.; Charlton-Perez, A.; Balmaseda, M.; Tyrrell, N.; Vitart, F. Predicting sudden stratospheric warming 2018 and its climate impacts with a multimodel ensemble. Geophys. Res. Lett. 2018, 45, 13538–13546. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Butler, A.H. The 2018–2019 Arctic stratospheric polar vortex. Weather 2020, 75, 52–57. [Google Scholar] [CrossRef]
- Hoskins, B.J.; McIntyre, M.E.; Robertson, A.W. On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 1985, 111, 877–946. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Baldwin, M.P.; Wallace, J.M. Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Clim. 2002, 15, 1421–1428. [Google Scholar] [CrossRef]
- Hitchcock, P.; Simpson, I.R. The downward influence of stratospheric sudden warmings. J. Atmos. Sci. 2014, 71, 3856–3876. [Google Scholar] [CrossRef]
- Kautz, L.-A.; Polichtchouk, I.; Birner, T.; Garny, H.; Pinto, J.G. Enhanced extended-range predictability of the 2018 late-winter Eurasian cold spell due to the stratosphere. Q. J. R. Meteorol. Soc. 2020, 146, 1040–1055. [Google Scholar] [CrossRef] [Green Version]
- Butler, A.H.; Sjoberg, J.P.; Seidel, D.J.; Rosenlof, K.H. A sudden stratospheric warming compendium. Earth Syst. Sci. Data 2017, 9, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Climate Prediction Center, National Weather Service. Available online: https://www.cpc.ncep.noaa.gov/ (accessed on 7 May 2020).
- Masato, G.; Hoskins, B.J.; Woollings, T.J. Wavebreaking characteristics of midlatitude blocking. Q. J. R. Meteorol. Soc. 2012, 138, 1285–1296. [Google Scholar] [CrossRef]
- Woollings, T.; Barriopedro, D.; Methven, J.; Son, S.-W.; Martius, O.; Harvey, B.; Sillmann, J.; Lupo, A.R.; Seneviratne, S. Blocking and its response to climate change. Curr. Clim. Chang. Rep. 2018, 4, 287–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanna, E.; Hall, R.J.; Cropper, T.E.; Ballinger, T.J.; Wake, L.; Mote, T.; Cappelen, J. Greenland Blocking Index daily series 1851–2015: Analysis of changes in extremes and links with North Atlantic and UK climate variability and change. Int. J. Climatol. 2018, 38, 3546–3564. [Google Scholar] [CrossRef]
- Strong, C.; Magnusdottir, G. Tropospheric Rossby wave breaking and the NAO/NAM. J. Atmos. Sci. 2008, 65, 2861–2876. [Google Scholar] [CrossRef]
- Kunz, T.; Fraedrich, K.; Lunkeit, F. Impact of synoptic-scale wave breaking on the NAO and its connection with the stratosphere in ERA-40. J. Clim. 2009, 22, 5464–5480. [Google Scholar] [CrossRef]
- Aikawa, T.; Inatsu, M.; Nakano, N.; Iwano, T. Mode-decomposed equation diagnosis for atmospheric blocking development. J. Atmos. Sci. 2019, 76, 3151–3167. [Google Scholar] [CrossRef]
- Huang, J.; Tian, W.; Gray, L.J.; Zhang, J.; Li, Y.; Luo, J.; Tian, H. Preconditioning of Arctic stratospheric polar vortex shift events. J. Clim. 2018, 31, 5417–5436. [Google Scholar] [CrossRef]
- Tao, W.; Zhang, J.; Zhang, X. The role of stratosphere vortex downward intrusion in a long-lasting late-summer Arctic storm. Q. J. R. Meteorol. Soc. 2017, 143, 1953–1966. [Google Scholar] [CrossRef]
- Galvin, J.; Kendon, M.; McCarthy, M. Snow cover and low temperatures in February and March 2018. Weather 2019, 74, 104–110. [Google Scholar] [CrossRef]
- Lu, C.H.; Ding, Y.H. Observational responses of stratospheric sudden warming to blocking highs and its feedbacks on the troposphere. Chin. Sci. Bull. 2013, 58, 1374–1384. [Google Scholar] [CrossRef] [Green Version]
- Mo, K.C.; Livezey, R.E. Tropical-extratropical geo-potential height teleconnections during the Northern Hemisphere winter. Mon. Wea. Rev. 1986, 114, 2488–2515. [Google Scholar] [CrossRef]
- Tropical Northern Hemisphere (TNH), NOAA Climate Prediction Center. Available online: https://www.cpc.ncep.noaa.gov/data/teledoc/tnh.shtml (accessed on 7 May 2020).
- Barnston, A.G.; Livezey, R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation pattern. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Ionita, M. The impact of the East Atlantic/Western Russia pattern on the hydroclimatology of Europe from mid-winter to late spring. Climate 2014, 2, 296–309. [Google Scholar] [CrossRef] [Green Version]
- Francis, J.A.; Skific, N.; Vavrus, S.J. North American weather regimes are becoming more persistent: Is Arctic amplification a factor? Geophys. Res. Lett. 2018, 45, 11414–11422. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Overland, J.; Hall, R.; Hanna, E.; Karpechko, A.; Vihma, T.; Wang, M.; Zhang, X. The Polar Vortex and Extreme Weather: The Beast from the East in Winter 2018. Atmosphere 2020, 11, 664. https://doi.org/10.3390/atmos11060664
Overland J, Hall R, Hanna E, Karpechko A, Vihma T, Wang M, Zhang X. The Polar Vortex and Extreme Weather: The Beast from the East in Winter 2018. Atmosphere. 2020; 11(6):664. https://doi.org/10.3390/atmos11060664
Chicago/Turabian StyleOverland, James, Richard Hall, Edward Hanna, Alexey Karpechko, Timo Vihma, Muyin Wang, and Xiangdong Zhang. 2020. "The Polar Vortex and Extreme Weather: The Beast from the East in Winter 2018" Atmosphere 11, no. 6: 664. https://doi.org/10.3390/atmos11060664
APA StyleOverland, J., Hall, R., Hanna, E., Karpechko, A., Vihma, T., Wang, M., & Zhang, X. (2020). The Polar Vortex and Extreme Weather: The Beast from the East in Winter 2018. Atmosphere, 11(6), 664. https://doi.org/10.3390/atmos11060664