Submicron and Ultrafine Particles in Downtown Rome: How the Different Euro Engines Have Influenced Their Behavior for Two Decades
Abstract
:1. Introduction
2. Experiments
3. Results
4. Discussion
4.1. Contribution of the Different Anthropogenic Sources
4.2. Chemometric Approach
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oberdörster, G.; Utell, M.J. Ultrafine particles in the urban air: To the respiratory tract-Ang beyond? Environ. Health Persp. 2002, 110, A440–A441. [Google Scholar] [CrossRef]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberdörster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 2004, 16, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Nway, N.C.; Fujitani, Y.; Hirano, S.; Mar, O.; Win-Shwe, T.T. Role of TLR4 in olfactory-based spatial learning activity of neonatal mice after developmental exposure to diesel exhaust origin secondary organic aerosol. Neurotoxicology 2017, 63, 155–165. [Google Scholar] [CrossRef]
- Tobías, A.; Rivas, I.; Reche, C.; Alastuey, A.; Rodríguez, S.; Fernández-Camacho, R.; Sánchez de la Campa, A.M.; de la Rosa, J.; Sunyer, J.; Querol, X. Short-term effects of ultrafine particles on daily mortality by primary vehicle exhaust versus secondary origin in three Spanish cities. Environ. Int. 2018, 111, 144–151. [Google Scholar] [CrossRef]
- Manigrasso, M.; Costabile, F.; Liberto, L.D.; Gobbi, G.P.; Gualtieri, M.; Zanini, G.; Avino, P. Size resolved aerosol respiratory doses in a Mediterranean urban area: From PM10 to ultrafine particles. Environ. Int. 2020, 141, 105714. [Google Scholar] [CrossRef]
- Gualtieri, M.; Grollino, M.G.; Consales, C.; Costabile, F.; Manigrasso, M.; Avino, P.; Aufderheide, M.; Cordelli, E.; Di Liberto, L.; Petralia, E.; et al. Is it the time to study air pollution effects under environmental conditions? A case study to support the shift of in vitro toxicology from the bench to the field. Chemosphere 2018, 207, 552–564. [Google Scholar] [CrossRef]
- Longhin, E.M.; Mantecca, P.; Gualtieri, M. Fifteen years of airborne particulates in vitro toxicology in milano: Lessons and perspectives learned. Int. J. Mol. Sci. 2020, 21, 2489. [Google Scholar] [CrossRef] [Green Version]
- IARC. Diesel and Gasoline Engine Exhausts and Some Nitroarenes; International Agency for Research on Cancer: Lyon, France, 2014; Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 105. [Google Scholar]
- IARC. Welding, Molybdenum Trioxide, and Indium Tin Oxide; International Agency for Research on Cancer: Lyon, France, 2018; Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 118. [Google Scholar]
- IARC. Outdoor Air Pollution; International Agency for Research on Cancer: Lyon, France, 2015; Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 109. [Google Scholar]
- Manigrasso, M.; Natale, C.; Vitali, M.; Protano, C.; Avino, P. Pedestrians in traffic environments: Ultrafine particle respiratory doses. Int. J. Environ. Res. Public Health 2017, 14, 288. [Google Scholar] [CrossRef] [Green Version]
- Manigrasso, M.; Protano, C.; Martellucci, S.; Mattei, V.; Vitali, M.; Avino, P. Evaluation of the submicron particles distribution between mountain and urban site: Contribution of the transportation for defining environmental and human health issues. Int. J. Environ. Res. Public Health 2019, 16, 1339. [Google Scholar] [CrossRef] [Green Version]
- Febo, A.; Guglielmi, F.; Manigrasso, M.; Ciambottini, V.; Avino, P. Local air pollution and long–range mass transport of atmospheric particulate matter: A comparative study of the temporal evolution of the aerosol size fractions. Atmos. Pollut. Res. 2010, 1, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Manigrasso, M.; Febo, A.; Guglielmi, F.; Ciambottini, V.; Avino, P. Relevance of aerosol size spectrum analysis as support to qualitative source apportionment studies. Environ. Pollut. 2012, 170, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Chen, Y.; Huang, Y.; Lin, C.; Li, Z.; Fung, J.C.H.; Lau, A.K.H. Differences in concentration and source apportionment of PM 2.5 between 2006 and 2015 over the PRD region in southern China. Sci. Total Environ. 2019, 673, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Han, X.; Jin, M.; Zhang, X.; Wang, S. Globally analysing spatiotemporal trends of anthropogenic PM2.5 concentration and population’s PM2.5 exposure from 1998 to 2016. Environ. Int. 2019, 128, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Ďurčanská, D.; Jandačka, D. Chemical composition of PM10, PM2.5, PM1 and influence of meteorological conditions on them in Zilina selfgoverning region, Slovakia. Solid State Phenom. 2016, 244, 171–181. [Google Scholar]
- Avino, P.; Brocco, D.; Lepore, L.; Pareti, S. Interpretation of atmospheric pollution phenomena in relationship with the vertical atmospheric remixing by means of natural radioactivity measurements (radon) of particulate matter. Ann. Chim. Rome 2003, 93, 589–594. [Google Scholar]
- European Union. Directive 98/69/EC of the European Parliament and of the Council of 13 October 1998 Relating to Measures to be Taken against Air Pollution by Emissions from Motor Vehicles and Amending Council Directive 70/220/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31998L0069 (accessed on 16 April 2020).
- European Union. Directive 2002/51/EC of the European Parliament and of the Council of 19 July 2002 on the Reduction of the Level of Pollutant Emissions from Two- and Three-Wheel Motor Vehicles and Amending Directive 97/24/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32002L0051 (accessed on 16 April 2020).
- European Union. Directive 2002/80/EC of 3 October 2002 Adapting to Technical Progress Council Directive 70/220/EEC Relating to Measures to Be Taken against Air Pollution by Emissions from Motor Vehicles. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32002L0080 (accessed on 16 April 2020).
- European Union. Regulation (EC) No 715/2007 of the European Parliament and of the Council of 20 June 2007 on Type Approval of Motor Vehicles with Respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and Euro 6) and on Access to Vehicle Repair and Maintenance Information. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32007R0715 (accessed on 16 April 2020).
- Marconi, A.; Cattani, G.; Cusano, M.; Ferdinandi, M.; Inglessis, M.; Viviano, G.; Settimo, G.; Forastiere, F. Two-years of fine and ultrafine particles measurements in Rome, Italy. J. Toxicol. Env. Health A 2007, 70, 213–221. [Google Scholar] [CrossRef]
- Pushpawela, B.; Jayaratne, R.; Morawska, L. Differentiating between particle formation and growth events in an urban environment. Atmos. Chem. Phys. 2018, 18, 11171–11183. [Google Scholar] [CrossRef] [Green Version]
- Perrino, C.; Catrambone, M.; Pietrodangelo, A. Influence of atmospheric stability on the mass concentration and chemical composition of atmospheric particles: A case study in Rome, Italy. Environ. Int. 2008, 34, 621–628. [Google Scholar] [CrossRef]
- Avino, P.; Manigrasso, M.; Cuomo, F. Natural radioactivity as an easy and quick parameter for describing the dynamic of the Planetary Boundary Layer. RSC Adv. 2015, 5, 57538–57549. [Google Scholar] [CrossRef]
- Charron, A.; Birmili, W.; Harrison, R.M. Fingerprinting particle origins according to their size distribution at a UK rural site. J. Geophys. Res. Atmos. 2008, 113, D07202. [Google Scholar] [CrossRef]
- Agus, E.L.; Young, D.T.; Lingard, J.J.N.; Smalley, R.J.; Tate, J.E.; Goodman, P.S.; Tomlin, A.S. Factors influencing particle number concentrations, size distributions and modal parameters at a roof-level and roadside site in Leicester, UK. Sci. Total Environ. 2007, 386, 65–82. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Fennell, P.; Symonds, J.; Britter, R. Treatment of losses of ultrafine aerosol particles in long sampling tubes during ambient measurements. Atmos. Environ. 2008, 42, 8819–8826. [Google Scholar] [CrossRef] [Green Version]
- Automobile Club d’Italia. Consistency of the Italian Vehicle Fleet at 31/12/2002. Available online: http://www.aci.it/laci/studi-e-ricerche/dati-e-statistiche/autoritratto/autoritratto-2002.html (accessed on 16 April 2020).
- 32 Kittelson, D.B. Engines and nanoparticles: A review. J. Aerosol Sci. 1998, 29, 575–588. [Google Scholar] [CrossRef]
- Avino, P.; Casciardi, S.; Fanizza, C.; Manigrasso, M. Deep investigation of ultrafine particles in urban air. Aerosol Air Qual. Res. 2011, 11, 654–663. [Google Scholar] [CrossRef] [Green Version]
- Woo, K.; Chen, S.D.R.; Pui, D.Y.H.; Mcmurry, P.H. Measurement of Atlanta aerosol size distributions: Observations of ultrafine particle events. Aerosol Sci. Technol. 2001, 34, 75–87. [Google Scholar] [CrossRef]
- Shi, J.P.; Evans, D.E.; Khan, A.A.; Harrison, R.M. Sources and concentration of nanoparticles (<10 nm diameter) in the urban atmosphere. Atmos. Environ. 2001, 25, 1193–1202. [Google Scholar] [CrossRef]
- Hamed, A.; Joutsensaari, J.; Mikkonen, S.; Sogacheva, L.; Dal Maso, M.; Kulmala, M.; Cavalli, F.; Fuzzi, S.; Facchini, M.C.; Decesari, S.; et al. Nucleation and growth of new particles in Po Valley, Italy. Atmos. Chem. Phys. 2007, 7, 355–376. [Google Scholar] [CrossRef] [Green Version]
- Settimo, G.; Manigrasso, M.; Avino, P. Indoor air quality: A focus on the European legislation and state-of-the-art research in Italy. Atmosphere 2020, 11, 370. [Google Scholar] [CrossRef] [Green Version]
- Vecchi, R.; Piziali, F.A.; Valli, G.; Favaron, M.; Bernardoni, V. Radon-based estimates of equivalent mixing layer heights: A long-term assessment. Atmos. Environ. 2019, 197, 150–158. [Google Scholar] [CrossRef]
- Salzano, R.; Pasini, A.; Casasanta, G.; Cacciani, M.; Perrino, C. Quantitative interpretation of air radon progeny fluctuations in terms of stability conditions in the atmospheric boundary layer. Bound. Layer Meteorol. 2016, 160, 529–550. [Google Scholar] [CrossRef]
- Salzano, R.; Pasini, A.; Ianniello, A.; Mazzola, M.; Traversi, R.; Udisti, R. High time-resolved radon progeny measurements in the Arctic region (Svalbard islands, Norway): Results and potentialities. Atmos. Chem. Phys. 2018, 18, 6959–6969. [Google Scholar] [CrossRef] [Green Version]
- Acker, K.; Febo, A.; Trick, S.; Perrino, C.; Bruno, P.; Wiesen, P.; Möller, D.; Wieprecht, W.; Auel, R.; Giusto, M.; et al. Nitrous acid in the urban area of Rome. Atmos. Environ. 2006, 40, 3123–3133. [Google Scholar] [CrossRef]
- Avino, P.; Manigrasso, M. Ten-year measurements of gaseous pollutants in urban air by an open-path analyzer. Atmos. Environ. 2008, 42, 4138–4148. [Google Scholar] [CrossRef]
- Costabile, F.; Alas, H.; Aufderheide, M.; Avino, P.; Amato, F.; Argentini, S.; Barnaba, F.; Berico, M.; Bernardoni, V.; Biondi, R.; et al. First results of the “Carbonaceous Aerosol in Rome and Environs (CARE)” experiment: Beyond current standards for PM10. Atmosphere 2017, 8, 249. [Google Scholar] [CrossRef] [Green Version]
- Kulmala, M.; Kerminen, V.M.; Petäjä, T.; Ding, A.J.; Wang, L. Atmospheric gas-to-particle conversion: Why NPF events are observed in megacities? Faraday Discuss. 2017, 200, 271–288. [Google Scholar] [CrossRef]
- Monod, A.; Sive, B.C.; Avino, P.; Chen, T.; Blake, D.R.; Rowland, R.F. Monoaromatic compounds in ambient air of various cities: A focus on correlations between the xylenes and ethylbenzene. Atmos. Environ. 2001, 35, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Koppmann, R.; von Czapiewski, K.; Reid, J.S. A review of biomass burning emissions, part I: Gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds. Atmos. Chem. Phys. Discuss. 2005, 5, 10455–10516. [Google Scholar] [CrossRef] [Green Version]
- Manigrasso, M.; Avino, P. Fast evolution of urban ultrafine particles: Implications for deposition doses in the human respiratory system. Atmos. Environ. 2012, 51, 116–123. [Google Scholar] [CrossRef]
- Fanizza, C.; De Berardis, B.; Ietto, F.; Soggiu, M.E.; Schirò, R.; Inglessis, M.; Ferdinandi, M.; Incoronato, F. Analysis of major pollutants and physico-chemical characteristics of PM2.5 at an urban site in Rome. Sci. Total Environ. 2018, 616–617, 1457–1468. [Google Scholar] [CrossRef]
- Stabile, L.; Buonanno, G.; Avino, P.; Frattolillo, A.; Guerriero, E. Indoor exposure to particles emitted by biomass-burning heating systems and evaluation of dose and lung cancer risk received by population. Environ. Pollut. 2018, 235, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Soggiu, M.E.; Inglessis, M.; Gagliardi, R.V.; Settimo, G.; Marsili, G.; Notardonato, I.; Avino, P. PM10 and PM2.5 qualitative source apportionment using selective wind direction sampling in a port-industrial area in Civitavecchia, Italy. Atmosphere 2020, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Manigrasso, M.; Vitali, M.; Protano, C.; Avino, P. Temporal evolution of ultrafine particles and of alveolar deposited surface area from main indoor combustion and non-combustion sources in a model room. Sci. Total Environ. 2017, 598, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
Size | s.d. 1 | Min–Max | cv% 2 | 75th perc. 3 | 90th perc. 3 | 95th perc. 3 |
---|---|---|---|---|---|---|
Hourly | 73,761 ± 54,924 | 3752–279,466 | 74.6 | 100,066 | 150,699 | 194,283 |
single channel (nm) during the whole period | ||||||
17.8 | 3667 ± 2671 | 217–23,303 | 72.9 | 4876 | 7341 | 8714 |
23.7 | 6833 ± 5186 | 418–30,845 | 75.9 | 9135 | 13,660 | 16,993 |
31.6 | 8186 ± 6162 | 596–38,708 | 75.3 | 10,532 | 16,468 | 20,836 |
42.2 | 9007 ± 6534 | 398–40,048 | 72.5 | 11,700 | 18,468 | 22,586 |
56.2 | 10,331 ± 8023 | 277–56,954 | 77.7 | 13,480 | 21,355 | 27,886 |
75.0 | 11,026 ± 9608 | 248–56,954 | 87.1 | 14,409 | 23,808 | 31,536 |
100.0 | 10,294 ± 9847 | 276–56,558 | 95.7 | 13,227 | 24,376 | 31,581 |
133.4 | 7499 ± 7402 | 205–41,762 | 98.7 | 9503 | 18,807 | 23,240 |
177.8 | 4224 ± 4095 | 97–26,559 | 96.9 | 5382 | 10,500 | 13,393 |
237.1 | 1821 ± 1713 | 41–13,802 | 94.1 | 2359 | 4215 | 5625 |
316.2 | 589 ± 549 | 11–5060 | 93.2 | 792 | 1331 | 1757 |
421.7 | 158 ± 145 | 13–1328 | 91.9 | 212 | 342 | 445 |
562.3 | 41 ± 34 | 11–297 | 91.3 | 52 | 82 | 107 |
17.8 | 23.7 | 31.6 | 42.2 | 56.2 | 75.0 | 100.0 | 133.4 | 177.8 | 237.1 | 316.2 | 422.7 | 562.2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.924 | 0.859 | 0.778 | 0.654 | 0.547 | 0.478 | 0.452 | 0.458 | 0.473 | 0.488 | 0.557 | 0.581 | 17.8 |
1 | 0.953 | 0.834 | 0.652 | 0.499 | 0.407 | 0.371 | 0.374 | 0.396 | 0.426 | 0.514 | 0.563 | 23.7 | |
1 | 0.935 | 0.767 | 0.608 | 0.509 | 0.465 | 0.462 | 0.482 | 0.513 | 0.601 | 0.647 | 31.6 | ||
1 | 0.909 | 0.792 | 0.700 | 0.648 | 0.634 | 0.646 | 0.670 | 0.744 | 0.767 | 42.2 | |||
1 | 0.947 | 0.886 | 0.839 | 0.815 | 0.808 | 0.810 | 0.845 | 0.808 | 56.2 | ||||
1 | 0.982 | 0.951 | 0.925 | 0.906 | 0.887 | 0.882 | 0.796 | 75.0 | |||||
1 | 0.990 | 0.971 | 0.945 | 0.911 | 0.876 | 0.756 | 100.0 | ||||||
1 | 0.992 | 0.968 | 0.926 | 0.874 | 0.737 | 133.4 | |||||||
1 | 0.988 | 0.950 | 0.893 | 0.753 | 177.8 | ||||||||
1 | 0.983 | 0.932 | 0.812 | 237.1 | |||||||||
1 | 0.972 | 0.854 | 316.2 | ||||||||||
1 | 0.928 | 422.7 | |||||||||||
1 | 562.2 |
y-Axis (nm) | Daily | Weekly | ||||||
---|---|---|---|---|---|---|---|---|
Slope (m) | Intercept (q) | r | p | Slope (m) | Intercept (q) | r | p | |
23.7 | 2.070 | −753.44 | 0.9868 | 6.75 × 10−19 | 20.073 | −524.61 | 0.9614 | 5.98 × 10−91 |
31.6 | 2.401 | −612.94 | 0.9577 | 2.21 × 10−13 | 23.628 | −458.99 | 0.9237 | 4.44 × 10−67 |
42.2 | 2.434 | 89.18 | 0.8777 | 1.78 × 10−8 | 23.569 | 404.29 | 0.8512 | 2.44 × 10−44 |
56.2 | 2.408 | 1513.60 | 0.7196 | 7.38 × 10−5 | 22.988 | 1969.40 | 0.7065 | 1.03 × 10−23 |
75.0 | 2.158 | 3116.52 | 0.6691 | 3.70 × 10−3 | 21.121 | 3356.92 | 0.6681 | 9.66 × 10−12 |
100.0 | 1.616 | 4363.64 | 0.4635 | 2.25 × 10−2 | 16.824 | 4184.43 | 0.4703 | 1.26 × 10−6 |
133.4 | 0.987 | 3871.82 | 0.4132 | 4.47 × 10−2 | 10.869 | 3540.81 | 0.4271 | 7.76 × 10−5 |
177.8 | 0.530 | 2274.80 | 0.4242 | 3.88 × 10−2 | 0.585 | 2087.40 | 0.4352 | 3.73 × 10−5 |
237.1 | 0.244 | 920.93 | 0.4680 | 2.11 × 10−2 | 0.265 | 853.22 | 0.4769 | 6.33 × 10−7 |
316.2 | 0.092 | 249.60 | 0.4311 | 7.57 × 10−3 | 0.097 | 236.19 | 0.4350 | 7.99 × 10−10 |
422.7 | 0.033 | 35.86 | 0.3582 | 4.71 × 10−4 | 0.032 | 40.62 | 0.4411 | 7.97 × 10−17 |
562.2 | 0.009 | 3.61 | 0.4348 | 4.33 × 10−5 | 0.009 | 54.59 | 0.4127 | 2.37 × 10−23 |
UFPs | s.d. 1 | Min–Max | cv% | 75th perc. 2 | 95th perc. 2 |
---|---|---|---|---|---|
UFPs (IIH 3) | 36,395 ± 21,495 | 3295–147,777 | 59.1 | 47,253 | 78,003 |
UFPs (park 4) | 24,600 ± 11,100 | 1730–48,300 | 45.1 | 33,900 |
Week | ||||||
---|---|---|---|---|---|---|
Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |
sun-00 | mon-00 | tues-00 | wed-00 | thurs-00 | fri-00 | sat-00 |
sun-01 | mon-01 | tues-01 | wed-01 | thurs-01 | fri-01 | sat-01 |
sun-02 | mon-02 | tues-02 | wed-02 | thurs-02 | fri-02 | sat-02 |
sun-03 | mon-03 | tues-03 | wed-03 | thurs-03 | fri-03 | sat-03 |
sun-04 | mon-04 | tues-04 | wed-04 | thurs-04 | fri-04 | sat-04 |
sun-05 | mon-05 | tues-05 | wed-05 | thurs-05 | fri-05 | sat-05 |
sun-06 | mon-06 | tues-06 | wed-06 | thurs-06 | fri-06 | sat-06 |
sun-07 | mon-07 | tues-07 | wed-07 | thurs-07 | fri-07 | sat-07 |
sun-08 | mon-08 | tues-08 | wed-08 | thurs-08 | fri-08 | sat-08 |
sun-09 | mon-09 | tues-09 | wed-09 | thurs-09 | fri-09 | sat-09 |
sun-10 | mon-10 | tues-10 | wed-10 | thurs-10 | fri-10 | sat-10 |
sun-11 | mon-11 | tues-11 | wed-11 | thurs-11 | fri-11 | sat-11 |
sun-12 | mon-12 | tues-12 | wed-12 | thurs-12 | fri-12 | sat-12 |
sun-13 | mon-13 | tues-13 | wed-13 | thurs-13 | fri-13 | sat-13 |
sun-14 | mon-14 | tues-14 | wed-14 | thurs-14 | fri-14 | sat-14 |
sun-15 | mon-15 | tues-15 | wed-15 | thurs-15 | fri-15 | sat-15 |
sun-16 | mon-16 | tues-16 | wed-16 | thurs-16 | fri-16 | sat-16 |
sun-17 | mon-17 | tues-17 | wed-17 | thurs-17 | fri-17 | sat-17 |
sun-18 | mon-18 | tues-18 | wed-18 | thurs-18 | fri-18 | sat-18 |
sun-19 | mon-19 | tues-19 | wed-19 | thurs-19 | fri-19 | sat-19 |
sun-20 | mon-20 | tues-20 | wed-20 | thurs-20 | fri-20 | sat-20 |
sun-21 | mon-21 | tues-21 | wed-21 | thurs-21 | fri-21 | sat-21 |
sun-22 | mon-22 | tues-22 | wed-22 | thurs-22 | fri-22 | sat-22 |
sun-23 | mon-23 | tues-23 | wed-23 | thurs-23 | fri-23 | sat-23 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Settimo, G.; Soggiu, M.E.; Inglessis, M.; Manigrasso, M.; Avino, P. Submicron and Ultrafine Particles in Downtown Rome: How the Different Euro Engines Have Influenced Their Behavior for Two Decades. Atmosphere 2020, 11, 894. https://doi.org/10.3390/atmos11090894
Settimo G, Soggiu ME, Inglessis M, Manigrasso M, Avino P. Submicron and Ultrafine Particles in Downtown Rome: How the Different Euro Engines Have Influenced Their Behavior for Two Decades. Atmosphere. 2020; 11(9):894. https://doi.org/10.3390/atmos11090894
Chicago/Turabian StyleSettimo, Gaetano, Maria Eleonora Soggiu, Marco Inglessis, Maurizio Manigrasso, and Pasquale Avino. 2020. "Submicron and Ultrafine Particles in Downtown Rome: How the Different Euro Engines Have Influenced Their Behavior for Two Decades" Atmosphere 11, no. 9: 894. https://doi.org/10.3390/atmos11090894
APA StyleSettimo, G., Soggiu, M. E., Inglessis, M., Manigrasso, M., & Avino, P. (2020). Submicron and Ultrafine Particles in Downtown Rome: How the Different Euro Engines Have Influenced Their Behavior for Two Decades. Atmosphere, 11(9), 894. https://doi.org/10.3390/atmos11090894