Machine Learning in Tropical Cyclone Forecast Modeling: A Review
Abstract
:1. Introduction
2. Machine Learning
2.1. A Brief Introduction to Machine Learning
2.2. An Overview of Machine Learning in TC Forecasts
3. Applications
3.1. Genesis Forecasts
3.1.1. Short-Term Forecasting
3.1.2. Long-Term Forecasting
3.2. Track Forecasts
3.2.1. Path Prediction
3.2.2. Predictors Mining and Similarity Search
3.3. Intensity Forecasts
3.3.1. Intensity Estimation
3.3.2. Intensity Prediction
3.3.3. Intensity Change Prediction
3.4. TC Weather and the Disastrous Impact Forecasts
3.4.1. TC Wind Field Forecasts
3.4.2. TC Rainfall Forecasts
3.4.3. Storm Surge Forecasts
3.5. Improving Numerical Forecast Models
3.5.1. Pre-Processing
3.5.2. Improved Models
3.5.3. Post-Processing
4. Discussion
4.1. Opportunities
4.2. Challenges
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
TC | Tropical cyclone |
ML | Machine learning |
AI | Artificial Intelligence |
SVM | Support vector machine |
DT | Decision tree |
ANN | Artificial neural network |
CNN | Convolutional neural network |
RNN | Recurrent neural network |
DL | Deep learning |
SAE | Sparse autoencoder |
SAR | Synthetic aperture radar |
ConvLSTM | Convolutional long short-term memory network |
TrajGRU | Trajectory gate recurrent unit |
SVR | Support vector regression |
RF | Random forest |
BPN | Back-propagation neural network |
MLP | Multi-layer perceptron |
LSTM | Long short-term memory neural network |
CISK | Convective instability of the second kind |
WHISE | Wind-induced surface heat exchange |
ECMWF | European Centre for Medium-Range Weather Forecasts |
GFS | Global Forecast System |
UKMET | United Kingdom Meteorological Forecast Model |
LDA | Linear discriminative analysis |
NB | Naïve bayes |
KNN | K-nearest neighbor |
QDA | Qualitative data analysis |
PCA | Principal component analysis |
LR | Logistic regression |
MCS | Mesoscale convective system |
NOGAPS | Navy Operational Global Atmospheric Prediction System |
OLR | Outgoing longwave radiation |
QBO | Quasi-Biennial Oscillation |
MAE | Mean absolute error |
RMSE | Root mean square error |
GPI | Genesis potential index |
SOM | Self-organizing map |
NOEGM | Neural oscillatory elastic graph matching model |
HRBF | Hybrid radial basis function network |
TDSL | Time difference and structural learning |
OTCM | One-way-interactive Tropical Cyclone Model |
JTWC | Joint Typhoon Warning Center |
TFS | Track Forecast System |
CLIPER | Climatology and Persistence |
LAM | Florida State University based Limited Area Model |
QLM | Quasi Lagrangian Model |
NHC | National Hurricane Center |
MNN | matrix neural network |
GRU | Gated Recurrent Unit |
ENSO | El Niño-Southern Oscillation |
MJO | Madden-Julian Oscillation |
CART | Classification and regression tree |
GAN | Generative adversarial networks |
DBN | Deep belief networks |
SSM/I | Special Sensor Microwave/Image |
MLR | Multiple logistic regression |
2D-CNN | Two-dimensional convolutional neural network |
3D-CNN | Three-dimensional convolutional neural network |
WNP | West Northern Pacific |
JMA-GSM | Japan Meteorological Agency-Global Spectral Model |
CNN-LSTM | Convolutional neural network-Long short-term memory neural network |
WP | West Pacific |
EA | Evoutionary algorithm |
PSO | Partical Swarm Optimization |
OC_PI | ocean coupling potential intensity index |
RI | Rapid intensification |
non-RI | No rapidly intensifying |
LSSVM | Least squares support vector machine |
WRF | Weather Research and Forecasting |
MRA | Multiple regression analysis |
NCEP | National Centers for Environmental Prediction |
NCAR | National Center for Atmospheric Research |
FNN | Fuzzy neural network |
SRM | Stepwise regression method |
LLE | Locally linear embedding |
FNN-LLE | Fuzzy neural network-Locally linear embedding |
ANFIS | Adaptive neuro-fuzzy inference system |
NWP | Numerical weather prediction |
ANN-SFM | Artificial neural network-based storm surge forecast model |
HWRF | Hurricane Weather and Research Forecasting Model |
EMX | European Center for Medium-Range Weather Forecasts Global Model |
FSSE | Florida State Super Ensemble |
MOS | Model output statistics |
SSTC | Sea surface temperature cooling |
NICAM | Nonhydrostatic Icosahedral Atmospheric Model |
GFS-FNL | Global Forecasting System-Final Analysis Dataset |
References
- Emanuel, K. 100 Years of Progress in Tropical Cyclone Research. Meteorol. Monogr. 2018, 59, 15.1–15.68. [Google Scholar] [CrossRef]
- Ma, L.-M. Research Progress on China typhoon numerical prediction models and associated major techniques. Prog. Geophys. 2014, 29, 1013–1022. [Google Scholar] [CrossRef]
- Tropical Cyclone Forecast Model. Available online: https://en.wikipedia.org/wiki/Tropical_cyclone_forecast_model (accessed on 1 May 2020).
- Moon, I.J.; Ginis, I.; Hara, T.; Thomas, B. A Physics-Based Parameterization of Air-Sea Momentum Flux at High Wind Speeds and Its Impact on Hurricane Intensity Predictions. Mon. Weather Rev. 2007, 135, 2869–2878. [Google Scholar] [CrossRef] [Green Version]
- Bender, M.A.; Ginis, I.; Kurihara, Y.J. Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J. Geophys. Res. Atmos. 1993, 98, 23245–23263. [Google Scholar] [CrossRef]
- Lee, C.Y.; Tippett, M.K.; Camargo, S.J.; Sobel, A.H. Probabilistic Multiple Linear Regression Modeling for Tropical Cyclone Intensity. Mon. Wea. Rev. 2015, 143, 933–954. [Google Scholar] [CrossRef]
- Wang, Y.; Rao, Y.; Tan, Z.M.; Schönemann, D. A Statistical Analysis of the Effects of Vertical Wind Shear on Tropical Cyclone Intensity Change over the Western North Pacific. Mon. Weather Rev. 2015, 143, 3434–3453. [Google Scholar] [CrossRef]
- DeMaria, M.; Kaplan, J. An updated statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Weather Forecast. 1999, 14, 326–337. [Google Scholar] [CrossRef]
- DeMaria, M.; Kaplan, J.J.W. A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Weather Forecast. 1994, 9, 209–220. [Google Scholar] [CrossRef]
- Demaria, M.; Mainelli, M.; Shay, L.K.; Knaff, J.A.; Kaplan, J. Further Improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Weather Forecast. 2005, 20, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Machine Learning. Available online: https://en.wikipedia.org/wiki/Machine_learning (accessed on 9 April 2020).
- Kim, Y.D.; Choi, S. Nonnegative tucker decomposition. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1–8. [Google Scholar]
- Melnykov, V.; Maitra, R. Finite mixture models and model-based clustering. Stat. Surv. 2010, 4, 80–116. [Google Scholar] [CrossRef]
- Johnson, S.C. Hierarchical clustering schemes. Psychometrika 1967, 32, 241–254. [Google Scholar] [CrossRef]
- Krishna, K.; Murty, M.N. Genetic K-means algorithm. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 1999, 29, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.J.; Vapnik, V. Support vector regression machines. In Proceedings of the 9th International Conference on Neural Information Processing Systems; MIT Press: Denver, CO, USA, 1997; pp. 155–161. [Google Scholar]
- Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. 1991, 21, 660–674. [Google Scholar] [CrossRef] [Green Version]
- Hornik, K.; Stinchcombe, M.; White, H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Netw. 1990, 3, 551–560. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, S.; Giles, C.L.; Tsoi, A.C.; Back, A.D. Face recognition: A convolutional neural-network approach. IEEE Trans. Neural Netw. 1997, 8, 98–113. [Google Scholar] [CrossRef] [Green Version]
- Lipton, Z.C.; Berkowitz, J.; Elkan, C. A critical review of recurrent neural networks for sequence learning. arXiv 2015, arXiv:1506.00019. [Google Scholar]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Krasnopolsky, V.M. The Application of Neural Networks in the Earth System Sciences. Neural Networks Emulations for Complex Multidimensional Mappings; Springer: Berlin, Germany, 2013. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Proceedings of the 28th International Conference on Neural Information Processing Systems; MIT Press: Montreal, QC, Canada, 2015; pp. 802–810. [Google Scholar]
- Shi, X.; Gao, Z.; Lausen, L.; Wang, H.; Yeung, D.Y.; Wong, W.k.; Woo, W.C. Deep learning for precipitation nowcasting: A benchmark and a new model. In Proceedings of the 31st International Conference on Neural Information Processing Systems; Curran Associates Inc.: Long Beach, CA, USA, 2017; pp. 5622–5632. [Google Scholar]
- Zhang, P.; Jia, Y.; Gao, J.; Song, W.; Leung, H.K. Short-term rainfall forecasting using multi-layer perceptron. IEEE Trans. Big Data 2018, 6, 93–106. [Google Scholar] [CrossRef]
- Zhu, X.; Li, J.; Zhu, M.; Jiang, Z.; Li, Y. An evaporation duct height prediction method based on deep learning. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1307–1311. [Google Scholar] [CrossRef]
- Huang, D.; Du, Y.; He, Q.; Song, W.; Liotta, A. Deepeddy: A simple deep architecture for mesoscale oceanic eddy detection in sar images. In Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), Calabria, Italy, 16–18 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 673–678. [Google Scholar]
- Lguensat, R.; Sun, M.; Fablet, R.; Tandeo, P.; Mason, E.; Chen, G. EddyNet: A deep neural network for pixel-wise classification of oceanic eddies. In IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium; IEEE: Piscataway, NJ, USA, 2018; pp. 1764–1767. [Google Scholar]
- Du, Y.; Song, W.; He, Q.; Huang, D.; Liotta, A.; Su, C. Deep learning with multi-scale feature fusion in remote sensing for automatic oceanic eddy detection. Inf. Fusion 2019, 49, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, UK, 2020. [Google Scholar]
- Zhou, Z. Machine Learning; Tsinghua University Press: Beijing, China, 2016. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, UK, 2016. [Google Scholar]
- Montgomery, M.T.; Sang, N.V.; Smith, R.K.; Persing, J. Do tropical cyclones intensify by WISHE? Q. J. R. Meteorol. Soc. 2009, 135, 1697–1714. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z. What is the Key Feature of Convection Leading up to Tropical Cyclone Formation? J. Atmos. Sci. 2018, 75, 1609–1629. [Google Scholar] [CrossRef]
- Gray, W.M. The formation of tropical cyclones. Meteorol. Atmos. Phys. 1998, 67, 37–69. [Google Scholar] [CrossRef]
- Halperin, D.J.; Fuelberg, H.E.; Hart, R.E.; Cossuth, J.H.; Sura, P.; Pasch, R.J. An Evaluation of Tropical Cyclone Genesis Forecasts from Global Numerical Models. Weather Forecast. 2013, 28, 1423–1445. [Google Scholar] [CrossRef]
- Michael, B. Tropical Cyclone Genesis Forecasting and Pre-Genesis Forecasts Report; National Hurricane Center: Miami, FL, USA, 2017.
- Wijnands, J.S.; Qian, G.; Kuleshov, Y. Variable selection for tropical cyclogenesis predictive modeling. Mon. Weather Rev. 2016, 144, 4605–4619. [Google Scholar] [CrossRef]
- Zhang, W.; Fu, B. Discriminating developing versus nondeveloping tropical disturbances in the western North Pacific through decision tree analysis. Weather Forecast. 2015, 30, 446–454. [Google Scholar] [CrossRef]
- Park, M.S.; Kim, M.; Lee, M.I.; Im, J.; Park, S. Detection of tropical cyclone genesis via quantitative satellite ocean surface wind pattern and intensity analyses using decision trees. Remote Sens. Environ. 2016, 183, 205–214. [Google Scholar] [CrossRef]
- Ahijevych, D.; Pinto, J.O.; Williams, J.K.; Steiner, M. Probabilistic forecasts of mesoscale convective system initiation using the random forest data mining technique. Weather Forecast. 2016, 31, 581–599. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, W.; Lin, Y.; Zhang, M.; Yu, H.; Cao, K.; Xue, W. Prediction of Tropical Cyclone Genesis from Mesoscale Convective Systems Using Machine Learning. Weather Forecast. 2019, 34, 1035–1049. [Google Scholar] [CrossRef]
- Kim, M.; Park, M.S.; Im, J.; Park, S.; Lee, M.I. Machine Learning Approaches for Detecting Tropical Cyclone Formation Using Satellite Data. Remote Sens. 2019, 11, 1195. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, D.; Nakano, M.; Sugiyama, D.; Uchida, S. Deep learning approach for detecting tropical cyclones and their precursors in the simulation by a cloud-resolving global nonhydrostatic atmospheric model. Prog. Earth Planet. Sci. 2018, 5, 80. [Google Scholar] [CrossRef] [Green Version]
- Richman, M.B.; Leslie, L.M. Adaptive Machine Learning Approaches to Seasonal Prediction of Tropical Cyclones. Procedia Comput. Sci. 2012, 12, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Richman, M.B.; Leslie, L.M.; Ramsay, H.A.; Klotzbach, P.J. Reducing Tropical Cyclone Prediction Errors Using Machine Learning Approaches. Procedia Comput. Sci. 2017, 114, 314–323. [Google Scholar] [CrossRef]
- Wijnands, J.S.; Shelton, K.; Kuleshov, Y. Improving the Operational Methodology of Tropical Cyclone Seasonal Prediction in the Australian and the South Pacific Ocean Regions. Adv. Meteorol. 2014, 2014, 838746. [Google Scholar] [CrossRef]
- Nath, S.; Kotal, S.; Kundu, P.J.M.; Physics, A. Seasonal prediction of tropical cyclone activity over the north Indian Ocean using three artificial neural networks. Meteorol. Atmos. Phys. 2016, 128, 751–762. [Google Scholar] [CrossRef]
- Yip, Z.K.; Yau, M.K. Application of artificial neural networks on North Atlantic tropical cyclogenesis potential index in climate change. J. Atmos.Ocean. Technol. 2012, 29, 1202–1220. [Google Scholar] [CrossRef]
- Chen, L.; Ding, Y. Introduction to Typhoons in the Northwest Pacific; Science Press: Beijing, China, 1979. [Google Scholar]
- Roy, C.; Kovordanyi, R. Tropical cyclone track forecasting techniques—A review. Atmos. Res. 2012, 104–105, 40–69. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.T.; Liu, J.K. Tropical cyclone identification and tracking system using integrated neural oscillatory elastic graph matching and hybrid RBF network track mining techniques. IEEE Trans. Neural Netw. 2000, 11, 680–689. [Google Scholar] [CrossRef]
- Ali, M.M.; Kishtawal, C.M.; Jain, S. Predicting cyclone tracks in the north Indian Ocean: An artificial neural network approach. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Fu, W. Back Propogation (BP)-neural network for tropical cyclone track forecast. In Proceedings of the 2011 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–4. [Google Scholar]
- Moradi Kordmahalleh, M.; Gorji Sefidmazgi, M.; Homaifar, A. A Sparse Recurrent Neural Network for Trajectory Prediction of Atlantic Hurricanes. In GECCO ’16: Genetic and Evolutionary Computation Conference 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 957–964. [Google Scholar] [CrossRef]
- Alemany, S.; Beltran, J.; Perez, A.; Ganzfried, S. Predicting hurricane trajectories using a recurrent neural network. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence; AAAI Press: Honolulu, HI, USA, 2019; Volume 33, pp. 468–475. [Google Scholar]
- Zhang, Y.; Chandra, R.; Gao, J. Cyclone track prediction with matrix neural networks. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–8. [Google Scholar]
- Rüttgers, M.; Lee, S.; You, D. Prediction of typhoon tracks using a generative adversarial network with observational and meteorological data. arXiv 2018, arXiv:1812.01943. [Google Scholar]
- Rüttgers, M.; Lee, S.; Jeon, S.; You, D. Prediction of a typhoon track using a generative adversarial network and satellite images. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, H.; Lee, J.; Yoon, S.; Kahou, S.E.; Kashinath, K.; Prabhat, M. Deep-Hurricane-Tracker: Tracking and Forecasting Extreme Climate Events. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision, Waikoloa Village, HI, USA, 7–11 January 2019; pp. 1761–1769. [Google Scholar] [CrossRef]
- Giffard-Roisin, S.; Yang, M.; Charpiat, G.; Kumler Bonfanti, C.; Kégl, B.; Monteleoni, C. Tropical Cyclone Track Forecasting Using Fused Deep Learning From Aligned Reanalysis Data. Front. Big Data 2020, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Leung, Y.; Chan, J.C. The analysis of tropical cyclone tracks in the western North Pacific through data mining. Part I: Tropical cyclone recurvature. J. Appl. Meteorol. Climatol. 2013, 52, 1394–1416. [Google Scholar] [CrossRef]
- Zhang, W.; Leung, Y.; Chan, J.C. The analysis of tropical cyclone tracks in the western North Pacific through data mining. Part II: Tropical cyclone landfall. J. Appl. Meteorol. Climatol. 2013, 52, 1417–1432. [Google Scholar] [CrossRef]
- Geng, H.; Shi, D.; Zhang, W.; Huang, C. A prediction scheme for the frequency of summer tropical cyclone landfalling over China based on data mining methods. Meteorol. Appl. 2016, 23, 587–593. [Google Scholar] [CrossRef]
- Wang, Y.; Han, L.; Lin, Y.J.; Shen, Y.; Zhang, W. A tropical cyclone similarity search algorithm based on deep learning method. Atmos. Res. 2018, 214, 386–398. [Google Scholar] [CrossRef]
- Yu, J.-H.; Zheng, Y.-Q.; Wu, Q.-S.; Lin, J.-G.; Gong, Z.-B. K-Means Clustering for Classification of the Northwestern Pacific Tropical Cyclone Tracks. J. Trop. Meteorol. 2016, 22, 127–135. [Google Scholar]
- Kim, H.S.; Kim, J.H.; Ho, C.H.; Chu, P.S. Pattern classification of typhoon tracks using the fuzzy c-means clustering method. J. Clim. 2011, 24, 488–508. [Google Scholar] [CrossRef]
- Kim, H.K.; Seo, K.H. Cluster analysis of tropical cyclone tracks over the western North Pacific using a self-organizing map. J. Clim. 2016, 29, 3731–3751. [Google Scholar] [CrossRef]
- Camargo, S.J.; Robertson, A.W.; Gaffney, S.J.; Smyth, P.; Ghil, M. Cluster analysis of typhoon tracks. Part I: General properties. J. Clim. 2007, 20, 3635–3653. [Google Scholar] [CrossRef]
- Camargo, S.J.; Robertson, A.W.; Gaffney, S.J.; Smyth, P.; Ghil, M. Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Clim. 2007, 20, 3654–3676. [Google Scholar] [CrossRef]
- Camargo, S.J.; Robertson, A.W.; Barnston, A.G.; Ghil, M. Clustering of eastern North Pacific tropical cyclone tracks: ENSO and MJO effects. Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef] [Green Version]
- Ramsay, H.A.; Camargo, S.J.; Kim, D. Cluster analysis of tropical cyclone tracks in the Southern Hemisphere. Clim. Dyn. 2012, 39, 897–917. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Leung, Y.; Wang, Y. Cluster analysis of post-landfall tracks of landfalling tropical cyclones over China. Clim. Dyn. 2013, 40, 1237–1255. [Google Scholar] [CrossRef]
- Tropical Cyclone. Available online: https://en.wikipedia.org/wiki/Tropical_cyclone (accessed on 1 May 2020).
- Emanuel, K.; Zhang, F. On the predictability and error sources of tropical cyclone intensity forecasts. J. Atmos. Sci. 2016, 73, 3739–3747. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, P.J.; Gray, W.M. Understanding and Forecasting Tropical Cyclone Intensity Change; Colorado State Univ Fort Collins Dept of Atmospheric Science: Fort Collins, CO, USA, 1996. [Google Scholar]
- Lianshou, C.; Zhiyong, M. An Overview on Tropical Cyclone Research Progress in China during the Past Ten Years. Chin. J. Atmos. Sci. 2001, 3, 12. [Google Scholar]
- Lin, I.; Chen, C.; Pun, I.; Liu, W.T.; Wu, C. Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys. Res. Lett. 2009, 36, L03817. [Google Scholar] [CrossRef] [Green Version]
- Sandery, P.; Brassington, G.; Craig, A.; Pugh, T. Impacts of ocean-atmosphere coupling on tropical cyclone intensity change and ocean prediction in the Australian region. Mon. Weather Rev. 2010, 138, 2074–2091. [Google Scholar] [CrossRef]
- DeMaria, M.; Sampson, C.R.; Knaff, J.A.; Musgrave, K.D. Is tropical cyclone intensity guidance improving? Bull. Am. Meteorol. Soc. 2014, 95, 387–398. [Google Scholar] [CrossRef] [Green Version]
- Bankert, R.L.; Hadjimichael, M.; Kuciauskas, A.P.; Richardson, K.; Turk, F.J.; Hawkins, J.D. Automating the estimation of various meteorological parameters using satellite data and machine learning techniques. In Frontiers of Remote Sensing Information Processing; World Scientific: Singapore, 2003; pp. 227–252. [Google Scholar]
- Chen, Z.; Yu, X.; Chen, G.; Zhou, J. Cyclone Intensity Estimation using Multispectral Imagery from the FY-4 Satellite. In Proceedings of the 2018 International Conference on Audio, Language and Image Processing, Shanghai, China, 16–17 July 2018; pp. 46–51. [Google Scholar]
- Pradhan, R.; Aygun, R.S.; Maskey, M.; Ramachandran, R.; Cecil, D.J. Tropical Cyclone Intensity Estimation Using a Deep Convolutional Neural Network. IEEE Trans. Image Process. 2018, 27, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Wimmers, A.; Velden, C.; Cossuth, J.H. Using Deep Learning to Estimate Tropical Cyclone Intensity from Satellite Passive Microwave Imagery. Mon. Weather Rev. 2019, 147, 2261–2282. [Google Scholar] [CrossRef]
- Chen, B.F.; Chen, B.; Lin, H.T.; Elsberry, R.L. Estimating Tropical Cyclone Intensity by Satellite Imagery Utilizing Convolutional Neural Networks. Weather Forecast. 2019, 34, 447–465. [Google Scholar] [CrossRef]
- Lee, J.; Im, J.; Cha, D.H.; Park, H.; Sim, S. Tropical Cyclone Intensity Estimation Using Multi-Dimensional Convolutional Neural Networks from Geostationary Satellite Data. Remote Sens. 2020, 12, 108. [Google Scholar] [CrossRef] [Green Version]
- Baik, J.J.; Paek, J.S. A Neural Network Model for Predicting Typhoon Intensity. J. Meteorol. Soc. Jpn. Ser. II 2000, 78, 857–869. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, S.; Dutta, D.; Goswami, S.; Middey, A. Intensity forecast of tropical cyclones over North Indian Ocean using multilayer perceptron model: Skill and performance verification. Nat. Hazards 2013, 65, 97–113. [Google Scholar] [CrossRef]
- Pan, B.; Xu, X.; Shi, Z. Tropical cyclone intensity prediction based on recurrent neural networks. Electron. Lett. 2019, 55, 413–414. [Google Scholar] [CrossRef]
- Chen, R.; Wang, X.; Zhang, W.; Zhu, X.; Li, A.; Yang, C. A hybrid CNN-LSTM model for typhoon formation forecasting. Geoinformatica 2019, 23, 375–396. [Google Scholar] [CrossRef]
- Deo, R.V.; Chandra, R.; Sharma, A. Stacked transfer learning for tropical cyclone intensity prediction. arXiv 2017, arXiv:1708.06539. [Google Scholar]
- Geng, H.; Sun, J.; Zhang, W.; Huang, C. Study on Index Model of Tropical Cyclone Intensity Change Based on Projection Pursuit and Evolution Strategy. In Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, 7–10 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 145–150. [Google Scholar]
- Geng, H.-T.; Sun, J.-Q.; Zhang, W.; Wu, Z.-X. A novel classification method for tropical cyclone intensity change analysis based on hierarchical particle swarm optimization algorithm. J. Trop. Meteorol. 2017, 23, 113–120. [Google Scholar]
- Zhang, W.; Gao, S.; Chen, B.; Cao, K. The application of decision tree to intensity change classification of tropical cyclones in western North Pacific. Geophys. Res. Lett. 2013, 40, 1883–1887. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, W.; Liu, J.; Lin, I.-I.; Chiu, L.S.; Cao, K. Improvement in typhoon intensity change classification by incorporating an ocean coupling potential intensity index into decision trees. Weather Forecast. 2016, 31, 95–106. [Google Scholar] [CrossRef]
- Chandra, R.; Dayal, K.S. Coevolutionary Recurrent Neural Networks for Prediction of Rapid Intensification in Wind Intensity of Tropical Cyclones in the South Pacific Region. In ICONIP 2015: Neural Information Processing; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Mercer, A.; Grimes, A. Diagnosing Tropical Cyclone Rapid Intensification Using Kernel Methods and Reanalysis Datasets. Procedia Comput. Sci. 2015, 61, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Mercer, A.; Grimes, A. Atlantic tropical cyclone rapid intensification probabilistic forecasts from an ensemble of machine learning methods. Procedia Comput. Sci. 2017, 114, 333–340. [Google Scholar] [CrossRef]
- Fischer, M.S.; Tang, B.H.; Corbosiero, K.L. A Climatological Analysis of Tropical Cyclone Rapid Intensification in Environments of Upper-Tropospheric Troughs. Mon. Weather Rev. 2019, 147, 3693–3719. [Google Scholar] [CrossRef]
- Kaplan, J.; DeMaria, M.; Knaff, J. A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Weather Forecast. 2010, 25, 220–241. [Google Scholar] [CrossRef]
- Knutson, T.R.; McBride, J.L.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.P.; Srivastava, A.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Rappaport, E.N. Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull. Am. Meteorol. Soc. 2000, 81, 2065–2074. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, L.; Liu, Q. Tropical cyclone damages in China 1983–2006. Bull. Am. Meteorol. Soc. 2009, 90, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Lonfat, M.; Rogers, R.; Marchok, T.; Marks, F.D., Jr. A parametric model for predicting hurricane rainfall. Mon. Weather Rev. 2007, 135, 3086–3097. [Google Scholar] [CrossRef]
- Marchok, T.; Rogers, R.; Tuleya, R. Validation schemes for tropical cyclone quantitative precipitation forecasts: Evaluation of operational models for US landfalling cases. Weather Forecast. 2007, 22, 726–746. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Villarini, G.; Vecchi, G.A.; Murakami, H. Rainfall from tropical cyclones: High-resolution simulations and seasonal forecasts. Clim. Dyn. 2019, 52, 5269–5289. [Google Scholar] [CrossRef]
- Hsiao, L.F.; Yang, M.J.; Lee, C.S.; Kuo, H.C.; Shih, D.S.; Tsai, C.C.; Wang, C.J.; Chang, L.Y.; Chen, D.Y.C.; Feng, L.; et al. Ensemble forecasting of typhoon rainfall and floods over a mountainous watershed in Taiwan. J. Hydrol. 2013, 506, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Needham, H.F.; Keim, B.D.; Sathiaraj, D. A review of tropical cyclone-generated storm surges: Global data sources, observations, and impacts. Rev. Geophys. 2015, 53, 545–591. [Google Scholar] [CrossRef]
- Ginger, J.; Henderson, D.; Leitch, C.; Boughton, G. Tropical Cyclone Larry: Estimation of wind field and assessment of building damage. Australian J. Struct. Eng. 2007, 7, 209–224. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.C. Forecasting surface wind speeds over offshore islands near Taiwan during tropical cyclones: Comparisons of data-driven algorithms and parametric wind representations. J. Geophys. Res.-Atmos. 2015, 120, 1826–1847. [Google Scholar] [CrossRef]
- Zhang, C.; Dai, L.; Ma, L.; Qian, J.; Yang, B. Objective estimation of tropical cyclone innercore surface wind structure using infrared satellite images. J. Appl. Remote Sens. 2017, 11, 046030. [Google Scholar] [CrossRef]
- Snaiki, R.; Wu, T. Knowledge-enhanced deep learning for simulation of tropical cyclone boundary-layer winds. J. Wind Eng. Ind. Aerodyn. 2019, 194, 103983. [Google Scholar] [CrossRef]
- Wei, C.C. Study on Wind Simulations Using Deep Learning Techniques during Typhoons: A Case Study of Northern Taiwan. Atmosphere 2019, 10, 684. [Google Scholar] [CrossRef] [Green Version]
- Stiles, B.W.; Danielson, R.E.; Poulsen, W.L.; Brennan, M.J.; Hristova-Veleva, S.; Shen, T.P.; Fore, A.G. Optimized Tropical Cyclone Winds From QuikSCAT: A Neural Network Approach. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7418–7434. [Google Scholar] [CrossRef]
- Lin, G.; Chen, G.; Wu, M.; Chou, Y.J. Effective forecasting of hourly typhoon rainfall using support vector machines. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Lin, G.F.; Jhong, B.C.; Chang, C.C. Development of an effective data-driven model for hourly typhoon rainfall forecasting. J. Hydrol. 2013, 495, 52–63. [Google Scholar] [CrossRef]
- Lin, G.F.; Chou, Y.C.; Wu, M.C. Typhoon flood forecasting using integrated two-stage support vector machine approach. J. Hydrol. 2013, 486, 334–342. [Google Scholar] [CrossRef]
- Lin, G.F.; Chen, L.H. Application of an artificial neural network to typhoon rainfall forecasting. Hydrol. Process. 2005, 19, 1825–1837. [Google Scholar] [CrossRef]
- Lin, G.F.; Wu, M.C. A hybrid neural network model for typhoon-rainfall forecasting. J. Hydrol. 2009, 375, 450–458. [Google Scholar] [CrossRef]
- Hsieh, P.C.; Tong, W.A.; Wang, Y.C. A hybrid approach of artificial neural network and multiple regression to forecast typhoon rainfall and groundwater-level change. Hydrol. Sci. J. 2019, 64, 1793–1802. [Google Scholar] [CrossRef]
- Huang, Y.; Jin, L.; Zhao, H.S.; Huang, X.Y. Fuzzy neural network and LLE Algorithm for forecasting precipitation in tropical cyclones: Comparisons with interpolation method by ECMWF and stepwise regression method. Nat. Hazards 2018, 91, 201–220. [Google Scholar] [CrossRef]
- Lee, T.L. Back-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, Taiwan. Eng. Appl. Artif. Intell. 2008, 21, 63–72. [Google Scholar] [CrossRef]
- Lee, T.L. Predictions of typhoon storm surge in Taiwan using artificial neural networks. Adv. Eng. Softw. 2009, 40, 1200–1206. [Google Scholar] [CrossRef]
- Rajasekaran, S.; Gayathri, S.; Lee, T.L. Support vector regression methodology for storm surge predictions. Ocean Eng. 2008, 35, 1578–1587. [Google Scholar] [CrossRef]
- Chen, W.B.; Liu, W.C.; Hsu, M.H. Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model. Nat. Hazards Earth Syst. Sci. 2012, 12, 3799–3809. [Google Scholar] [CrossRef]
- Kim, S.W.; Melby, J.A.; Nadal-Caraballo, N.C.; Ratcliff, J. A time-dependent surrogate model for storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane modeling. Nat. Hazards 2015, 76, 565–585. [Google Scholar] [CrossRef]
- Lewis, M.R.H.; Spaulding, M.L.; Shaw, A.; Farhadi, H.; Lewis, M. An efficient artificial intelligence model for prediction of tropical storm surge. Nat. Hazards 2016, 82, 471–491. [Google Scholar] [CrossRef]
- Kim, S.; Matsumi, Y.; Pan, S.; Mase, H. A real-time forecast model using artificial neural network for after-runner storm surges on the Tottori Coast, Japan. Ocean Eng. 2016, 122, 44–53. [Google Scholar] [CrossRef]
- Kim, S.; Pan, S.; Mase, H. Artificial neural network-based storm surge forecast model: Practical application to Sakai Minato, Japan. Appl. Ocean Res. 2019, 91, 101871. [Google Scholar] [CrossRef]
- Lonfat, M.; Marks, F.D., Jr.; Chen, S.S. Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) microwave imager: A global perspective. Mon. Weather Rev. 2004, 132, 1645–1660. [Google Scholar] [CrossRef]
- Scoccimarro, E.; Villarini, G.; Gualdi, S.; Navarra, A.; Vecchi, G.; Walsh, K.; Zhao, M. Tropical cyclone rainfall changes in a warmer climate. In Hurricanes and Climate Change; Springer: Cham, Switzerland, 2017; pp. 243–255. [Google Scholar]
- Hubbert, G.D.; Holland, G.J.; Leslie, L.M.; Manton, M.J. A real-time system for forecasting tropical cyclone storm surges. Weather Forecast. 1991, 6, 86–97. [Google Scholar] [CrossRef] [Green Version]
- John, P.C. National Hurricane Center Forecast Verification Report; National Hurricane Center: Miami, FL, USA, 2019.
- Scheuerer, M.; Möller, D. Probabilistic wind speed forecasting on a grid based on ensemble model output statistics. Ann. Appl. Stat. 2015, 9, 1328–1349. [Google Scholar] [CrossRef]
- Krasnopolsky, V.M.; Chalikov, D.V.; Tolman, H.L. A neural network technique to improve computational efficiency of numerical oceanic models. Ocean Model. 2002, 4, 363–383. [Google Scholar] [CrossRef]
- Gentine, P.; Pritchard, M.; Rasp, S.; Reinaudi, G.; Yacalis, G. Could Machine Learning Break the Convection Parameterization Deadlock? Geophys. Res. Lett. 2018, 45, 5742–5751. [Google Scholar] [CrossRef]
- O’Gorman, P.A.; Dwyer, J.G. Using Machine Learning to Parameterize Moist Convection: Potential for Modeling of Climate, Climate Change, and Extreme Events. J. Adv. Model. Earth Syst. 2018, 10, 2548–2563. [Google Scholar] [CrossRef] [Green Version]
- Rasp, S.; Pritchard, M.S.; Gentine, P. Deep learning to represent subgrid processes in climate models. Proc. Natl. Acad. Sci. USA 2018, 115, 9684–9689. [Google Scholar] [CrossRef] [Green Version]
- Bolton, T.; Zanna, L. Applications of Deep Learning to Ocean Data Inference and Subgrid Parameterization. J. Adv. Model. Earth Syst. 2019, 11, 376–399. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Balaprakash, P.; Kotamarthi, R. Fast domain-aware neural network emulation of a planetary boundary layer parameterization in a numerical weather forecast model. Geosci. Model Dev. 2019, 12, 4261–4274. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.J.; Hall, D.; Stewart, J.; Govett, M. Machine Learning for Targeted Assimilation of Satellite Data. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases; Springer: Cham, Switzerland, 2018; pp. 53–68. [Google Scholar]
- Loridan, T.; Crompton, R.P.; Dubossarsky, E. A Machine Learning Approach to Modeling Tropical Cyclone Wind Field Uncertainty. Mon. Weather Rev. 2017, 145, 3203–3221. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Jiang, G.Q.; Liu, X. Parameterization of typhoon-induced ocean cooling using temperature equation and machine learning algorithms: An example of typhoon Soulik (2013). Ocean Dyn. 2017, 67, 1179–1193. [Google Scholar] [CrossRef]
- Jiang, G.Q.; Xu, J.; Wei, J. A Deep Learning Algorithm of Neural Network for the Parameterization of Typhoon-Ocean Feedback in Typhoon Forecast Models. Geophys. Res. Lett. 2018, 45, 3706–3716. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Racah, E.; Correa, J.; Khosrowshahi, A.; Lavers, D.; Kunkel, K.; Wehner, M.; Collins, W. Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv 2016, arXiv:1605.01156. [Google Scholar]
- Racah, E.; Beckham, C.; Maharaj, T.; Kahou, S.E.; Prabhat, M.; Pal, C. ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In Proceedings of the 31st International Conference on Neural Information Processing Systems; Curran Associates Inc.: Long Beach, CA, USA, 2017; pp. 3402–3413. [Google Scholar]
- Kim, S.; Ames, S.; Lee, J.; Zhang, C.; Wilson, A.C.; Williams, D. Resolution reconstruction of climate data with pixel recursive model. In Proceedings of the 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans, LA, USA, 18–21 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 313–321. [Google Scholar]
Tasks | Algorithms | Main Idea | Reference |
---|---|---|---|
Short-term forecasting | LR | Select the optimal predictors and modeling for genesis forecasts | Wijnands, J.S. (2016). [40] |
DT | Predict future tropical cyclogenesis based on tropical perturbations | Zhang, W. (2015). [41] | |
Detect the causes of TCs by using predictors from satellite data | Park, M.S. (2016). [42] | ||
RF | Predict the development of MCSs | Ahijevych, D. (2016). [43] | |
AdaBoost | Determine whether MCSs will evolve into TCs | Zhang, T. (2019). [44] | |
SVM | Predict TC formation from satellite image data | Kim, M. (2019). [45] | |
CNN | Detect TCs and their precursors based on the simulation of numerical models | Matsuoka, D. (2018). [46] | |
Long-term forecasting | SVR | Generate forecasts of the TC activity for an upcoming season | Richman, M.B. (2012). [47] |
Reduce TC seasonal prediction errors | Richman, M.B. (2017). [48] | ||
Improve the accuracy of seasonal TC predictions | Wijnands, J.S. (2014). [49] | ||
MLP | Provide seasonal prediction of TC activity | Nath, S. (2016). [50] | |
SOM, FNN | Define GPI for a ensemble of global climate models | Yip, Z.K. (2012). [51] |
Tasks | Algorithms | Main Idea | Reference |
---|---|---|---|
Path prediction | HRBF | Develop an automatic and integrated TC identification and track mining system | Lee, R.T. (2000). [54] |
MLP | Predict cyclone tracks based on MLP with BP algorithms | Ali, M.M. (2007). [55] | |
Wang, Y. (2011). [56] | |||
RNN | Propose a sparse RNN with flexible topology for trajectory prediction | Moradi, K.M. (2016). [57] | |
Propose a fully connected RNN to predict the trajectory of TCs | Alemany, S. (2019). [58] | ||
MNN | Develop a predictive model that preserves spatial information from the cyclone tracks | Wang, Y. (2018). [59] | |
GAN | Predict TC tracks using GAN with satellite images and meteorological data | Rüttgers, M. (2018,2019). [60,61] | |
ConvLSTM | Propose a ConvLSTM-based spatio-temporal model to track and predict TC trajectories | Kim, S. (2019). [62] | |
CNN | Design a model fusing multi-source data to predict TC tracks | Giffard, R.S. (2020). [63] | |
Predictors mining | DT | Discover predictors and rules governing TC landfall and recurvature | Zhang; Geng (2013, 2016). [64,65,66] |
Similarity search | DBN | Find the similar TCs in history and reference this data to improve TC forecasting | Wang, Y. (2018). [67] |
Clustering | Apply K-means, fuzzy c-mean, and SOM for clustering TC tracks | Jinhua; Kim (2011, 2016). [68,69,70] | |
Study TC properties and large-scale factors | Camargo; Ramsay; Zhang; Geng (2007, 2008, 2012, 2013, 2016) [66,71,72,73,74,75] |
Tasks | Algorithms | Main Idea | Reference |
---|---|---|---|
Intensity estimation | DT | Estimate intensity using microwave image data | Bankert, R.L. (2003). [83] |
SVM | Propose a machine learning framework in labelling TC intensity levels | Chen, Z. (2018). [84] | |
CNN | Design a network architecture for categorizing TCs based on intensity | Pradhan, R. (2018). [85] | |
Explore the possibilities of estimating TC intensity from satellite images | Wimmers, A. (2019). [86] | ||
Estimate TC intensity as a regression task | Chen, B.F. (2019). [87] | ||
Employ 2D-CNN and 3D-CNN to analyze the relationship between satellite images and TC intensity | Lee, J. (2020). [88] | ||
Intensity prediction | MLP | Predict TC intensity values directly | Jong-Jin, B. (2000). [89] |
Compare different network-based models to identify the best intensity forecasts model | Chaudhuri, S. (2013). [90] | ||
RNN | Design a pure data-driven intensity prediction model | Pan, B. (2019). [91] | |
CNN-LSTM | Design a spatio-temporal model based on a hybrid network of 2D-CNN, 3D-CNN, and LSTM | Chen, R. (2019). [92] | |
Transfer learning | Develop a robust prediction model with transfer learning and stacking | Deo, R.V. (2017). [93] | |
Intensity change prediction | EA, PSO | Apply EA or PSO to predict whether TCs will intensify or weaken | Geng, H. (2015,2017). [94,95] |
DT | Validate RI related predictors and predict intensity change | Zhang; Gao (2013, 2016). [96,97] | |
RNN | Employ RNN with cooperative coevolution for RI prediction. | Zhang, W. (2013). [98] | |
SVM | Apply ML techniques to classify storms as RI or non-RI | Mercer, A. (2015). [99] | |
SVM, ANN, RF | Quantify the RI predictability using an ensemble of AI methods | Mercer, A. (2017). [100] | |
K-means | Explore TC-troughs configurations that are favorable for RI | Fischer, M.S. (2019). [101] |
Tasks | Algorithms | Main Idea | Reference |
---|---|---|---|
TC wind field forecasts | SVR | Develop a highly reliable surface wind speed prediction technique | Wei, C.C. (2015). [113] |
LSSVM | Estimate TC innercore 2D surface wind field structure | Zhang, C. (2017). [114] | |
MLP | Simulate the wind field inside the TC boundary layer | Snaiki, R. (2019). [115] | |
Construct a wind velocity simulation model | Wei, C.C. (2017). [116] | ||
Optimize TC winds from satellite data | Stiles, B.W. (2014). [117] | ||
TC rainfall forecasts | SVM | Design SVM-based models for the forecasts of hourly TC rainfall | Lin, G.F. (2009, 2013). [118,119] |
Design a two-stage TC-induced flood forecasting model | Lin, G.F. (2013). [120] | ||
MLP | Develop a shallow MLP to forecast TC rainfall | Lin, G.F. (2005). [121] | |
SOM, MLP | Develop a hybrid neural network model to forecast TC rainfall | Lin, G.F. (2009). [122] | |
ANN-MRA | Build a model for forecasting the total rainfall and the groundwater level | Hsieh, P.C. (2019). [123] | |
FNN-LLE | Design a TC precipitation prediction scheme | Huang, Y. (2018). [124] | |
Storm surge forecasts | MLP | Predict the short-term surge and surge deviation | Lee, T.L. (2007, 2009). [125,126] |
SVR | Rajasekaran, S. (2008). [127] | ||
BPN-ANFIS | Quantify the RI predictability using an ensemble of AI methods | Chen, W.B. (2012). [128] | |
MLP | Develop a time-dependent storm surge model for quick prediction | Kim, S.W. (2015). [129] | |
Predict the peak values of storm surge using the tropical storm parameters | Lewis, M.R.H. (2016). [130] | ||
ANN-SFM | Descibe a storm surge forecast model and an objective selection procedure | Kim, S. (2016, 2019). [131,132] |
Tasks | Algorithms | Main Idea | Reference |
---|---|---|---|
Pre-processing | SVM | Produce the probability distribution of the TC regions in the data to be assimilated | Lee, Y.J. (2019). [144] |
Improve model | RF, PCA | Replace simple TC winds parametric formulations with ML alogrithms | Loridan, T. (2017). [145] |
MLP, CNN | Parameterize SSTC induced by TCs to improve TC numerial models | Wei, J. (2017, 2018). [146,147] | |
Post-processing | CNN | Predict TC genesis using simulated OLR data from NICAM | Matsuoka, D. (2018). [46] |
Dectect TCs in the outputs dataset from climate models | Liu, Y. (2016). [148] | ||
Racah, E. (2017). [149] | |||
Kim, S. (2017). [150] | |||
ConvLSTM | Predict TC paths based on large-scale data generated by climate models | Kim, S. (2019). [62] | |
DT | Mine predictors of TC recurvature and landfall using the GFS-FNL dataset | Zhang, W. (2013). [64,65] | |
SVM, MLP, RF | Predict RI using the output dataset of GFS | Mercer, A. (2017). [100] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Zhang, W.; Wang, X. Machine Learning in Tropical Cyclone Forecast Modeling: A Review. Atmosphere 2020, 11, 676. https://doi.org/10.3390/atmos11070676
Chen R, Zhang W, Wang X. Machine Learning in Tropical Cyclone Forecast Modeling: A Review. Atmosphere. 2020; 11(7):676. https://doi.org/10.3390/atmos11070676
Chicago/Turabian StyleChen, Rui, Weimin Zhang, and Xiang Wang. 2020. "Machine Learning in Tropical Cyclone Forecast Modeling: A Review" Atmosphere 11, no. 7: 676. https://doi.org/10.3390/atmos11070676
APA StyleChen, R., Zhang, W., & Wang, X. (2020). Machine Learning in Tropical Cyclone Forecast Modeling: A Review. Atmosphere, 11(7), 676. https://doi.org/10.3390/atmos11070676