Spatial and Temporal Trends of Gaseous Elemental Mercury over a Highly Impacted Coastal Environment (Northern Adriatic, Italy)
Abstract
1. Introduction
2. Experiments
2.1. Study Area
2.2. Gaseous Elemental Mercury (GEM) Measurements
3. Results and Discussion
3.1. GEM Level and Distribution
3.2. GEM Time-Series
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beckers, F.; Rinklebe, J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 693–794. [Google Scholar] [CrossRef]
- Selin, N.E. Global biogeochemical cycling of mercury: A review. Annu. Rev. Environ. Resour. 2009, 34, 43–63. [Google Scholar] [CrossRef]
- Boening, D.W. Ecological effects, transport, and fate of mercury: A general review. Chemosphere 2000, 40, 1335–1351. [Google Scholar] [CrossRef]
- Morel, F.M.M.; Kraepiel, A.M.L.; Amyot, M. The chemical cycle and bioaccumulation of mercury. Annu. Rev. Ecol. Syst. 1998, 29, 543–566. [Google Scholar] [CrossRef]
- Fitzgerald, W.F.; Clarkson, T.W. Mercury and monomethylmercury: Present and future concerns. Environ. Health Perspect. 1991, 96, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Rice, K.M.; Walker, E.M.; Wu, M.; Gillette, C.; Blough, E.R. Environmental mercury and its toxic effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kabir, E.; Jahan, S.A. A review on the distribution of Hg in the environment and its human health impacts. J. Hazard. Mater. 2016, 306, 376–385. [Google Scholar] [CrossRef]
- Zhang, Y.; Jaeglé, L.; Thompson, L.; Streets, D.G. Six centuries of changing oceanic mercury. Glob. Biogeochem. Cycles 2014, 1251–1261. [Google Scholar] [CrossRef]
- Outridge, P.M.; Mason, R.P.; Wang, F.; Guerrero, S.; Heimbürger-Boavida, L.E. Updated global and oceanic mercury budgets for the United Nations global mercury assessment 2018. Environ. Sci. Technol. 2018, 52, 11466–11477. [Google Scholar] [CrossRef]
- Mason, R.P.; Sheu, G.R. Role of the ocean in the global Mercury CYCLE. Glob. Biogeochem. Cycles 2002, 16, 40–41. [Google Scholar] [CrossRef]
- UN Environment. Global Mercury Assessment 2018; UN Environment Programme: Geneva, Switzerland, 2019. [Google Scholar]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef] [PubMed]
- Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.B.; Streets, D.G.; et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 2010, 10, 5951–5964. [Google Scholar] [CrossRef]
- Sundseth, K.; Pacyna, J.M.; Pacyna, E.G.; Pirrone, N.; Thorne, R.J. Global sources and pathways of mercury in the context of human health. Int. J. Environ. Res. Public Health 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- Poissant, L.; Pilote, M.; Beauvais, C.; Constant, P.; Zhang, H.H. A year of continuous measurements of three atmospheric mercury species (GEM, RGM and Hgp) in Southern Québec, Canada. Atmos. Environ. 2005, 39, 1275–1287. [Google Scholar] [CrossRef]
- Slemr, F.; Schuster, G.; Seiler, W. Distribution, speciation, and budget of atmospheric mercury. J. Atmos. Chem. 1985, 3, 407–434. [Google Scholar] [CrossRef]
- Griggs, T.; Liu, L.; Talbot, R.W.; Torres, A.; Lan, X. Comparison of atmospheric mercury speciation at a coastal and an urban site in southeastern Texas, USA. Atmosphere 2020, 11. [Google Scholar] [CrossRef]
- Mao, H.; Talbot, R.W.; Sigler, J.M.; Sive, B.C.; Hegarty, J.D. Seasonal and diurnal variations of Hg&Deg; over New England. Atmos. Chem. Phys. 2008, 8, 1403–1421. [Google Scholar] [CrossRef]
- Schroeder, W.H.; Munthe, J. Atmospheric mercury—An overview. Atmos. Environ. 1998, 32, 809–822. [Google Scholar] [CrossRef]
- Travnikov, O. Contribution of the intercontinental atmospheric transport to mercury pollution in the northern hemisphere. Atmos. Environ. 2005, 39, 7541–7548. [Google Scholar] [CrossRef]
- Valente, R.J.; Shea, C.; Lynn Humes, K.; Tanner, R.L. Atmospheric mercury in the great smoky mountains compared to regional and global levels. Atmos. Environ. 2007, 41, 1861–1873. [Google Scholar] [CrossRef]
- Sprovieri, F.; Pirrone, N.; Ebinghaus, R.; Kock, H.; Dommergue, A. A review of worldwide atmospheric mercury measurements. Atmos. Chem. Phys. 2010, 10, 8245–8265. [Google Scholar] [CrossRef]
- Lindberg, S.; Bullock, R.; Ebinghaus, R.; Engstrom, D.; Feng, X.; Fitzgerald, W.; Pirrone, N.; Prestbo, E.; Seigneur, C. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 2007, 36, 19–32. [Google Scholar] [CrossRef]
- Sprovieri, F.; Pirrone, N.; Bencardino, M.; D’Amore, F.; Carbone, F.; Cinnirella, S.; Mannarino, V.; Landis, M.; Ebinghaus, R.; Weigelt, A.; et al. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network. Atmos. Chem. Phys. 2016, 16, 11915–11935. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Talbot, R.; Laine, P.; Lefer, B.; Flynn, J.; Torres, A. Seasonal and diurnal variations of total gaseous mercury in urban Houston, TX, USA. Atmosphere 2014, 5, 399–419. [Google Scholar] [CrossRef]
- Rutter, A.P.; Snyder, D.C.; Stone, E.A.; Schauer, J.J.; Gonzalez-Abraham, R.; Molina, L.T.; Ḿarquez, C.; Ćardenas, B.; De Foy, B. In situ measurements of speciated atmospheric mercury and the identification of source regions in the Mexico City metropolitan area. Atmos. Chem. Phys. 2009, 9, 207–220. [Google Scholar] [CrossRef]
- Cheng, I.; Zhang, L.; Mao, H.; Blanchard, P.; Tordon, R.; Dalziel, J. Seasonal and diurnal patterns of speciated atmospheric mercury at a coastal-rural and a coastal-urban site. Atmos. Environ. 2014, 82, 193–205. [Google Scholar] [CrossRef]
- Mao, H.; Cheng, I.; Zhang, L. Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: A review. Atmos. Chem. Phys. 2016, 16, 12897–12924. [Google Scholar] [CrossRef]
- Ren, X.; Luke, W.T.; Kelley, P.; Cohen, M.D.; Artz, R.; Olson, M.L.; Schmeltz, D.; Puchalski, M.; Goldberg, D.L.; Ring, A.; et al. Atmospheric mercury measurements at a suburban site in the mid-atlantic united states: Inter-annual, seasonal and diurnal variations and source-receptor relationships. Atmos. Environ. 2016, 146, 141–152. [Google Scholar] [CrossRef]
- Esbrí, J.M.; Martínez-Coronado, A.; Higueras, P.L. Temporal variations in gaseous elemental mercury concentrations at a contaminated Site: Main factors affecting nocturnal maxima in daily cycles. Atmos. Environ. 2016, 125, 8–14. [Google Scholar] [CrossRef]
- Higueras, P.; Oyarzun, R.; Kotnik, J.; Esbrí, J.M.; Martínez-Coronado, A.; Horvat, M.; López-Berdonces, M.A.; Llanos, W.; Vaselli, O.; Nisi, B.; et al. A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: Separating fads from facts. Environ. Geochem. Health 2014, 36, 713–734. [Google Scholar] [CrossRef]
- Covelli, S.; Faganeli, J.; Horvat, M.; Brambati, A. Mercury contamination of coastal sediments as the result of long-term cinnabar mining activity (gulf of Trieste, Northern Adriatic Sea). Appl. Geochem. 2001, 16, 541–558. [Google Scholar] [CrossRef]
- Boero, F.; Brian, F.; Micheli, F. Scientific design and monitoring of mediterranean marine protected areas. In Proceedings of the CIESM Workshop Series No 8, Porto Cesareo, Italy, 21–24 October 1999; p. 64. [Google Scholar]
- Olivotti, R.; Faganeli, J.; Malej, A. Impact of “organic” pollutants on coastal waters, gulf of Trieste. Water Sci. Technol. 1986, 18, 57–68. [Google Scholar] [CrossRef]
- Adami, G.; Barbieri, P.; Piselli, S.; Predonzani, S.; Reisenhofer, E. New data on organic pollutants in surface sediments in the harbour of Trieste. Ann. Chim. 1998, 88, 745–754. [Google Scholar]
- Pozo, K.; Lazzerini, D.; Perra, G.; Volpi, V.; Corsolini, S.; Focardi, S. Levels and spatial distribution of polychlorinated biphenyls (PCBs) in superficial sediment from 15 Italian Marine Protected Areas (MPA). Mar. Pollut. Bull. 2009, 58, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Adami, G.; Barbieri, P.; Piselli, S.; Predonzani, S.; Reisenhofer, E. Detecting and characterising sources of persistent organic pollutants (PAHs and PCBs) in surface sediments of an industrialized area (harbour of Trieste, Northern Adriatic Sea). J. Environ. Monit. 2000, 2, 261–265. [Google Scholar] [CrossRef]
- Formalewicz, M.; Rampazzo, F.; Noventa, S.; Gion, C.; Petranich, E.; Crosera, M.; Covelli, S.; Faganeli, J.; Berto, D. Organotin compounds in touristic marinas of the Northern Adriatic sea: Occurrence, speciation and potential recycling at the sediment-water interface. Environ. Sci. Pollut. Res. 2019, 26, 31142–31157. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, P.; Adami, G.; Predonzani, S.; Reisenhofer, E. Heavy metals in surface sediments near urban and industrial sewage discharges in the gulf of Trieste. Toxicol. Environ. Chem. 1999, 71, 105–114. [Google Scholar] [CrossRef]
- Cibic, T.; Acquavita, A.; Aleffi, F.; Bettoso, N.; Blasutto, O.; De Vittor, C.; Falconi, C.; Falomo, J.; Faresi, L.; Predonzani, S.; et al. Integrated approach to sediment pollution: A case study in the gulf of Trieste. Mar. Pollut. Bull. 2008, 56, 1650–1657. [Google Scholar] [CrossRef]
- Milivojevič Nemanič, T.; Leskovšek, H.; Horvat, M.; Vrišer, B.; Bolje, A. Organotin compounds in the marine environment of the bay of Piran, Northern Adriatic sea. J. Environ. Monit. 2002, 4, 426–430. [Google Scholar] [CrossRef]
- Ščančar, J.; Zuliani, T.; Turk, T.; Milačič, R. Organotin compounds and selected metals in the marine environment of Northern Adriatic sea. Environ. Monit. Assess. 2007, 127, 271–282. [Google Scholar] [CrossRef]
- Acquavita, A.; Predonzani, S.; Mattassi, G.; Rossin, P.; Tamberlich, F.; Falomo, J.; Valic, I. Heavy metal contents and distribution in coastal sediments of the gulf of Trieste (NORTHERN Adriatic sea, Italy). Water. Air. Soil Pollut. 2010, 211, 95–111. [Google Scholar] [CrossRef]
- Petranich, E.; Croce, S.; Crosera, M.; Pavoni, E.; Faganeli, J.; Adami, G.; Covelli, S. Mobility of Metal(Loid)s at the Sediment-Water Interface in Two Tourist Port Areas of the Gulf of Trieste (Northern Adriatic sea). Environ. Sci. Pollut. Res. 2018, 25, 26887–26902. [Google Scholar] [CrossRef] [PubMed]
- Horvat, M.; Covelli, S.; Faganeli, J.; Logar, M.; Mandić, V.; Rajar, R.; Širca, A.; Žagar, D. Mercury in contaminated coastal environments. A case study: The gulf of Trieste. Sci. Total Environ. 1999, 237–238, 43–56. [Google Scholar] [CrossRef]
- Faganeli, J.; Horvat, M.; Covelli, S.; Fajon, V.; Logar, M.; Lipej, L.; Cermelj, B. Mercury and methylmercury in the gulf of Trieste (Northern Adriatic sea). Sci. Total Environ. 2003, 304, 315–326. [Google Scholar] [CrossRef]
- Piani, A.; Acquavita, A.; Catalano, L.; Contin, M.; Mattassi, G.; De Nobili, M. Effects of long term Hg contamination on soil mercury speciation and soil biological activities. E3S Web Conf. 2013, 1, 1–4. [Google Scholar] [CrossRef]
- Sholupov, S.E.; Ganeyev, A.A. Zeeman atomic absorption spectrometry using high frequency modulated light polarization. Spectrochim. Acta Part B At. Spectrosc. 1995, 50, 1227–1236. [Google Scholar] [CrossRef]
- McKinney, W. Data structures for statistical computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 1697900, pp. 51–56. [Google Scholar]
- Sievert, C.; Parmer, C.; Hocking, T.; Chamberlain, S.; Ram, K.; Corvellec, M.; Despouy, P. Plotly: Create Interactive Web Graphics via “Plotly. Js.”. 2018. Available online: https://rdrr.io/cran/plotly/ (accessed on 28 August 2020).
- Acquavita, A.; Biasiol, S.; Lizzi, D.; Mattassi, G.; Pasquon, M.; Skert, N.; Marchiol, L. Gaseous elemental mercury level and distribution in a heavily contaminated site: The ex-chlor alkali plant in torviscosa (Northern Italy). Water. Air. Soil Pollut. 2017, 228. [Google Scholar] [CrossRef]
- Floreani, F.; Acquavita, A.; Petranich, E.; Covelli, S. Diurnal fluxes of Gaseous elemental mercury from the water-air interface in coastal environments of the Northern Adriatic sea. Sci. Total Environ. 2019, 668, 925–935. [Google Scholar] [CrossRef]
- Wängberg, I.; Munthe, J.; Amouroux, D.; Andersson, M.E.; Fajon, V.; Ferrara, R.; Gårdfeldt, K.; Horvat, M.; Mamane, Y.; Melamed, E.; et al. Atmospheric mercury at Mediterranean coastal stations. Environ. Fluid Mech. 2008, 8, 101–116. [Google Scholar] [CrossRef]
- Acquavita, A.; Brandolin, D.; Felluga, A.; Maddaleni, P.; Meloni, C.; Poli, L.; Skert, N.; Zanello, A. Mercury distribution and speciation in soils contaminated by historically mining activity: The Isonzo River plain. In Proceedings of the Congresso SIMP-SGI-SOGEI 2019, Parma, Italy, 16–19 September 2019. [Google Scholar]
- Marumoto, K.; Hayashi, M.; Takami, A. Atmospheric mercury concentrations at two sites in the Kyushu Islands, Japan, and evidence of long-range transport from East Asia. Atmos. Environ. 2015, 117, 147–155. [Google Scholar] [CrossRef]
- Bagnato, E.; Sproveri, M.; Barra, M.; Bitetto, M.; Bonsignore, M.; Calabrese, S.; Di Stefano, V.; Oliveri, E.; Parello, F.; Mazzola, S. The sea-air exchange of mercury (Hg) in the marine boundary layer of the Augusta Basin (Southern Italy): Concentrations and evasion flux. Chemosphere 2013, 93, 2024–2032. [Google Scholar] [CrossRef] [PubMed]
- Gibičar, D.; Horvat, M.; Logar, M.; Fajon, V.; Falnoga, I.; Ferrara, R.; Lanzillotta, E.; Ceccarini, C.; Mazzolai, B.; Denby, B.; et al. Human exposure to mercury in the vicinity of chlor-alkali plant. Environ. Res. 2009, 109, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Oyarzun, R.; Higueras, P.; Esbrí, J.M.; Pizarro, J. Mercury in air and plant specimens in herbaria: A pilot study at the MAF herbarium in Madrid (Spain). Sci. Total Environ. 2007, 387, 346–352. [Google Scholar] [CrossRef]
- Nie, X.; Mao, H.; Li, P.; Li, T.; Zhou, J.; Wu, Y.; Yang, M.; Zhen, J.; Wang, X.; Wang, Y. Total gaseous mercury in a coastal city (Qingdao, China): Influence of sea-land breeze and regional transport. Atmos. Environ. 2020, 235, 1–11. [Google Scholar] [CrossRef]
- Amos, H.M.; Jacob, D.J.; Holmes, C.D.; Fisher, J.A.; Wang, Q.; Yantosca, R.M.; Corbitt, E.S.; Galarneau, E.; Rutter, A.P.; Gustin, M.S.; et al. Gas-particle partitioning of atmospheric Hg (II) and its effect on global mercury deposition. Atmos. Chem. Phys. 2012, 12, 591–603. [Google Scholar] [CrossRef]
- Malcolm, E.G.; Keeler, G.J.; Landis, M.S. The effects of the coastal environment on the atmospheric mercury cycle. J. Geophys. Res. 2003, 108, 1–10. [Google Scholar] [CrossRef]
- Lyman, S.N.; Cheng, I.; Gratz, L.E.; Weiss-Penzias, P.; Zhang, L. An updated review of atmospheric mercury. Sci. Total Environ. 2020, 707, 55–75. [Google Scholar] [CrossRef]
- Holmes, C.D.; Jacob, D.J.; Mason, R.P.; Jaffe, D.A. Sources and deposition of reactive gaseous mercury in the marine atmosphere. Atmos. Environ. 2009, 43, 2278–2285. [Google Scholar] [CrossRef]
- Bełdowska, M.; Falkowska, L.; Siudek, P.; Gajecka, A.; Lewandowska, A.; Rybka, A.; Zgrundo, A. Atmospheric mercury over the coastal zone of the gulf of Gda ń Sk oceanological and hydrobiological studies atmospheric mercury over the coastal zone of the gulf of Gda ń Sk. Int. J. Oceanogr. Hydrobiol. 2007, 36, 1–10. [Google Scholar]
- Bratkič, A.; Tinta, T.; Koron, N.; Guevara, S.R.; Begu, E.; Barkay, T.; Horvat, M.; Falnoga, I.; Faganeli, J. Mercury transformations in a coastal water column (gulf of Trieste, Northern Adriatic sea). Mar. Chem. 2018, 200, 57–67. [Google Scholar] [CrossRef]
SITE | GEM Mean (ng m−3) | GEM dev. st. (ng m−3) | GEM Max (ng m−3) | N Data | Lat. (WGS84) | Lon. (WGS84) | Altitude (m m.s.l.) | |
---|---|---|---|---|---|---|---|---|
Non-urban Hg-contaminated areas | FOSSALON | 3.57 | 1.44 | 48.46 | 914,493 | |||
FOS1 | 4.14 | 1.48 | 18.18 | 374,127 | 45.718837 | 13.516823 | 0 | |
FOS2 | 2.83 | 1.45 | 48.46 | 161,700 | 45.728359 | 13.536141 | 0 | |
FOS3 | 3.30 | 1.40 | 47.63 | 378,666 | 45.719781 | 13.492587 | 0 | |
GRADO | 2.74 | 0.85 | 13.99 | 278,026 | ||||
GRA1 | 1.85 | 0.76 | 8.48 | 47,599 | 45.682133 | 13.390340 | 0 | |
GRA2 | 3.48 | 0.94 | 13.99 | 230,427 | 45.678219 | 13.388133 | 1 | |
VAL NOGHERA [*] | 2.12 | 1.16 | 9.52 | 17,372 | ||||
VN1 | 2.28 | 1.27 | 9.52 | 8204 | 45.710263 | 13.308906 | 0 | |
VN2 | 1.98 | 1.06 | 8.03 | 9168 | 45.713665 | 13.288101 | 0 | |
Urban areas | MONFALCONE | 1.19 | 0.40 | 17.28 | 22,910 | |||
MON | 1.19 | 0.40 | 17.28 | 22,910 | 45.801200 | 13.528419 | 5 | |
VILLAGGIO DEL PESCATORE | 2.53 | 0.94 | 8.61 | 219,138 | ||||
PES | 2.53 | 0.94 | 8.61 | 219,138 | 45.777859 | 13.588559 | 0 | |
TRIESTE | 2.56 | 1.20 | 26.46 | 1,845,127 | ||||
TS1 | 2.36 | 1.14 | 21.24 | 1,681,994 | 45.658275 | 13.800820 | 80 | |
TS2 | 3.26 | 1.62 | 26.46 | 84,186 | 45.623776 | 13.803742 | 40 | |
TS3 | 4.43 | 1.12 | 13.77 | 28,540 | 45.647045 | 13.764987 | 10 | |
TS4 | 3.07 | 1.43 | 10.02 | 50,407 | 45.656577 | 13.784282 | 30 | |
Pristine areas | BASOVIZZA [§] | 1.20 | 0.32 | 2.80 | 2676 | |||
BAS | 1.20 | 0.32 | 2.80 | 2676 | 45.641365 | 13.862287 | 380 | |
PIRAN [*] | 1.88 | 1.07 | 8.60 | 7506 | ||||
PIR | 1.88 | 1.07 | 8.60 | 7506 | 45.518672 | 13.568036 | 0 |
Site | Temperature | Solar Radiation | Wind Speed | Wind Direction | Relative Humidity | Season | |
---|---|---|---|---|---|---|---|
Non-urban Hg-contaminated sites | FOS1_2 | −0.25 | −0.42 | −0.30 | −0.17 | Spring | |
FOS2_1 | 0.02 | −0.14 | −0.26 | 0.09 | 0.07 | Spring | |
FOS3_1 | −0.36 | −0.44 | −0.16 | −0.19 | 0.38 | Autumn | |
GRA2_1 | −0.31 | −0.26 | 0.25 | 0.08 | 0.72 | Summer | |
GRA1_1 | −0.12 | −0.54 | −0.20 | −0.32 | 0.22 | Autumn | |
PES_1 | 0.47 | 0.43 | 0.18 | 0.24 | −0.18 | Summer | |
Urban sites | TS1_4 | 0.26 | −0.02 | −0.27 | 0.18 | 0.49 | Spring |
TS3_1 | 0.11 | 0.53 | 0.34 | 0.17 | −0.11 | Spring | |
TS1_5 | −0.05 | −0.02 | −0.02 | −0.07 | −0.08 | Summer | |
TS2_3 | 0.16 | 0.63 | −0.49 | 0.60 | 0.79 | Summer | |
TS1_6 | 0.22 | −0.16 | −0.48 | 0.21 | 0.51 | Autumn |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barago, N.; Floreani, F.; Acquavita, A.; Esbrí, J.M.; Covelli, S.; Higueras, P. Spatial and Temporal Trends of Gaseous Elemental Mercury over a Highly Impacted Coastal Environment (Northern Adriatic, Italy). Atmosphere 2020, 11, 935. https://doi.org/10.3390/atmos11090935
Barago N, Floreani F, Acquavita A, Esbrí JM, Covelli S, Higueras P. Spatial and Temporal Trends of Gaseous Elemental Mercury over a Highly Impacted Coastal Environment (Northern Adriatic, Italy). Atmosphere. 2020; 11(9):935. https://doi.org/10.3390/atmos11090935
Chicago/Turabian StyleBarago, Nicolò, Federico Floreani, Alessandro Acquavita, José María Esbrí, Stefano Covelli, and Pablo Higueras. 2020. "Spatial and Temporal Trends of Gaseous Elemental Mercury over a Highly Impacted Coastal Environment (Northern Adriatic, Italy)" Atmosphere 11, no. 9: 935. https://doi.org/10.3390/atmos11090935
APA StyleBarago, N., Floreani, F., Acquavita, A., Esbrí, J. M., Covelli, S., & Higueras, P. (2020). Spatial and Temporal Trends of Gaseous Elemental Mercury over a Highly Impacted Coastal Environment (Northern Adriatic, Italy). Atmosphere, 11(9), 935. https://doi.org/10.3390/atmos11090935