Changes in Air Temperature and Snow Cover in Winter in Poland
Abstract
:1. Introduction
2. Data and Study Methods
3. Results
3.1. Air Temperature
3.2. Snow Cover
3.3. Effect of Circulation Conditions
4. Discussion and Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel in Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Masson-Delmotte, V.; Zhai, H.-O.P.; Pörtner, D.; Roberts, J.; Skea, P.R.; Shukla, A.; Pirani, W.; Moufouma-Okia, C.; Péan, R.; Pidcock, S.; et al. (Eds.) Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Solomon, S.; Qin, M.D.; Manning, Z.; Chen, M.; Marquis, K.B.; Averyt, M.T.; Miller, H.L. (Eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Piniewski, M.; Mezghani, A.; Szcześniak, M.; Kundzewicz, Z.W. Regional projections of temperature and precipitation changes: Robustness and uncertainty aspects. Meteorol. Z. 2017, 26, 223–234. [Google Scholar] [CrossRef]
- Kjellström, E. Recent and future signatures of climate change in Europe. Ambio 2004, 33, 193–198. [Google Scholar] [CrossRef] [PubMed]
- The Copernicus Climate Change Service (C3S). Available online: https://climate.copernicus.eu/boreal-winter-season-1920-was-far-warmest-winter-season-ever-recorded-europe-0 (accessed on 4 April 2020).
- Lorenz, R.; Stalhandske, Z.; Fischer, E.M. Detection of a climate change signal in extreme heat, heat stress, and cold in Europe from observations. Geophys. Res. Lett. 2019, 46, 8363–8374. [Google Scholar] [CrossRef] [Green Version]
- Bielec-Bąkowska, Z.; Piotrowicz, K. Temperatury ekstremalne w Polsce w latach 1951–2006. Pr. Geogr. 2013, 132, 59–98. [Google Scholar]
- Michalska, B. Tendencje zmian temperatury powietrza w Polsce. Pr. Studia Geogr. 2011, 47, 67–75. [Google Scholar]
- Wójcik, R.; Miętus, M. Niektóre cechy wieloletniej zmienności temperatury powietrza w Polsce (1951–2010). Przegląd Geogr. 2014, 86, 339–364. [Google Scholar] [CrossRef] [Green Version]
- Owczarek, M.; Filipiak, J. Contemporary changes of thermal conditions in Poland, 1951–2015. Bull. Geogr. Phys. Geogr. Ser. 2016, 10, 31–50. [Google Scholar] [CrossRef] [Green Version]
- Matuszko, D.; Piotrowicz, K. Ekstremalne zdarzenia pogodowe w Krakowie i ich uwarunkowania cyrkulacyjne. In Rola Cyrkulacji Atmosfery w Kształtowaniu Klimatu; Bielec-Bakowska, Z., Łupikasza, E., Widawski, A., Eds.; Katedra Klimatologii, Wydział Nauk o Ziemi, Uniwersytet Śląski: Sosnowiec, Poland, 2012; pp. 211–218. [Google Scholar]
- Lhotka, O.; Kyselý, J. Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe. Int. J. Climatol. 2015, 35, 1232–1244. [Google Scholar] [CrossRef]
- Migała, K.; Urban, G.; Tomczyński, K. Long-term air temperature variation in the Karkonosze mountains according to atmospheric circulation. Theor. Appl. Climatol. 2016, 125, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, A.M.; Bednorz, E.; Sulikowska, A. Cold spells in Poland and Germany and their circulation conditions. Int. J. Climatol. 2019, 39, 4002–4014. [Google Scholar] [CrossRef]
- Van Oldenborgh, G.; Mitchell-Larson, E.; Vecchi, G.A.; de Vries, H.; Vautard, R.; Otto, F. Cold waves are getting milder in the northern midlatitudes. Environ. Res. Lett. 2019, 14, 114004. [Google Scholar] [CrossRef] [Green Version]
- Koenigk, T.; Caian, M.; Nikulin, G.; Schimanke, S. Regional Arctic Sea ice variations as predictor for winter climate conditions. Clim. Dyn. 2016, 46, 317–337. [Google Scholar] [CrossRef] [Green Version]
- Ziernicka-Wojtaszek, A.; Zuśka, Z. Zimy z dodatnią temperaturą powietrza na obszarze Polski (1981–2010). Infrastrukt. Ekol. Teren. Wiej. 2016, 3, 983–993. [Google Scholar]
- Feng, S.; Hu, Q. Changes in winter snowfall/precipitation ratio in the contiguous United States. J. Geophys. Res. Atmos. 2007, 112, D15. [Google Scholar] [CrossRef]
- Dong, C.; Menzel, L. Recent snow cover changes over central European low mountain ranges. Hydrol. Process. 2019, 24, 321–338. [Google Scholar] [CrossRef]
- Brown, R.D.; Robinson, D.A. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 2011, 5, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Bulygina, O.N.; Razuvaev, V.N.; Korshunova, N.N. Changes in snow cover over Northern Eurasia in the last decades. Environ. Res. Lett. 2009, 4, 045026. [Google Scholar] [CrossRef]
- Henderson, G.R.; Leathers, D.J. European snow cover extent variability and associations with atmospheric forcings. Int. J. Climatol. 2010, 30, 1440–1451. [Google Scholar] [CrossRef]
- Ye, K.; Lau, N.C. Influences of surface air temperature and atmospheric circulation on winter snow cover variability over Europe. Int. J. Climatol. 2017, 37, 2606–2619. [Google Scholar] [CrossRef]
- Fontrodona Bach, A.; van der Schrier, G.; Melsen, L.A.; Klein Tank, A.M.G.; Teuling, A.J. Widespread and accelerated decrease of observed mean and extreme snow depth over Europe. Geophys. Res. Lett. 2018, 45, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, R.L.; Brun, E. (Eds.) Snow and Climate: Physical Processes, Surface Energy Exchange and Modeling; Cambridge University Press: Cambridge, UK, 2008; p. 256. ISBN 10 0-521854-54-7. [Google Scholar]
- Kjellström, E. Changes in the probability distribution functions for temperature between an A2 scenario run and a control run with RCA)-H. SWECLIM Newsl. 2003, 14, 12–16. [Google Scholar]
- Räisänen, J.; Hansson, U.; Ullerstig, A.; Döscher, R.; Graham, L.P.; Jones, C.; Meier, M.; Samuelsson, P.; Willen, U. GCM driven simulations of recent and future climate with the Rossby Centre coupled atmosphere Baltic Sea regional climate model. RCAO Rep. Meteorol. Climatol. 2003, 101, 1–61. [Google Scholar]
- Van den Besselaar, E.J.M.; Klein Tank, A.M.G.; van der Schrier, G. Influence of circulation types on temperature extremes in Europe. Theor. Appl. Climatol. 2010, 99, 431–439. [Google Scholar] [CrossRef]
- Brown, R.D. Northern Hemisphere snow cover variability and change, 1915–1997. J. Clim. 2000, 13, 2339–2355. [Google Scholar] [CrossRef]
- Choi, G.; Robinson, D.A.; Kang, S. Changing Northern Hemisphere snow seasons. J. Clim. 2010, 23, 5305–5310. [Google Scholar] [CrossRef]
- Falarz, M. Long-term variability in reconstructed and observed snow cover over the last 100 winter seasons in Cracow and Zakopane (southern Poland). Clim. Res. 2002, 19, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Hyvärinen, V. Trends and characteristics of hydrological time series in Finland. Nord. Hydrol. 2003, 34, 71–90. [Google Scholar] [CrossRef]
- Kohler, J.; Brandt, O.; Johansson, M.; Callaghan, T.V. A long-term Arctic snow depth record from Abisko, northern Sweden, 1913–2004. Polar Res. 2006, 25, 91–113. [Google Scholar] [CrossRef] [Green Version]
- Falarz, M. Variability and trends in the duration and depth of snow cover in Poland in the 20th Century. Int. J. Climatol. 2004, 24, 1713–1727. [Google Scholar] [CrossRef]
- Falarz, M. Changes of extreme nival conditions in Poland during the second half of the 20th century. Meteorol. Z. 2008, 17, 339–444. [Google Scholar] [CrossRef]
- Czarnecka, M. Częstość występowania i grubość pokrywy śnieżnej w Polsce. Acta Agroph. 2012, 19, 501–514. [Google Scholar]
- Szwed, M.; Pińskwar, I.; Kundzewicz, Z.W.; Graczyk, D.; Mezghani, A. Changes of snow cover in Poland. Acta Geophys. 2017, 65, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Szwed, M.; Dobler, A.; Mezghani, A.; Saloranta, T.M. Change of maximum snow cover depth in Poland—Trends and projections. Idojaras 2019, 123, 487–500. [Google Scholar] [CrossRef] [Green Version]
- Jaagus, J. The impact of climate change on the snow cover pattern in Estonia. Clim. Chang. 1997, 36, 65–77. [Google Scholar] [CrossRef]
- Niedźwiecki, M. Charakterystyka pokrywy śnieżnej w Łodzi w latach 1950–1989. Acta Univ. Lodz. Folia Geograph. Phys. 1998, 3, 265–277. [Google Scholar]
- Adaptation in Europe; Report No. 3; European Environment Agency: Copenhagen, Denmark, 2013.
- Climate Change, Impacts and Vulnerability in Europe 2012—An Indicator-Based Report; Report No. 12; European Environment Agency: Copenhagen, Denmark, 2012.
- Mezghani, A.; Parding, K.M.; Dobler, A.; Benestad, R.E.; Haugen, J.E.; Piniewski, M. Projekcje zmian temperatury, opadów i pokrywy śnieżnej. In Zmiany Klimatu i Ich Wpływ na Wybrane Sektory w Polsce; Kundzewicz, Z., Hov, Ø., Okruszko, T., Eds.; ISRL PAN Poznań: Poznań, Poland, 2017. [Google Scholar]
- Piotrowski, P.; Jędruszkiewicz, J. Projections of thermal conditions for Poland for winters 2012–2050 in relations to atmospheric circulation. Meteorol. Z. 2013, 22, 569–575. [Google Scholar] [CrossRef]
- Brown, I. Snow cover duration and extent for Great Britain in a changing climate: Altitudinal variations and synoptic scale influences. Int. J. Climatol. 2019, 39, 4611–4626. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.P.; Serreze, M.C.; Robinson, D.A. Atmospheric controls on Eurasian snow extent. Int. J. Climatol. 1999, 19, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Bednorz, E. Snow cover in western Poland and macro-scale circulation conditions. Int. J. Climatol. 2002, 22, 533–541. [Google Scholar] [CrossRef]
- Bednorz, E. Snow cover in eastern Europe in relation to temperature, precipitation and circulation. Int. J. Climatol. 2004, 24, 591–601. [Google Scholar] [CrossRef]
- Falarz, M. Snow cover variability in Poland in relation to the macro- and mesoscale atmospheric circulation in the 20th century. Int. J. Climatol. 2007, 27, 2069–2081. [Google Scholar] [CrossRef]
- Tomczyk, A.M. Impact of macro-scale circulation types on the occurrence of frosty days in Poland. Bull. Geogr. Phys. Geogr. Ser. 2015, 9, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Ptak, M.; Tomczyk, A.M.; Wrzesiński, D. Effect of teleconnection patterns on changes in water temperature in Polish lakes. Atmosphere 2018, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Hurrel, J.W. Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurrel, J.W.; Deser, C. North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst. 2010, 78, 28–41. [Google Scholar] [CrossRef]
- Bednorz, E. Synoptic reasons for heavy snowfalls in the Polish-German lowlands. Theor. Appl. Climatol. 2008, 92, 133–140. [Google Scholar] [CrossRef]
- Salmaso, N.; Cerasimo, L. Long-term trends and fine year-to-year tuning of phytoplankton in large lakes are ruled by eutrophication and atmospheric modes of variability. Hydrobiologia 2012, 698, 17–28. [Google Scholar] [CrossRef]
- Ptak, M.; Tomczyk, A.M.; Wrzesiński, D.; Bednorz, E. Effect of teleconnection patterns on ice conditions in lakes in lowland Poland. Theor. Appl. Climatol. 2019, 138, 961–1969. [Google Scholar] [CrossRef] [Green Version]
- Bueha, C.; Nakamuta, H. Scandinavian pattern and its climatic impact. Q. J. R. Meteor. Soc. 2007, 133, 2117–2131. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Zhou, W.; Chen, W. Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Clim. Dyn. 2014, 42, 2817–2839. [Google Scholar] [CrossRef]
- Nojarov, P. Circulation factors affecting precipitation over Bulgaria. Theor. Appl. Climatol. 2017, 127, 87–101. [Google Scholar] [CrossRef]
- Degirmendžić, J. Wpływ klina Wyżu Azjatyckiego nad Skandynawią na temperaturę powietrza w Europie. Przegląd Geofiz. 1999, 44, 211–229. [Google Scholar]
- Pospieszyńska, A.; Przybylak, R. Air temperature changes in Toruń (central Poland) from 1871 to 2010. Theor. Appl. Climatol. 2019, 135, 707–724. [Google Scholar] [CrossRef] [Green Version]
- Kolendowicz, L.; Czernecki, B.; Półrolniczak, M.; Taszarek, M.; Tomczyk, A.M.; Szyga-Pluta, K. Homogenization of air temperature and its long-term trends in Poznań (Poland) for the period 1848–2016. Theor. Appl. Climatol. 2019, 136, 1357–1370. [Google Scholar] [CrossRef] [Green Version]
- Wibig, J.; Głowicki, B. Trends in minimum and maximum temperature in Poland. Clim. Res. 2002, 20, 123–133. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bonfils, C.; Duffy, P.B. Climate change uncertainty for daily minimum and maximum temperatures: A model inter-comparison. Geophys. Res. Lett. 2007, 34, L05715. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Piao, S.; Ciais, P.; Myneni, R.B.; Chen, A.; Chevallier, F.; Dolman, A.J.; Janssens, I.A.; Peñuelas, J.; Zhang, G.; et al. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature 2013, 501, 88–92. [Google Scholar] [CrossRef]
- Ma, L.; Qin, F.; Wang, H.; Qin, Y.; Xia, H. Asymmetric seasonal daytime and nighttime warming and its effects on vegetation in the Loess Plateau. PLoS ONE 2019, 14, e0218480. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Bednorz, E.; Półrolniczak, M.; Kolendowicz, L. Strong heat and cold waves in Poland in relations with the large-scale atmospheric circulation. Theor. Appl. Climatol. 2019, 137, 1909–1923. [Google Scholar] [CrossRef] [Green Version]
- Czernecki, B.; Miętus, M. The thermal seasons variability in Poland, 1951–2010. Theor. Appl. Climatol. 2017, 127, 481–493. [Google Scholar] [CrossRef] [Green Version]
- Czarnecka, M.; Nidzgorska-Lencewicz, J. Zmienność termicznej zimy w Polsce w latach 1960–2015. Acta Agrophys. 2017, 24, 205–220. [Google Scholar]
- Tomczyk, A.M.; Sulikowska, A.; Bednorz, E.; Półrolniczak, M. Atmospheric circulation conditions during winter warm spells in Central Europe. Nat. Hazards 2019, 96, 1413–1428. [Google Scholar] [CrossRef] [Green Version]
- Krzyżewska, A. Fale ciepła i chłodu w (V) południowo-wschodnim regionie bioklimatycznym w latach 1981–2010. Ann. UMCS Sect. B 2014, 49, 143–154. [Google Scholar]
- Nowosad, M.; Bartoszek, K. Wieloletnia zmienność grubości pokrywy śnieżnej w okolicy Lublina. In Wahania Klimatu w Różnych Skalach Przestrzennych i Czasowych; Piotrowicz, K., Twardosz, R., Eds.; Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego: Kraków, Poland, 2007; pp. 411–421. [Google Scholar]
- Brown, P.J.; Bradley, R.S.; Keimig, F.T. Changes in extreme climate indices for the northeastern United States, 1870–2005. J. Clim. 2010, 23, 6555–6572. [Google Scholar] [CrossRef]
- Skaugen, T.; Stranden, H.B.; Saloranta, T. Trends in snow water equivalent in Norway (1931–2009). Hydrol. Res. 2012, 43, 489–499. [Google Scholar] [CrossRef]
- Laternser, M.; Schneebeli, M. Long-term snow climate trends of the Swiss Alps (1931–99). Int. J. Climatol. 2003, 23, 733–750. [Google Scholar] [CrossRef]
- Marty, C.; Meister, R. Long-term snow and weather observations at Weissfluhjoch and its relation to other high-altitude observatories in the Alps. Theor. Appl. Climatol. 2012, 110, 573–583. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, S.C.; Appenzeller, C.; Laternser, M. Trends in Swiss Alpine snow days: The role of local-and large-scale climate variability. Geophys. Res. Lett. 2004, 31, L13215. [Google Scholar] [CrossRef] [Green Version]
- Micu, D. Snow pack in the Romanian Carpathians under changing climatic conditions. Meteorol. Atmos. Phys. 2009, 105, 1–16. [Google Scholar] [CrossRef]
- Bulygina, O.; Groisman, P.Y.; Razuvaev, V.; Korshunova, N. Changes in snow cover characteristics over Northern Eurasia since 1966. Environ. Res. Lett. 2011, 6, 045204. [Google Scholar] [CrossRef]
- Marty, C.; Blanchet, J. Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics. Clim. Chang. 2012, 111, 705–721. [Google Scholar] [CrossRef] [Green Version]
- Niedźwiedź, T. Sytuacje Synoptyczne i Ich Wpływ na Zróżnicowanie Przestrzenne Wybranych Elementów Klimatu w Dorzeczu Górnej Wisły; Rozprawy Habilitacyjne Uniwersytetu Jagiellońskiego: Kraków, Poland, 1981. [Google Scholar]
- Yarnal, B. Synoptic Climatology in Environmental Analysis; Belhaven Press: London, UK, 1993. [Google Scholar]
- Barnston, A.G.; Livezey, R.E. Classification, seasonality and persistence of low frequency atmospheric circulation patterns. Mon. Weather. Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Szyga-Pluta, K.; Bednorz, E. The effect of macro-scale circulation types on the length of the growing season in Poland. Meteorol. Atmos. Phys. 2019, 131, 1315–1325. [Google Scholar] [CrossRef] [Green Version]
- Wrzesiński, D.; Choiński, A.; Ptak, M.; Skowron, R. Effect of the North Atlantic Oscillation on the Pattern of Lake Ice Phenology in Poland. Acta Geophys. 2015, 63, 1664–1684. [Google Scholar] [CrossRef] [Green Version]
- Vihma, T.; Graversen, R.; Chen, L.; Handorf, D.; Skific, N.; Francis, J.A.; Tyrrell, N.; Hall, R.; Hanna, E.; Uotila, P.; et al. Effects of the tropospheric large-scale circulation on European winter temperatures during the period of amplified Arctic warming. Int. J. Climatol. 2020, 40, 509–529. [Google Scholar] [CrossRef] [Green Version]
- Riaz, S.M.F.; Iqbal, M.J.; Hameed, S. Impact of the North Atlantic Oscillation on winter climate in Germany. Tellus A Dyn. Meteorol. Oceanogr. 2017, 69, 1406263. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.D.; Petkova, N. Snow cover variability in Bulgarian mountainous regions, 1931–2000. Int. J. Climatolol. 2007, 27, 1215–1229. [Google Scholar] [CrossRef]
Station | Changes (°C/10 Years) | Coldest Season | Warmest Season | Station | Changes (°C/10 Years) | Coldest Season | Warmest Season | ||
---|---|---|---|---|---|---|---|---|---|
Tmin | Tmax | Tmin | Tmax | ||||||
Łeba | 0.48 | 0.39 | 1969/70 | 2019/20 | Leszno | 0.41 | 0.43 | 1969/70 | 2019/20 |
Hel | 0.44 | 0.38 | 1969/70 | 2019/20 | Kalisz | 0.47 | 0.40 | 1969/70 | 2019/20 |
Koszalin | 0.54 | 0.45 | 1969/70 | 2019/20 | Łódź | 0.42 | 0.44 | 1969/70 | 2019/20 |
Suwałki | 0.70 * | 0.57 | 1969/70 | 2019/20 | Sulejów | 0.46 | 0.41 | 1984/85 | 2019/20 |
Kętrzyn | 0.55 | 0.50 | 1969/70 | 2019/20 | Lublin | 0.47 | 0.34 | 1984/85 | 2019/20 |
Świnoujście | 0.42 | 0.43 | 1969/70 | 2019/20 | Wrocław | 0.46 | 0.48 | 1984/85 | 2019/20 |
Olsztyn | 0.56 | 0.46 | 1969/70 | 2019/20 | Jelenia Góra | 0.26 | 0.36 | 1984/85 | 1989/90 |
Chojnice | 0.53 | 0.49 | 1969/70 | 2019/20 | Kielce | 0.39 | 0.39 | 1984/85 | 2019/20 |
Szczecin | 0.51 | 0.50 | 1969/70 | 2019/20 | Śnieżka | 0.22 | 0.26 | 1984/85 | 1989/90 |
Białystok | 0.59 | 0.47 | 1969/70 | 2019/20 | Sandomierz | 0.47 | 0.46 | 1984/85 | 2019/20 |
Mława | 0.57 | 0.47 | 1969/70 | 2019/20 | Opole | 0.26 | 0.40 | 1984/85 | 1989/90 |
Toruń | 0.46 | 0.47 | 1969/70 | 2019/20 | Kłodzko | 0.25 | 0.28 | 1984/85 | 2006/07 |
Gorzów Wielkopolski | 0.48 | 0.46 | 1969/70 | 2019/20 | Rzeszów | 0.54 | 0.40 | 1984/85 | 2019/20 |
Płock | 0.45 | 0.38 | 1969/70 | 2019/20 | Kraków | 0.35 | 0.44 | 1984/85 | 2019/20 |
Poznań | 0.49 | 0.43 | 1969/70 | 2019/20 | Racibórz | 0.29 | 0.24 | 1969/70 | 2006/07 |
Słubice | 0.49 | 0.41 | 1969/70 | 2019/20 | Tarnów | 0.38 | 0.45 | 1984/85 | 2006/07 |
Siedlce | 0.54 | 0.44 | 1969/70 | 2019/20 | Bielsko-Biała | 0.38 | 0.35 | 1984/85 | 2013/14 |
Warszawa | 0.52 | 0.48 | 1969/70 | 2019/20 | Lesko | 0.38 | 0.16 | 1984/85 | 2013/14 |
Terespol | 0.61 | 0.50 | 1984/85 | 2019/20 | Zakopane | 0.35 | 0.34 | 1984/85 | 1989/90 |
Zielona Góra | 0.38 | 0.39 | 1969/70 | 2019/20 | Kasprowy Wierch | 0.19 | 0.23 | 1984/85 | 2019/20 |
Station | Change in Duration [days/10 years] | Change in Depth [cm/10 years] | Most Snowy Season | Least Snowy Season | Station | Change in Duration [days/10 years] | Change in Depth [cm/10 years] | Most Snowy Season | Least Snowy Season |
---|---|---|---|---|---|---|---|---|---|
Łeba | −3.9 | −1.4 | 1969/1970 | 2019/2020 | Kalisz | −4.9 | −0.7 | 1969/1970 | 2019/2020 |
Hel | −4.0 | −0.6 | 1969/1970 1981/1982 | 2019/2020 | Łódź | −4.6 | −0.7 | 1969/1970 | 2019/2020 |
Koszalin | −4.4 | −0.6 | 1969/1970 | 2007/2008 | Lublin | −3.5 | −0.4 | 1969/1970 1981/1982 | 2019/2020 |
Suwałki | −4.6 | −1.6 | 4 seasons * | 2019/2020 | Wrocław | −3.0 | −0.5 | 1969/1970 | 2019/2020 |
Świnoujście | −4.3 | −0.4 | 1969/1970 | 2019/2020 | Jelenia Góra | −1.8 | −0.3 | 1969/1970 | 2006/2007 |
Chojnice | −4.6 | −1.0 | 1969/1970 | 2019/2020 | Kielce | −4.2 | −0.5 | 1969/1970 | 2019/2020 |
Szczecin | −4.2 | −0.5 | 1969/1970 | 1988/1989 2019/2020 | Śnieżka | 0.0 | −0.7 | 37 seasons * | 1967/1968 |
Białystok | −4.2 | −1.4 | 1969/1970 | 2019/2020 | Opole | −2.8 | −0.2 | 1969/1970 | 2019/2020 |
Mława | −3.2 | −0.2 | 1969/1970 | 2019/2020 | Kłodzko | −1.7 | −0.2 | 1969/1970 | 2013/2014 |
Toruń | −4.1 | −0.3 | 2019/2020 | Rzeszów | −3.6 | −0.4 | 1969/1970 | 2019/2020 | |
Gorzów Wielkopolski | −4.1 | −0.5 | 1969/1970 | 2019/2020 | Kraków | −3.5 | 1969/1970, 1995/1006 | 2019/2020 | |
Poznań | −4.2 | −0.6 | 1969/1970 | 2019/2020 | Bielsko-Biała | −3.5 | −0.1 | 2005/2006 | 2013/2014 |
Siedlce | −3.1 | −1.5 | 1969/1970 | 2019/2020 | Lesko | −1.3 | 1966/1967 | 2006/2007 | |
Warszawa | −3.1 | −0.7 | 1969/1970 | 2019/2020 | Zakopane | −1.6 | −0.8 | 10 seasons * | 2015/2016 |
Terespol | −2,9 | −0.8 | 1969/1970 | 2019/2020 | Kasprowy Wierch | −0.1 | 0.1 | 49 seasons * | 2000/2001 |
Zielona Góra | −4.0 | −0.4 | 1969/1970 | 2019/2020 |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomczyk, A.M.; Bednorz, E.; Szyga-Pluta, K. Changes in Air Temperature and Snow Cover in Winter in Poland. Atmosphere 2021, 12, 68. https://doi.org/10.3390/atmos12010068
Tomczyk AM, Bednorz E, Szyga-Pluta K. Changes in Air Temperature and Snow Cover in Winter in Poland. Atmosphere. 2021; 12(1):68. https://doi.org/10.3390/atmos12010068
Chicago/Turabian StyleTomczyk, Arkadiusz M., Ewa Bednorz, and Katarzyna Szyga-Pluta. 2021. "Changes in Air Temperature and Snow Cover in Winter in Poland" Atmosphere 12, no. 1: 68. https://doi.org/10.3390/atmos12010068
APA StyleTomczyk, A. M., Bednorz, E., & Szyga-Pluta, K. (2021). Changes in Air Temperature and Snow Cover in Winter in Poland. Atmosphere, 12(1), 68. https://doi.org/10.3390/atmos12010068