Precipitation Microphysical Characteristics of Typhoon Mangkhut in Southern China Using 2D Video Disdrometers
Abstract
:1. Introduction
2. Data and Methods
2.1. Instruments and Dataset
2.2. 2DVD Data Processing
3. Overview of the Typhoon
4. DSDs Characteristics Derived from the 2DVD Measurements at the Three Stations
4.1. Temporal Evolution and Variations in the Raindrop Size Distribution (DSDs)
4.2. DSD Parameters
5. Gamma and DSD Parameters of the Three Segments
5.1. Distributions of Dm and Nw
5.2. μ–Λ Relationship
5.3. Raindrop Spectra
6. Summary
- During segment S1 (the outer rainband before landfall), the circulation moved northwestward. A strong stratiform precipitation episode mixed with convective precipitation lasting more than 2 hours occurred over all three sites. The maximum drop size was less than 3 mm, and the raindrop concentration was less than 4 mm−1 m−3 (on a logarithmic scale) at all three sites. The small and midsize drops mainly contributed to the rain rate. The lgNw–Dm pairs mainly occurred to the left of the stratiform line.
- During segment S2 (the inner core), a strong convective precipitation process occurred over site EP. This segment had the largest instantaneous wind speed (23.3 m s−1), rain rate (11.66 mm h−1), radar reflectivity (34.53 dBZ), liquid water content (0.65 g m−3), and number concentration (4.12 mm−1 m−3 in logarithmic scale) on average. The small drops (<1 mm) mainly contributed to the number concentration, while the small and midsize drops (1–3 mm) mainly contributed to the rain rate. The Nw–Dm scatter pairs indicate maritime-like convection.
- During segment S3 (the outer rainband after landfall), a widespread stratiform precipitation episode mixed with convective precipitation lasted above 10 h. The DSDs were characterized by a high concentration of small drops (<1 mm) and a few larger drops (>5 mm). The maximum drop size was greater than 4 mm at all three sites. The Nw–Dm points were mostly distributed around the stratiform rain area, with a few points falling in both the maritime-like and continental-like clusters.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kirankumar, N.V.P.; Rao, T.N.; Radhakrishna, B.; Rao, D.N. Statistical characteristics of raindrop size distribution in southwest monsoon season. J. Appl. Meteorol. Clim. 2008, 47, 576–590. [Google Scholar] [CrossRef]
- Tao, W.K.; Lang, S.; Zeng, X.P.; Li, X.W.; Matsui, T.; Mohr, K.; Posselt, D.; Chern, J.; Christa, P.L.; Peter, M.N.; et al. The Goddard Cumulus Ensemble model (GCE): Improvements and applications for studying precipitation processes. Atmos. Res. 2014, 143, 392–424. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chandrasekar, V.; Bechini, R. An Improved dual–polarization radar rainfall algorithm (DROPS2.0): Application in NASA IFloodS field campaign. J. Hydrol. 2017, 18, 917–937. [Google Scholar] [CrossRef]
- Liu, L.P.; Ge, R.S.; Zhang, P.Y. A study of method and accuracy of rainfall rate and liquid water content measurements by dual linear polarization doppler radar. Chin. J. Atmos Sci. 2002, 26, 709–720. [Google Scholar] [CrossRef]
- Gong, X.H.; Zhu, D.L.; Zhang, L.; Zhang, Y.S.; Ge, M.S.; Yang, W. Drop size distribution of fixed spray-plate sprinklers with two-dimensional video disdrometer. Trans. Chin. Soc. Agric. Mach. 2014, 45, 128–133. (In Chinese) [Google Scholar] [CrossRef]
- Clardy, D.E.; Tolbert, C.W. Electronic disdrometer. Rev. Sci. Instrum. 1961, 32, 916–919. [Google Scholar] [CrossRef]
- Frasson, R.P.D.M.; Cunha, L.K.D.; Krajewski, W.F. Assessment of the Thies optical disdrometer performance. Atmos. Res. 2011, 101, 237–255. [Google Scholar] [CrossRef]
- Hauser, D.; Amayenc, P.; Nutten, B.; Waldteufel, P. New optical instrument for simultaneous measurement of raindrop diameter and fall speed distributions. J. Atmos. Ocean. Technol. 1909, 1, 256–269. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. Some observations on the Joss–Waldvogel rainfall disdrometer. J. Appl. Meteorol. 1976, 15, 499–502. [Google Scholar] [CrossRef]
- Nystuen, J.A. Listening to raindrops from underwater: An acoustic disdrometer. J. Atmos. Ocean. Technol. 2001, 18, 1640–1657. [Google Scholar] [CrossRef]
- Raupach, T.H.; Berne, A. Correction of raindrop size distributions measured by Parsivel disdrometers, using a two–dimensional video disdrometer as a reference. Atmos. Meas. Tech. 2015, 8, 343–365. [Google Scholar] [CrossRef] [Green Version]
- Kruger, A.; Krajewski, W.F. Two–dimensional video disdrometer: A description. J. Atmos. Ocean. Technol. 2002, 19, 602–617. [Google Scholar] [CrossRef]
- Liu, X.T.; Wan, Q.L.; Wang, H.; Xiao, H.; Zhang, Y.; Zheng, T.F.; Feng, L. Raindrop size distribution parameters retrieved from Guangzhou S–band polarimetric radar observations. J. Meteorol. Res. 2018, 32, 571–583. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Zhang, G.F.; Xue, M.; Zhou, B.W.; Liu, S.; Chen, X.C. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2–D video disdrometer and Micro Rain Radar data. J. Geophys. Res. Atmos. 2016, 121, 2265–2282. [Google Scholar] [CrossRef] [Green Version]
- Tokay, A.; Bashor, P.G.; Habib, E.; Kasparis, T. Raindrop size distribution measurements in tropical cyclones. Mon. Weather Rev. 2008, 136, 1669–1685. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.J.; Wang, Y.; Ming, J. Microphysical characteristics of the raindrop size distribution in Typhoon Morakot (2009). J. Trop. Meteorol. 2012, 18, 162–171. [Google Scholar] [CrossRef]
- Chang, W.Y.; Wang, T.C.C.; Lin, P.L. Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western pacific from the 2D video disdrometer and NCU C–band polarimetric radar. J. Atmos. Ocean. Technol. 2009, 26, 1973–1993. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W.L.; Schoenhuber, M. Raindrop size distribution in different climatic regimes from disdrometer and dual–polarized radar analysis. J. Atmos. Sci. 2003, 60, 354–365. [Google Scholar] [CrossRef]
- Wang, M.J.; Zhao, K.; Xue, M.; Zhang, G.F.; Liu, S.; Wen, L.; Chen, G. Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J. Geophys. Res. Atmos. 2016, 121, 12415–12433. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Chen, G.; Wang, M.J.; Zhou, B.W.; Huang, H.; Hu, D.M.; Lee, W.C.; Hu, H.F. Drop size distribution characteristics of seven typhoons in China. J. Geophys. Res. Atmos. 2018, 123, 6529–6548. [Google Scholar] [CrossRef]
- Bao, X.W.; Wu, L.G.; Tang, B.; Ma, L.M.; Wu, D.; Tang, J.; Chen, H.J.; Wu, L.Y. Variable raindrop size distributions in different rainbands associated with typhoon fitow (2013). J. Geophys. Res. Atmos. 2019, 124, 12262–12281. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, L.P.; Wen, H.; Chen, C.; Wang, H.; Xi, B.Z. Development and assessment of quantitative precipitation estimation algorithms for S–, C–, and X–band dual–polarization radars based on disdrometer data from three regions of China. J. Trop. Meteorol. 2019, 25, 269–292. [Google Scholar] [CrossRef]
- Niu, S.J.; Jia, X.C.; Sang, J.R.; Liu, X.L.; Lu, C.S.; Liu, Y.G. Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: Convective versus stratiform rains. J. Appl. Meteorol. Climatol. 2010, 49, 632–645. [Google Scholar] [CrossRef]
- Luo, L.; Xiao, H.; Yang, H.L.; Chen, H.N.; Guo, J.; Sun, Y.; Feng, L. Raindrop size distribution and microphysical characteristics of a great rainstorm in 2016 in Beijing, China. Atmos. Res. 2020, 239, 104895. [Google Scholar] [CrossRef]
- Janapati, J.; Seela, B.K.; Reddy, M.V.; Reddy, K.K.; Lin, P.-L.; Rao, T.N.; Liu, C.-Y. A study on raindrop size distribution variability in before and after landfall precipitations of tropical cyclones observed over southern India. J. Atmos. Sol. Terr. Phys. 2017, 159, 23–40. [Google Scholar] [CrossRef]
- Lin, W.; Chen, S.; Hu, Y.J.; Li, D. The characteristics of RSDs before and after the Landing Typhoon Meranti. Trop. Cyclone Res. Rev. 2020. [Google Scholar] [CrossRef]
- Tokay, A.; Petersen, W.A.; Gatlin, P.; Wingo, M. Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Ocean. Technol. 2013, 30, 1672–1690. [Google Scholar] [CrossRef]
- Feng, L.; Xia, F.; Wang, Q.L.; Xiao, H.; Liu, X.T.; Zheng, T.F.; Li, H.Q. Characteristics of the raindrop size distribution in two squall lines measured by Two–dimensional video disdrometer at Guangdong. J. Trop. Meteorol. 2019, 35, 812–821. (In Chinese) [Google Scholar] [CrossRef]
- Ulbrich, C.W. Natural variations in the analytical form of the raindrop size distribution. Clim. Appl. Meteorol. 1983, 22, 1764–1775. [Google Scholar] [CrossRef] [Green Version]
- Weisman, M.L.; Klemp, J.B.; Rotunno, R. Structure and evolution of numerically simulated squall lines. J. Atmos. Sci. 1988, 45, 1990–2013. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Zheng, Y.Y.; Xiao, H.; Mu, X.Y. Mesoscale characterstics of a severe hail event over the area along Yangtze River in Jiangsu. Meteorol. Mon. 2016, 42, 567–577. (In Chinese) [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.T.; Liu, Q.J.; Fu, S.Z.; Ma, Z.S. A Study of the Influence of Microphysical Processes on Typhoon Nida (2016) Using a New Double-moment Microphysics Scheme in the Weather Research and Forecasting Model. J. Trop. Meteorol. 2018, 24, 123–130. [Google Scholar] [CrossRef]
- Hu, Z.L.; Srivastava, R.C. Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci. 1995, 52, 1761–1783. [Google Scholar] [CrossRef] [Green Version]
- Black, R.A.; Hallett, J. Electrification of the hurricane. J. Atmos. Sci. 1999, 56, 2004–2028. [Google Scholar] [CrossRef]
- Houze, R.A. Clouds in tropical cyclones. Mon. Weather Rev. 2010, 138, 293–344. [Google Scholar] [CrossRef]
- Houze, R.A.; Marks, F.D.; Black, R.A. Dual-aircraft investigation of the inner core of hurricane norbert. Part II: Mesoscale distribution of ice particles. J. Atmos. Sci. 1992, 49, 943–963. [Google Scholar] [CrossRef] [Green Version]
- Marks, F.D.; Houze, R.A. Airborne doppler radar observations in hurricane debby. Bull. Am. Meteorol. Soc. 1984, 65, 569–582. [Google Scholar] [CrossRef]
- Brown, B.R.; Bell, M.M.; Frambach, A.J. Validation of simulated hurricane drop size distributions using polarimetric radar. Geophys. Res. Lett. 2016, 43, 910–917. [Google Scholar] [CrossRef]
- Krajewski, W.F.; Kruger, A.; Caracciolo, C.; Golé, P.; Barthes, L.; Creutin, J.-D.; Delahaye, J.Y.; Nikolopoulos, E.I.; Ogden, F.; Vinson, J.-P. DEVEX–disdrometer evaluation experiment: Basic results and implications for hydrologic studies. Adv. Water Resour. 2006, 29, 311–325. [Google Scholar] [CrossRef]
- Lee, C.K.; Lee, G.W.; Zawadzki, I.; Kim, K.E. A preliminary analysis of spatial variability of raindrop size distributions during stratiform rain events. J. Appl. Meteorol. Clim. 2009, 48, 270–283. [Google Scholar] [CrossRef]
- Zhang, G.; Vivekanandan, J.; Brandes, E. A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens. 2001, 39, 830–841. [Google Scholar] [CrossRef] [Green Version]
- Brandes, E.A.; Zhang, G.F.; Vivekanandan, J. Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteorol. 2004, 43, 461–475. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.F.; Vivekanandan, J.; Brandes, E.A.; Meneghini, R.; Kozu, T. The shape-slope relation in observed gamma raindrop size distributions: Statistical error or useful information? J. Atmos. Ocean. Technol. 2003, 20, 1106–1119. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Wan, Q.L.; Yang, L.; Liu, X.T.; Xia, F.; Feng, L. Raindrop size distribution parameters retrieved from xinfeng c-band polarimetric radar observations. J. Trop. Meteorol. 2020, 26, 275–286. [Google Scholar] [CrossRef]
- Janapati, J.; Seela, B.K.; Lin, P.-L.; Wang, P.K.; Tseng, C.-H.; Reddy, K.K.; Hashiguchi, H.; Feng, L.; Das, S.K.; Unnikrishnan, C.K. Raindrop size distribution characteristics of Indian and Pacific Ocean tropical cyclones observed at India and Taiwan sites. J. Meteorol. Soc. Jpn. 2020, 98, 299–317. [Google Scholar] [CrossRef] [Green Version]
- Brandes, E.A.; Zhang, G.F.; Vivekanandan, J. An evaluation of a drop distribution-based polarimetric radar rainfall estimator. J. Appl. Meteorol. 2003, 42, 652–660. [Google Scholar] [CrossRef]
- Brandes, E.A.; Zhang, G.F.; Vivekanandan, J. Comparison of polarimetric radar drop size distribution retrieval algorithms. J. Atmos. Ocean. Technol. 2004, 21, 584–598. [Google Scholar] [CrossRef] [Green Version]
Site | Segment | Period | Distance (km) | |
---|---|---|---|---|
Beginning | Ending | |||
EP | S1 | 09:00 BST, 16 Sep 2018 | 16:29 BST, 16 Sep 2018 | 223 |
S2 | 16:30 BST, 16 Sep 2018 | 18:59 BST, 16 Sep 2018 | 58 | |
S3 | 19:00 BST, 16 Sep 2018 | 10:00 BST, 17 Sep 2018 | 260 | |
FG | S1 | 09:00 BST, 16 Sep 2018 | 16:59 BST, 16 Sep 2018 | 301 |
S3 | 17:00 BST, 16 Sep 2018 | 10:00 BST, 17 Sep 2018 | 402 | |
XF | S1 | 09:00 BST, 16 Sep 2018 | 14:59 BST, 16 Sep 2018 | 328 |
S3 | 15:00 BST, 16 Sep 2018 | 10:00 BST, 17 Sep 2018 | 451 |
Site | Segment | R (mm h−1) | Z (dBZ) | Dm (mm) | lgNw (mm−1 m−3) | LWC (g m−3) |
---|---|---|---|---|---|---|
EP | S1 | 5.28/3.57/4.83 | 29.10/37.31/7.97 | 1.30/1.30/0.24 | 3.66/3.77/0.41 | 0.28/0.23/0.24 |
S2 | 11.66/9.12/11.02 | 34.53/43.97/8.84 | 1.33/1.48/0.44 | 4.12/4.12/0.38 | 0.65/0.59/0.55 | |
S3 | 5.05/2.84/8.44 | 30.88/38.90/6.98 | 1.52/1.51/0.31 | 3.34/3.38/0.36 | 0.26/0.16/0.42 | |
FG | S1 | 2.06/1.50/2.11 | 25.40/33.01/6.89 | 1.24/1.21/0.27 | 3.46/3.46/0.30 | 0.12/0.10/0.11 |
S3 | 6.36/4.24/11.98 | 29.99/38.70/8.34 | 1.28/1.29/0.29 | 3.82/3.91/0.35 | 0.35/0.25/0.57 | |
XF | S1 | 2.42/1.97/1.85 | 27.34/35.23/5.37 | 1.29/1.29/0.19 | 3.50/3.47/0.32 | 0.14/0.11/0.11 |
S3 | 3.45/1.94/4.68 | 26.26/33.74/7.66 | 1.21/1.20/0.29 | 3.68/3.72/0.38 | 0.19/0.13/0.23 |
Region | Grade | Name | Author | Dm | lgNw | μ–Λ Relationship |
---|---|---|---|---|---|---|
Eastern China | Extra-tropical Cyclone | Matmo | Wang et al. 2016 | 1.41 | 4.67 | μ = −0.021Λ2 + 1.075Λ − 2.979 |
Taiwan, China | Typhoon + Tropical Storm | Two Tropical Cyclones | Chang et al. 2009 | 2 | 3.8 | Λ = 0.0136μ2 + 0.6984μ + 1.5131 |
Fujian, China | Typhoon | Morakot | Chen et al. 2012 | 1.30 | – | Λ = 0.0253μ2 + 0.633μ + 1.524 |
Guangdong, China | Severe Tropical Storm | Nida | Wen et al. 2018 | 1.4 | 4.5 | – |
Guangdong, China | Typhoon | Hato | Wen et al. 2018 | 1.2 | 4.8 | – |
Guangdong, China | Severe Tropical Storm | Pakhar | Wen et al. 2018 | 1.3 | 4.7 | – |
Eastern + southern China | Severe Tropical Storm + Typhoon | Seven Tropical Cyclones | Wen et al. 2018 | – | – | μ = −0.019Λ2 + 1.09Λ − 3.119 |
Guangdong, China | Rainstorm | – | Liu et al. 2019 | 1.66 | 3.91 | Λ = 0.0241μ2 + 0.867μ + 2.453 |
Guangdong, China | Typhoon | Mangkhut | This study | 1.33 | 4.12 | μ = −0.0306Λ2 + 1.3513Λ − 3.145 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Hu, S.; Liu, X.; Xiao, H.; Pan, X.; Xia, F.; Ou, G.; Zhang, C. Precipitation Microphysical Characteristics of Typhoon Mangkhut in Southern China Using 2D Video Disdrometers. Atmosphere 2020, 11, 975. https://doi.org/10.3390/atmos11090975
Feng L, Hu S, Liu X, Xiao H, Pan X, Xia F, Ou G, Zhang C. Precipitation Microphysical Characteristics of Typhoon Mangkhut in Southern China Using 2D Video Disdrometers. Atmosphere. 2020; 11(9):975. https://doi.org/10.3390/atmos11090975
Chicago/Turabian StyleFeng, Lu, Sheng Hu, Xiantong Liu, Hui Xiao, Xiao Pan, Feng Xia, Guanhua Ou, and Chu Zhang. 2020. "Precipitation Microphysical Characteristics of Typhoon Mangkhut in Southern China Using 2D Video Disdrometers" Atmosphere 11, no. 9: 975. https://doi.org/10.3390/atmos11090975
APA StyleFeng, L., Hu, S., Liu, X., Xiao, H., Pan, X., Xia, F., Ou, G., & Zhang, C. (2020). Precipitation Microphysical Characteristics of Typhoon Mangkhut in Southern China Using 2D Video Disdrometers. Atmosphere, 11(9), 975. https://doi.org/10.3390/atmos11090975