Evapotranspiration Estimation Using Remote Sensing Technology Based on a SEBAL Model in the Upper Reaches of the Huaihe River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Method
2.3.1. Calculation and Calibration of Each Component in the SEBAL Model
Parameter Adjustment of Surface Net Radiation (Rn)
Parameter Adjustment of Soil Heat Flux (G)
Sensible Heat Flux
Calculation of Daily Evapotranspiration (ET24)
2.3.2. Calculation Method for Reference Evapotranspiration ET
FAO-56 Penman-Monteith Method
Irmak-Allen Method
Turc Method
Jensen-Haise Method
2.3.3. Partial Correlation Analysis
3. Results
3.1. Comparative Analysis of Evapotranspiration Estimation
3.2. Spatio-Temporal Distribution of Daily Surface Evapotranspiration
3.3. Influencing Factors of Evapotranspiration
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, C.; Liu, Q.; Su, B.; Zhai, J.; Hu, C. Study on applicability evaluation of hydrological models with different scales and data bases: A case study of Huaihe River Basin. J. Nat. Resour. 2013, 28, 1765–1777. [Google Scholar]
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, 1–54. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, H.; Chen, J.; Fu, G.; Zhan, C.; Yang, H. Quantitative analysis of nonlinear climate change impact on drought based on the standardized precipitation and evapotranspiration index. Ecol. Indic. 2020, 121, 107107. [Google Scholar] [CrossRef]
- Huang, S.; Chang, J.; Huang, Q.; Chen, Y. Spatio-temporal changes and frequency analysis of drought in the Wei River Basin, China. Water Resour. Manag. 2014, 28, 3095–3110. [Google Scholar] [CrossRef]
- Efthimiou, N.; Alexandris, S.; Karavitis, C.; Mamassis, N. Comparative analysis of reference evapotranspiration estimation between various methods and the FAO56 Penman-Monteith procedure. Eur. Water 2013, 42, 19–34. [Google Scholar]
- Karimi, P.; Bongani, B.; Blatchford, M.; de Fraiture, C. Global satellite-based ET products for the local level irrigation management: An application of irrigation performance assessment in the Sugarbelt of Swaziland. Remote Sens. 2019, 11, 705. [Google Scholar] [CrossRef] [Green Version]
- Penman, H.L. Vegetation and Hydrology. Technical Communication NO. 53, Commonwealth Bureau of Soils, Harpenden; Common-wealth Agricultural Bureaux: Farnham Royal, UK, 1963. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements. Irrigation. Drainage; Paper. No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Djaman, K.; Irmak, S.; Kabenge, I.; Futakuchi, K. Evaluation of FAO-56 penman-monteith model with limited data and the valiantzas models for estimating grass-reference evapotranspiration in Sahelian conditions. J. Irrig. Drain. Eng. 2016, 142, 04016044. [Google Scholar] [CrossRef]
- Debnath, S.; Adamala, S.; Raghuwanshi, N.S. Sensitivity analysis of FAO-56 Penman-Monteith method for different agro-ecological regions of India. Environ. Process. 2015, 2, 689–704. [Google Scholar] [CrossRef]
- Liu, W.; Wang, L.; Zhou, J.; Li, Y.; Sun, F.; Fu, G.; Li, X.; Sang, Y.F. A worldwide evaluation of basin-scale evapotranspiration estimates against the water balance method. J. Hydrol. 2016, 538, 82–95. [Google Scholar] [CrossRef] [Green Version]
- Xue, B.L.; Wang, L.; Li, X.; Yang, K.; Chen, D.; Sun, L. Evaluation of evapotranspiration estimates for two river basins on the Tibetan Plateau by a water balance method. J. Hydrol. 2013, 492, 290–297. [Google Scholar] [CrossRef]
- Trajkovic, S.; Kolakovic, S. Wind-adjusted Turc equation for estimating reference evapotranspiration at humid European locations. Hydrol. Res. 2009, 40, 45–52. [Google Scholar] [CrossRef]
- Gao, X.; Peng, S.; Xu, J.; Yang, S.; Wang, W. Proper methods and its calibration for estimating reference evapotranspiration using limited climatic data in Southwestern China. Arch. Agron. Soil Sci. 2015, 61, 415–426. [Google Scholar] [CrossRef]
- Wang, K.; Li, Z.; Cribb, M. Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley–Taylor parameter. Remote Sens. Environ. 2006, 102, 293–305. [Google Scholar] [CrossRef]
- Shirmohammadi, A.Z.; Saberali, S.F. Evaluating of eight evapotranspiration estimation methods in arid regions of Iran. Agric. Water Manag. 2020, 239, 106243. [Google Scholar] [CrossRef]
- Abrishamkar, M.; Ahmadi, A. Evapotranspiration Estimation Using Remote Sensing Technology Based on SEBAL Algorithm. Iran. J. Sci. Technol. 2016, 41, 65–76. [Google Scholar] [CrossRef]
- Sanderson, J.S.; Cooper, D.J. Ground water discharge by evapotranspiration in wet-lands of an arid intermountain basin. J. Hydrol. 2008, 351, 344–359. [Google Scholar] [CrossRef]
- Huo, S.Y.; Jin, M.G.; Liang, X.; Li, X.; Hao, H.B. Estimating impacts of water-table depth on groundwater evaporation and recharge using lysimeter measurement data and bromide tracer. Hydrogeol. J. 2020, 28, 955–971. [Google Scholar] [CrossRef]
- Cheng, D.H.; Li, Y.; Chen, X.; Wang, W.K.; Hou, G.C.; Wang, C.L. Estimation of groundwater evapotranspiration using diurnal water table fluctuations in the Mu Us Desert, northern China. J. Hydrol. 2013, 490, 106–113. [Google Scholar] [CrossRef]
- Nyambayo, V.P.; Potts, D.M. Numerical simulation of evapotranspiration using a root water uptake model. Comput. Geotech. 2010, 37, 175–186. [Google Scholar] [CrossRef]
- Bing, L.F.; Su, H.B.; Shao, Q.Q.; Liu, J.Y. Changing characteristic of land surface evapotranspiration and soil moisture in china during the past 30 years. Geo. Spat. Inf. Sci. 2012, 14, 1–13. [Google Scholar] [CrossRef]
- Kul, K.; Izaya, N.; Jeppe, K.; George, V. Dry season evapotranspiration dynamics over human-impacted land-scapes in the Southern Amazon using the Landsat-based METRIC model. Remote Sens. 2017, 9, 706. [Google Scholar]
- Li, Z.L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [Green Version]
- Senkondo, W.; Munishi, S.E.; Tumbo, M.; Nobert, J.; Lyon, S.W. Comparing remotely-sensed surface energy balance evapotranspiration estimates in heterogeneous and data-limited regions: A case study of Tanzania’s Kilombero Valley. Remote Sens. 2019, 11, 1289. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Singh, R.K.; Senay, G.B.; Velpuri, N.M.; Bohms, S.; Scott, R.L.; Verdin, J.P. Actual evapotranspiration (water use) assessment of the Colorado River Basin at the Landsat resolution using the operational simplified surface energy balance model. Remote Sens. 2014, 6, 233–256. [Google Scholar] [CrossRef] [Green Version]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–99. [Google Scholar] [CrossRef]
- Sun, H.; Yang, Y.; Wu, R.; Gui, D.; Xue, J.; Liu, Y.; Yan, D. Improving estimation of cropland evapotranspiration by the Bayesian model averaging method with surface energy balance models. Atmosphere 2019, 10, 188. [Google Scholar] [CrossRef] [Green Version]
- Allam, M.; Mhawej, M.; Meng, Q.Y.; Faour, G.; Fadel, A.; Hu, X.L. Monthly 10-m evapo-transpiration rates retrieved by SEBALI with Sentinel-2 and MODIS LST data. Agric. Water Manag. 2021, 243, 106432. [Google Scholar] [CrossRef]
- Mhawej, M.; Nasrallah, A.; Abunnasr YFadel, A.; Faour, G. Better irrigation management using the satellite-based adjusted single crop coefficient (aKc) for over sixty crop types in California, USA. Agric. Water Manag. 2021, 256, 207059. [Google Scholar] [CrossRef]
- Wagle, P.; Bhattarai, N.; Gowda, P.H.; Kakani, V.G. Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum. ISPRS J. Photogramm. Remote Sens. 2017, 128, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Bali, K.M.; Light, S.; Hessels, T.; Kisekka, I. Evaluation of remote sensing-based evapotranspiration models against surface renewal in almonds, tomatoes and maize. Agric. Water Manag. 2020, 238, 106228. [Google Scholar] [CrossRef]
- Karimi, P.; Bastiaanssen, W.G.M. Spatial evapotranspiration, rainfall and land use data in water accounting—Part 1: Review of the accuracy of the remote sensing data. Hydrol. Earth Syst. Sci. 2015, 19, 507–532. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, S.K.; Umar, W.L.; Jongjin, B.; Minha, C. Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach. Agric. For. Meteorol. 2018, 252, 256–268. [Google Scholar]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Wang, W.; Zhou, Z.H. Evaluation of MODIS MOD16 Evapotranspiration Product in Chinese River Basins. Nat. Resour. J. 2017, 32, 517–528. [Google Scholar]
- Jiang, F.X.; Xie, X.H.; Liang, S.L.; Wang, Y.B.; Zhu, B.W.; Zhang, X.T.; Chen, Y.C. Loess Plateau evapotranspiration intensified by land surface radiative forcing associated with ecological restoration. Agric. For. Meteorol. 2021, 331, 208669. [Google Scholar] [CrossRef]
- Jassas, H.; Kanoua, W.; Merkel, B. Actual evapotranspiration in the Al-Khazir Gomal Basin (Northern Iraq) using the surface energy balance algorithm for land (SEBAL) and water balance. Geosciences 2015, 5, 141–159. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Ruan, T. Impact of climate change and human activities on Runoff in the middle and upper reaches of the Huaihe River Basin. J. Geog. Sci. 2018, 28, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Zhang, Z.; Liu, Q.; Ruan, T. An optimal grid method for vulnerability assessment index of disaster bearing body: A case study of rainstorm and flood disaster in the main stream of Huaihe River. J. Nat. Disasters 2018, 27, 119–129. [Google Scholar]
- Gao, C.; Chen, C.; He, Y.; Ruan, T.; Luo, G.; Sun, Y. Response of Agricultural Drought to Meteorological Drought: A Case Study of the Winter Wheat above the Bengbu Sluice in the Huaihe River Basin, China. Water 2020, 12, 2805. [Google Scholar] [CrossRef]
- Gao, C.; Li, X.; Sun, Y.; Zhou, T.; Luo, G.; Chen, C. Water requirement of summer maize at different growth stages and the spatiotemporal characteristics of agricultural drought in the Huaihe River Basin, China. Theor. Appl. Climatol. 2019, 136, 1289–1302. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Allen, R. Penman-Monteith Equation. Encycl. Soils. Environ. 2005, 3, 180–188. [Google Scholar]
- Alexandridis, T.K.; Andrianopoulos, A.; Galanis GKalopesa, E.; Dimitrakos, A.; Katsogiannos, F.; Zalidis, G. An Integrated Approach to Promote Precision Farming as a Measure Toward Reduced-Input Agriculture in Northern Greece Using a Spatial Decision Support System. Compre. Geo. Inform. Syst. 2018, 315–352. [Google Scholar] [CrossRef]
- Luo, G. Research of Water Deficit and Driving Mechanism in Key Growth Stages of Winter Wheat—A Case Study in the Upper Reaches of Huaihe River Basin; Ningbo University: Ningbo, China, 2020. [Google Scholar]
- Zhang, Z.; Li, X.; Liu, L.; Wang, Y.; Li, Y. Influence of mulched drip irrigation on landscape scale evapotranspiration from farmland in an arid area. Agric. Water Manag. 2020, 230, 105953. [Google Scholar] [CrossRef]
- Dos Santos, C.A.C.; Mariano, D.A.; das Chagas, A.; do Nascimento, F.; da CDantas, F.R.; de Oliveira, G.; Silva, M.T.; da Silva, L.L.; da Silva, B.B.; Bezerra, B.G.; et al. Spatio-temporal patterns of energy exchange and evapotranspiration during an intense drought for drylands in Brazil. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101982. [Google Scholar] [CrossRef]
- Zwart, S.J.; Bastiaanssen, W.G.M. SEBAL for detecting spatial variation of water productivity and scope for improvement in eight 65 irrigated wheat systems. Agric. Water Manag. 2007, 89, 287–296. [Google Scholar] [CrossRef]
- Irmak, S.; Irmak, A.; Allen, R.G.; Jones, J.W. Solar and net radiationased equations to estimate reference evapotranspiration in humid climates. J. Irrig. Drain. Eng. ASCE 2003, 129, 336–347. [Google Scholar] [CrossRef]
- Turc, L. Estimation of irrigation water requirements, potential evapotranspiration: A simple climatic formula evolved up to date. Adv. Agron. 1961, 12, 13–49. [Google Scholar]
- Jensen, M.E.; Haise, H.R. Estimating evapotranspiration from solar radiation. J. Irrig. Drain. Div. 1963, 89, 15–41. [Google Scholar] [CrossRef]
- Qin, M.; Hao, L.; Shi, T.; Sun, L.; Sun, G. Comparison and improvement of five reference crop evapotranspiration estimation methods in Qinhuai River Basin. China Agrometeorol. 2016, 37, 390–399. [Google Scholar]
- Baba, K.; Shibata, R.; Sibuya, M. Partial correlation and conditional correlation as measures of conditional independence. Aust. N. Z. J. Stat. 2004, 46, 657–664. [Google Scholar] [CrossRef]
- Gao, G.; Chen, D.; Ren GYChen, Y.; Liao, Y.M. Spatial and temporal variations and controlling factors of potential evapotranspiration in China: 1956–2000. J. Geogr. Sci. 2006, 16, 3–12. [Google Scholar] [CrossRef]
- Tabari, H.; Aeini, A.; Talaee, P.H.; Some’e, B.S. Spatial distribution and temporal variation of reference evapotranspiration in arid and semi-arid regions of Iran. Hydrol. Process. 2012, 26, 500–512. [Google Scholar] [CrossRef]
- Maayar, M.M.; Chen, J.M. Spatial scaling of evapotranspiration as affected by heterogeneities in vegetation, topography, and soil texture. Remotes Sens. Environ. 2006, 102, 33–51. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Anderson, M.; Holmes, T.; Hain, C.; Reichle, R.; Koster, R.; Middleton, E.; Zeng, F.W. Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales. Remotes Sens. Environ. 2018, 219, 339–352. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, P.; Merlin, O.; Gentine, P.; Or, D. Soil texture effects on surface resistance to bare-soil evaporation. Geophys. Res. Lett. 2018, 45, 10398–10405. [Google Scholar] [CrossRef]
- Su, T.; Feng, G.L. Spatial-temporal variation characteristics of global evaporation revealed by eight reanalyses. Sci. China Earth Sci. 2015, 58, 255–269. [Google Scholar] [CrossRef]
- Howell, T.A.; Evett, S.R.; Tolk, J.A.; Copeland, K.S.; Marek, T.H. Evapotranspiration, water productivity and crop coefficients for irrigated sunflower in the U.S. southern high plains. Agric. Water Manag. 2015, 162, 33–46. [Google Scholar] [CrossRef]
- Luo, Y.; Sophocleous, M. Seasonal groundwater contribution to crop-water use assessed with lysimeter observations and model simulations. J. Hydrol. 2010, 389, 325–335. [Google Scholar] [CrossRef]
- Liu, Y.J.; Chen, J.; Pan, T. Analysis of Changes in Reference Evapotranspiration, Pan Evaporation, and Actual Evapotranspiration and Their Influencing Factors in the North China Plain During 1998–2005. Earth Space Sci. 2019, 6, 1366–1377. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Xu, Y.P.; Wang, Y.F.; Wu, L.; Li, G.; Song, S. Spatial and temporal trends of reference crop evapotranspiration and its influential variables in Yangtze River Delta, eastern China. Theor. Appl. Climatol. 2017, 130, 945–958. [Google Scholar] [CrossRef]
- Rahimikhoob, A. Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran. Theor. Appl. Climatol. 2010, 101, 83–91. [Google Scholar] [CrossRef]
- Xu, C.Y.; Singh, V.P. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. J. Hydrol. 2005, 308, 105–121. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhong, M.; Mao, Y.; Ji, B. Evaluation of Evapotranspiration for Exorheic Catchments of China during the GRACE Era: From a Water Balance Perspective. Remote Sens. 2020, 12, 511. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Jiao, X.; Li, B.; Yu, X.; Shao, M.; Jin, X. Long time series of daily evapotranspiration in China based on the SEBAL model and multisource images and validation. Earth Syst. Sci. 2021, 13, 3995–4017. [Google Scholar] [CrossRef]
- Gobbo, S.; Lo Presti, S.; Martello, M.; Panunzi, L.; Berti, A.; Morari, F. Inter-grating SEBAL with in-field crop water status measurement for precision irrigation applications-A case study. Remote Sens. 2019, 11, 2069. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.D.C.; Bastiaanssen, W.G.; Ahmad, M.; Bos, M.G. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River basin, Brazil: Part B: Application to the regional scale. Agric. For. Meteorol. 2009, 149, 462–476. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Irmak, A.; Irmak, S.; Martin, D.L. Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska. J. Irrig. Drain. Eng. 2008, 134, 273–285. [Google Scholar] [CrossRef]
- Liu, C. Spatial and temporal change in the potential evapotranspiration sensitivity to meteorological factors in China (1960–2007). J. Geog. Sci. 2012, 22, 3–14. [Google Scholar] [CrossRef]
- Shi, T.T.; Guan, D.X.; Wu, J.B.; Wang, A.Z.; An, C.J.J.; Han, S.J. Comparison of methods for estimating evapotranspiration rate of dry forest canopy: Eddy covariance, Bowen ratio energy balance, and Penman-Monteith equation. J. Geophys. Res. 2008, 113, D19116. [Google Scholar] [CrossRef]
- Gao, X.L.; Peng, S.Z.; Wang, W.G.; Xu, J.Z.; Yang, S.L. Spatial and temporal distribution characteristics of reference evapotranspiration trends in Karst area: A case study in Guizhou Province, China. Meteorol. Atmos. Phys. 2016, 128, 677–688. [Google Scholar] [CrossRef]
- Ying, Y.H.; Wang, S.D.; Chen, G.; Dai, E. Attribution analyses of potential evapotranspiration change in China since the 1960s. Theor. Appl. Climatol. 2010, 101, 19–28. [Google Scholar]
Date | Ordinal Numbers | Orbit Number | Line Number | Cloud Cover (%) |
---|---|---|---|---|
20 November 2013 | 324d | 123 | 37 | 2.23 |
123 | 38 | 0.13 | ||
16 April 2015 | 106d | 123 | 37 | 3.14 |
123 | 38 | 1.31 | ||
23 March 2018 | 83d | 123 | 37 | 1.14 |
123 | 38 | 0.54 |
Band | 1 | 2 | 3 | 4 | 5 | 7 |
---|---|---|---|---|---|---|
Weight coefficient | 0.2934 | 0.2736 | 0.2326 | 0.1551 | 0.0325 | 0.0119 |
Month | January | March | April | November |
---|---|---|---|---|
K | 0.2589 | 0.0207 | 0.0025 | 0.0017 |
Month | January | March | April | October | November |
---|---|---|---|---|---|
K | 0.830 | 1.987 | 1.709 | 1.187 | 0.837 |
ID | Station | SEBAL | I-A | Turc | J-H | P-M | MOD16 | VIC |
---|---|---|---|---|---|---|---|---|
57292 | Pingyu | 0.8960 | 0.9358 | 0.8955 | 0.8939 | 0.8954 | 0.8631 | 0.9185 |
57293 | Xincai | 0.8995 | 0.9003 | 0.8954 | 0.8938 | 0.8978 | 0.8016 | 1.0917 |
57295 | Zhengyang | 0.8272 | 0.8242 | 0.7626 | 0.7612 | 0.8251 | 0.9765 | 0.8173 |
57296 | Xi xian | 0.8565 | 0.8721 | 0.8505 | 0.8490 | 0.8573 | 0.8217 | 0.8625 |
57297 | Xinyang | 0.8687 | 0.8682 | 0.8633 | 0.8618 | 0.8754 | 0.7415 | 0.8705 |
57298 | Luoshan | 0.8228 | 0.8077 | 0.8279 | 0.8264 | 0.8189 | 0.7568 | 0.7625 |
57299 | Guangshan | 0.8702 | 0.8922 | 0.8775 | 0.8759 | 0.8738 | 0.6975 | 0.8753 |
58207 | Huangchuan | 0.8106 | 0.8113 | 0.8193 | 0.8179 | 0.8094 | 0.7125 | 0.8274 |
The Calculation Methods or Source of ET | R2 | RMSE (mm/d) | MBE (mm/d) | Slope (a) | Intercept (b) |
---|---|---|---|---|---|
I-A | 0.912 | 0.0178 | −0.0075 | 1.315 | −0.262 |
Turc | 0.732 | 0.0235 | 0.0074 | 1.418 | −0.134 |
J-H | 0.732 | 0.0239 | 0.0089 | 1.146 | −0.134 |
P-M | 0.991 | 0.0032 | −0.0002 | 1.036 | −0.031 |
MOD16 | 0.816 | 0.1085 | −0.0818 | 0.922 | 0.0689 |
VIC | 0.850 | 0.0721 | 0.0013 | 1.3896 | −0.3247 |
Area Proportion, Mean ET, and Median ET | Alfisols | Anthrosols | Lakes and Reservoirs | Primary Soil | Semi-Hydromorphic Soil |
---|---|---|---|---|---|
Area proportion (%) | 42 | 25 | 1 | 6 | 26 |
Mean ETSEBAL(mm/d) | 1.618 | 1.614 | 1.459 | 1.624 | 1.610 |
Median ETSEBAL(mm/d) | 1.622 | 1.623 | 1.395 | 1.626 | 1.619 |
Influencing Factors | Coefficient | p-Value |
---|---|---|
Elevation | 0.248 | >0.05 |
Surface temperature | 0.041 | >0.05 |
Extra-atmospheric reflectance | 0.117 | >0.05 |
Surface reflectance | −0.534 | >0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, L.; Zheng, K.; Zhao, Q.; Wu, Y. Evapotranspiration Estimation Using Remote Sensing Technology Based on a SEBAL Model in the Upper Reaches of the Huaihe River Basin. Atmosphere 2021, 12, 1599. https://doi.org/10.3390/atmos12121599
Tan L, Zheng K, Zhao Q, Wu Y. Evapotranspiration Estimation Using Remote Sensing Technology Based on a SEBAL Model in the Upper Reaches of the Huaihe River Basin. Atmosphere. 2021; 12(12):1599. https://doi.org/10.3390/atmos12121599
Chicago/Turabian StyleTan, Linshan, Kaiyuan Zheng, Qiangqiang Zhao, and Yanjuan Wu. 2021. "Evapotranspiration Estimation Using Remote Sensing Technology Based on a SEBAL Model in the Upper Reaches of the Huaihe River Basin" Atmosphere 12, no. 12: 1599. https://doi.org/10.3390/atmos12121599
APA StyleTan, L., Zheng, K., Zhao, Q., & Wu, Y. (2021). Evapotranspiration Estimation Using Remote Sensing Technology Based on a SEBAL Model in the Upper Reaches of the Huaihe River Basin. Atmosphere, 12(12), 1599. https://doi.org/10.3390/atmos12121599