Health Risk of Increased O3 Concentration Based on Regional Emission Characteristics under the Unusual State of the COVID-19 Pandemic
Abstract
:1. Introduction
2. Selection of the Case Study Area
3. Methods
3.1. Estimation of Atmospheric Chemical Concentration and Measurement of Sensitive Conditions
3.2. Setting of Meteorological Conditions and Grids
3.3. Reduction of Traffic Volume during the COVID-19 Pandemic
3.4. Validation of the Model
3.5. Estimation of Health Risk Derived from O3
3.6. Estimation of Health Risk Derived from NO2
4. Results and Discussion
4.1. Validation of the Model
4.2. Estimation of Atmospheric Chemical Concentration and Measurement of Sensitive Conditions
4.3. Comparison of NO2 and O3 Concentrations Between Scenarios
4.4. Health Risk Derived from NO2 and O3
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health 2020, 25, 278–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gossling, S.; Scott, D.; Hall, C.M. Pandemics, tourism and global change: A rapid assessment of COVID-19. J. Sustain. Tour. 2020, 29, 1–20. [Google Scholar] [CrossRef]
- Changes in Traffic Volume on Major Sections of Expressways and Major National Highways in Major Urban Areas in Japan. Translated from Japanese. Available online: https://www.mlit.go.jp/road/road_fr4_000090.html (accessed on 1 February 2021).
- NASA Model Reveals How Much COVID-Related Pollution Levels Deviated from the Norm. Available online: https://www.nasa.gov/feature/goddard/2020/nasa-model-reveals-how-much-covid-related-pollution-levels-deviated-from-the-norm (accessed on 1 February 2021).
- Siciliano, B.; Dantas, G.; da Silva, C.M.; Arbilla, G. Increased ozone levels during the COVID-19 lockdown: Analysis for the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 737, 139765. [Google Scholar] [CrossRef] [PubMed]
- Hashim, B.M.; Al-Naseri, S.K.; Al-Maliki, A.; Al-Ansari, N. Impact of COVID-19 lockdown on NO2, O3, PM2.5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Sci. Total Environ. 2020, 754, 141978. [Google Scholar] [CrossRef] [PubMed]
- Peralta, O.; Ortinez-Alvarez, A.; Torres-Jardon, R.; Suarez-Lastra, M.; Castro, T.; Ruiz-Suarez, L.G. Ozone over Mexico City during the COVID-19 pandemic. Sci. Total Environ. 2020, 76, 143183. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.L.; Peng, R.D.; Dominici, F. The exposure-response curve for ozone and risk of mortality and the adequacy of current ozone regulations. Environ. Health Perspect. 2006, 114, 532–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, D.J. Introduction to Atmospheric Chemistry; Princeton University Press: Princeton, NJ, USA, 1999. [Google Scholar]
- Survey on Scientific Knowledge on Photochemical Oxidants and Other Factors Related to the Atmospheric Environment (Summary). Translated from Japanese. Available online: https://www.meti.go.jp/shingikai/sankoshin/sangyo_gijutsu/sangyo_kankyo/pdf/006_02_02.pdf (accessed on 1 February 2021).
- Yanotsuneta Kinenkai. Japan National Census 2018/19; Translated from Japanese; Yanotsuneta Kinenkai: Tokyo, Japan, 2018. [Google Scholar]
- Comprehensive Survey on Air Pollutant Emissions (FY2017). Translated from Japanese. Available online: http://www.env.go.jp/air/air/osen/kotei/h30_2.pdf (accessed on 1 February 2021).
- FY2019 Volatile Organic Compounds (VOC) Emission Inventory Data. Translated from Japanese. Available online: https://www.env.go.jp/air/air/osen/voc/inventory/R1/R1-Mat02.xlsx (accessed on 1 February 2021).
- FY2019 Survey on Motor Vehicle Transport for Freight. Translated from Japanese. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00600330&bunya_l=10&tstat=000001078083&cycle=8&year=20191&month=0&stat_infid=000031974557&result_back=1&result_page=1&tclass1val=0 (accessed on 1 February 2021).
- FY2019 Survey on Motor Vehicle Transport for Passenger. Translated from Japanese. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00600330&bunya_l=10&tstat=000001078083&cycle=8&year=20191&month=0&stat_infid=000031974566&result_back=1&result_page=1&tclass1val=0 (accessed on 1 February 2021).
- Survey on Quantitative Evaluation of VOC Emission Reduction Effect. Translated from Japanese. Available online: https://www.meti.go.jp/shingikai/sankoshin/sangyo_gijutsu/sangyo_kankyo/pdf/008_02_02.pdf (accessed on 1 February 2021).
- Yamamoto, K. Consideration on photochemical oxidant production regime in Osaka. Bull. Res. Inst. Environ. Agric. Fish. Osaka Prefect. 2014, 1, 9–14. [Google Scholar] [CrossRef]
- ADMER-PRO Ver.1.0 (Atmospheric Dispersion Model for Exposure and Risk Assessment). Available online: https://admer-pro.aist-riss.jp/ (accessed on 1 February 2021).
- Operating Manual for ADMER PRO Version 1.0. Translated from Japanese. Available online: https://admer-pro.aist-riss.jp/wp-content/uploads/sites/92/2015/08/ADMER-PRO_V10_manual.pdf (accessed on 1 February 2021).
- Inoue, K.; Yasuda, R.; Yoshikado, H.; Higashino, H. Spatial distribution of summer-time surface ozone sensitivity to NOx and VOC emissions for the Kanto area, part 1: Estimation by numerical simulations with two kinds of (larger and smaller) biogenic emission estimates. J. Jpn. Soc. Atmos. Environ. 2010, 45, 183–194. [Google Scholar] [CrossRef]
- Inoue, K.; Yoshikado, H.; Higashino, H. Spatial distribution of summer-time surface ozone sensitivity to NOx and VOC emissions for the Kanto area, part 2: Estimation based on the measurement of a photochemical indicator. J. Jpn. Soc. Atmos. Environ. 2010, 45, 195–204. [Google Scholar] [CrossRef]
- Technical Manual for ADMER-PRO Version 0.8β. Translated from Japanese. Available online: https://admer-pro.aist-riss.jp/wp-content/uploads/sites/92/2015/08/ADMER-PRO_V08B_techdisc.pdf (accessed on 1 February 2021).
- Comprehensive Survey on Air Pollutant Emissions (FY2005). Translated from Japanese. Available online: http://www.env.go.jp/air/osen/kotei/haishutsu/h18.pdf (accessed on 1 February 2021).
- Japan Society of Traffic Engineers (JSTE). FY2005 Road Traffic Census; Translated from Japanese; Maruzen Publishing: Tokyo, Japan, 2007. [Google Scholar]
- Japan Society of Traffic Engineers (JSTE). FY2015 Road Traffic Census; Translated from Japanese; Maruzen Publishing: Tokyo, Japan, 2018. [Google Scholar]
- Japan Society of Traffic Engineers (JSTE). FY2010 Road Traffic Census; Translated from Japanese; Maruzen Publishing: Tokyo, Japan, 2012. [Google Scholar]
- Yang, Y.; Liu, X.; Zheng, J.; Tan, Q.; Feng, M.; Qu, Y.; An, J.; Cheng, N. Characteristics of one-year observation of VOCs, NOx, and O3 at an urban site in Wuhan, China. J. Environ. Sci. 2019, 79, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Kannari, A. An analysis of weekend effects on photochemical oxidant concentrations in the Kanto and Kansai regions Part 2 Verification of dynamically changing ozone formation regimes. J. Jpn. Soc. Atmos. Environ. 2006, 41, 220–233. [Google Scholar] [CrossRef]
- Monks, P.S. A review of the observations and origins of the spring ozone maximum. Atmos. Environ. 2000, 34, 3545–3561. [Google Scholar] [CrossRef]
- FY 2018 Air Environment Monthly and Annual Value Data. Translated from Japanese. Available online: https://www.nies.go.jp/igreen/td_down.html (accessed on 1 February 2021).
- Yoshikado, H.; Shirakawa, Y.; Nakano, T.; Kudo, Y.; Suzuki, M. Feasibility of a method simulating long-term average concentration of pollutants based on a mesoscale meteorological model (I) Classification of weather patterns and application to NOx in the Kanto Plain. J. Jpn. Soc. Atmos. Environ. 2006, 41, 1–14. [Google Scholar] [CrossRef]
- Chan, C.Y.; Chan, L.Y. Effect of meteorology and air pollutant transport on ozone episodes at a subtropical coastal Asian city, Hong Kong. J. Geophys. Res. 2000, 105, 20707–20724. [Google Scholar] [CrossRef] [Green Version]
- Nazari, S.; Shahhoseini, O.; Sohrabi-Kashani, A.; Davari, S.; Paydar, R.; Delavar-Moghadam, Z. Experimental determination and analysis of CO2, SO2 and NOx emission factors in Iran’s thermal power plants. Energy 2010, 35, 2992–2998. [Google Scholar] [CrossRef]
- Carslaw, D.C. Evidence of an increasing NO2/NOx emissions ratio from road traffic emissions. Atmos. Environ. 2005, 39, 4793–4802. [Google Scholar] [CrossRef]
- Inoue, K.; Higashino, H. Development and verification of the atmospheric model ADMER-PRO Applicable for Secondary Formation. J. Jpn. Soc. Atmos. Environ. 2015, 50, 278–291. [Google Scholar] [CrossRef]
- Itahashi, S.; Yamaji, K.; Chatani, S.; Kitayama, K.; Morino, Y.; Nagashima, T.; Saito, M.; Takigawa, M.; Morikawa, T.; Kanda, I.; et al. Model performance differences in fine-mode nitrate aerosol during wintertime over Japan in the J-STREAM model inter-comparison study. Atmosphere 2020, 11, 511. [Google Scholar] [CrossRef]
- FY2018 Results of Air Pollution Monitoring. Translated from Japanese. Available online: http://taiki.kankyo.pref.osaka.jp/taikikanshi/taiki_sokutei/H30_2018/taiki_h30(2018)_index.html (accessed on 1 February 2021).
- Nakanishi, J.; Shinozaki, H.; Inoue, K. Risk Assessment Documents for Ozone (Photochemical Oxidant); Translated from Japanese; Maruzen Pabulishing: Tokyo, Japan, 2009. [Google Scholar]
- Jerret, M.; Burnett, R.T.; Pope, C.A., III; Ito, K.; Thurston, G.; Kreski, D.; Shi, Y.; Calle, E.; Thun, M. Long-term ozone exposure and mortality. N. Engl. J. Med. 2009, 360, 1085–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FY2018 Air Environment Hourly Value Data. Translated from Japanese. Available online: https://www.nies.go.jp/igreen/tj_down.html (accessed on 1 February 2021).
- Murray, C.J.L.; Lopez, A.D. The Global Burden of Disease; Harvard School of Public Health: Boston, MA, USA, 1996. [Google Scholar]
- 2018 Vital Statistics. Translated from Japanese. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00450011&bunya_l=02&tstat=000001028897&cycle=7&year=20180&month=0&tclass1=000001053058&tclass2=000001053061&tclass3=000001053074&tclass4=000001053089&stat_infid=000031884414&result_back=1&result_page=1&tclass5val=0 (accessed on 1 February 2021).
- 2015 Life Tables. Translated from Japanese. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00450012&bunya_l=02&tstat=000001031336&cycle=7&tclass1=000001060926&tclass2=000001114595&stat_infid=000031693271&tclass3val=0 (accessed on 1 February 2021).
- Chen, R.; Samoli, E.; Wong, C.M.; Huang, W.; Wang, Z.; Chen, B.; Kan, H. Associations between short-term exposure to nitrogen dioxide and mortality in 17 Chinese cities: The China Air Pollution and Health Effects Study (CAPES). Environ. Int. 2012, 45, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Environmental Data 2019. Translated from Japanese. Available online: https://www.kepco.co.jp/sustainability/kankyou/report/pdf/k_report2019.pdf (accessed on 1 February 2021).
- 2019 Census of Manufacture. Translated from Japanese. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00550010&tstat=000001022686&cycle=7&tclass1=000001022790&tclass2=000001143706&stat_infid=000031975100&tclass3val=0 (accessed on 1 February 2021).
- Report of the Study Group on Photochemical Oxidants. Translated from Japanese. Available online: https://www.env.go.jp/air/osen/pc_oxidant/conf/chosa.html (accessed on 1 February 2021).
- 2015 National Census. Translated from Japanese. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00200521&bunya_l=02&tstat=000001080615&cycle=0&tclass1=000001101935&tclass2=000001101955&tclass3=000001101982&stat_infid=000031587080&result_page=1&tclass4val=0 (accessed on 1 February 2021).
No. | Ward | Group | [VOC]/[NOx] | [VOC] (ppb) | [NOx] (ppb) | Shipment Value of Iron and Steel Industry (Million Yen) | Product of Traffic Volume and Section Extension (thousand car-km/day) |
---|---|---|---|---|---|---|---|
1 | Konohana | High | 1.51 | 62.8 | 41.7 | 55,836 | 599 |
2 | Suminoe | 1.77 | 61.8 | 34.9 | 43,363 | 1101 | |
3 | Minato | 1.81 | 69.1 | 38.1 | 1407 | 765 | |
4 | Taisho | 2.12 | 68.5 | 32.4 | 190,610 | 284 | |
5 | Nishiyodogawa | 2.23 | 69.1 | 30.9 | 112,308 | 1020 | |
6 | Nishinari | 2.55 | 71.6 | 28.1 | 7012 | 694 | |
7 | Naniwa | 2.58 | 78.7 | 30.5 | 3026 | 678 | |
8 | Nishi | 2.65 | 89.9 | 34.0 | 3126 | 1033 | |
9 | Fukushima | Middle | 2.78 | 84.2 | 30.2 | - | 584 |
10 | Abeno | 3.02 | 74.1 | 24.5 | - | 485 | |
11 | Tennoji | 3.08 | 88.6 | 28.7 | - | 439 | |
12 | Sumiyoshi | 3.17 | 70.0 | 22.1 | - | 365 | |
13 | Chuo | 3.26 | 112 | 34.4 | - | 1751 | |
14 | Yodogawa | 3.39 | 77.7 | 22.9 | 22,124 | 790 | |
15 | Kita | 3.47 | 105 | 30.3 | - | 1578 | |
16 | Higashisumiyoshi | 3.54 | 74.0 | 20.9 | - | 589 | |
17 | Higashinari | Low | 3.66 | 93.4 | 25.5 | 8557 | 587 |
18 | Ikuno | 3.71 | 83.4 | 22.5 | - | 300 | |
19 | Miyakojima | 3.73 | 103 | 27.7 | - | 313 | |
20 | Joto | 3.78 | 100 | 26.6 | 6228 | 354 | |
21 | Higashiyodogawa | 3.79 | 82.8 | 21.8 | - | 490 | |
22 | Asahi | 3.86 | 89.6 | 23.2 | - | 485 | |
23 | Hirano | 4.08 | 77.7 | 19.0 | 7055 | 1328 | |
24 | Tsurumi | 4.09 | 95.1 | 23.3 | 18,849 | 638 |
No. | Ward | O3 Concentration (ppb) | Increase in O3 Concentration (ppb) | NO2 Concentration (ppb) | Decrease in NO2 Concentration (ppb) | ||
---|---|---|---|---|---|---|---|
Usual | COVID-19 | Usual | COVID-19 | ||||
1 | Konohana | 54.1 | 54.9 | 0.81 | 33.1 | 33.4 | −0.26 |
2 | Suminoe | 56.0 | 56.8 | 0.86 | 28.5 | 28.3 | 0.24 |
3 | Minato | 54.1 | 55.4 | 1.28 | 31.0 | 30.6 | 0.37 |
4 | Taisho | 57.2 | 58.4 | 1.16 | 27.2 | 26.6 | 0.60 |
5 | Nishiyodogawa | 59.6 | 60.5 | 0.85 | 25.7 | 25.4 | 0.26 |
6 | Nishinari | 58.4 | 59.6 | 1.20 | 23.6 | 22.7 | 0.94 |
7 | Naniwa | 55.7 | 57.1 | 1.35 | 25.0 | 24.0 | 1.06 |
8 | Nishi | 54.0 | 55.4 | 1.39 | 27.3 | 26.4 | 0.90 |
9 | Fukushima | 57.7 | 58.8 | 1.07 | 25.0 | 24.2 | 0.74 |
10 | Abeno | 59.3 | 60.4 | 1.11 | 20.6 | 19.4 | 1.14 |
11 | Tennoji | 54.8 | 56.0 | 1.12 | 23.2 | 22.1 | 1.12 |
12 | Sumiyoshi | 61.2 | 62.3 | 1.12 | 18.8 | 17.8 | 1.07 |
13 | Chuo | 50.1 | 51.4 | 1.22 | 26.7 | 25.7 | 0.99 |
14 | Yodogawa | 61.3 | 62.0 | 0.75 | 19.2 | 18.3 | 0.88 |
15 | Kita | 54.7 | 55.7 | 0.99 | 24.1 | 23.3 | 0.88 |
16 | Higashisumiyoshi | 61.5 | 62.5 | 0.97 | 17.7 | 16.5 | 1.20 |
17 | Higashinari | 56.4 | 57.5 | 1.08 | 20.9 | 19.8 | 1.13 |
18 | Ikuno | 59.9 | 60.8 | 0.94 | 18.8 | 17.6 | 1.15 |
19 | Miyakojima | 54.9 | 55.8 | 0.97 | 22.3 | 21.3 | 0.98 |
20 | Joto | 55.0 | 56.1 | 1.10 | 21.6 | 20.5 | 1.11 |
21 | Higashiyodogawa | 61.7 | 62.5 | 0.74 | 18.3 | 17.1 | 1.18 |
22 | Asahi | 59.6 | 60.6 | 0.97 | 19.3 | 18.0 | 1.27 |
23 | Hirano | 62.9 | 63.9 | 0.99 | 16.1 | 14.8 | 1.29 |
24 | Tsurumi | 58.7 | 59.8 | 1.14 | 19.3 | 17.9 | 1.35 |
Usual Scenario | COVID-19 Scenario | |
---|---|---|
Health risk due to NO2 (DALYs) | 9454 | 8643 |
Health risk due to O3 (DALYs) | 1310 | 1365 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okazaki, Y.; Ito, L.; Tokai, A. Health Risk of Increased O3 Concentration Based on Regional Emission Characteristics under the Unusual State of the COVID-19 Pandemic. Atmosphere 2021, 12, 335. https://doi.org/10.3390/atmos12030335
Okazaki Y, Ito L, Tokai A. Health Risk of Increased O3 Concentration Based on Regional Emission Characteristics under the Unusual State of the COVID-19 Pandemic. Atmosphere. 2021; 12(3):335. https://doi.org/10.3390/atmos12030335
Chicago/Turabian StyleOkazaki, Yuki, Lisa Ito, and Akihiro Tokai. 2021. "Health Risk of Increased O3 Concentration Based on Regional Emission Characteristics under the Unusual State of the COVID-19 Pandemic" Atmosphere 12, no. 3: 335. https://doi.org/10.3390/atmos12030335
APA StyleOkazaki, Y., Ito, L., & Tokai, A. (2021). Health Risk of Increased O3 Concentration Based on Regional Emission Characteristics under the Unusual State of the COVID-19 Pandemic. Atmosphere, 12(3), 335. https://doi.org/10.3390/atmos12030335