An Advanced Artificial Intelligence System for Investigating Tropical Cyclone Rapid Intensification with the SHIPS Database
Abstract
:1. Introduction
2. Data
3. Data Filter, Sampler, and Classifier
3.1. SHIPS Data Filter
3.1.1. Ascii Text to Attribute-Relation Table
- Special notations (3 lines in total: HEAD (original abbreviations used in SHIPS are used here. A shorten version of the SHIPS Predictor Description file [16] is provided in the Supplementary Materials), LAST, and TIME): The HEAD line has ten elements: TC name (NAME), year (YEAR), month (MONTH), date (DATE), universal time coordinated (UTC), maximum surface wind, center latitude, center longitude, minimum sea level pressure (SLP), and the US NOAA-specified ATCF ID number (ATCF). Only six values are extracted from the HEAD line: NAME, YEAR, MONTH, DATE, UTC, and ATCF. No information is retrieved from the TIME and LAST lines (6 variables).
- One-time variables (7 lines: HIST, IRXX, IR00, IRM1, IRM3, PSLV, and MTPW): We just take the values of those variables by adding “_x” to the variable names, where “x” measures the position corresponding to the time column with “_0” to the current time (TIME = 0). The leading position (TIME = 0) for IRXX, IR00, IRM1, and IRM3 and the last three spaces for PSLV are empty. As a result, we have HIST_0, HIST_1, …, HIST_20, MTPW_0, …, MTPW_20; IRXX_1, …, IRXX_20, IR00_1, …, IR00_20, IRM1_1, …, IR M1_20, IRM3_1, …, IRM3_20; PSLV_1, …, PSLV_18 (140 variables).
- Time-dependent variables (the remaining 131 lines (three lines, PC00, PCM1, PCM3 were mistreated as time-dependent initially. See details in the main text)): The current value of a time-dependent parameter is taken with the corresponding TC instance. The values for other times are not considered unless they are used to derive other variables for data preprocessing (131 variables; total 277 variables).
3.1.2. Preprocessing of the Ships Attribute-Relation Table
Adding Additional Variables Based on Variable Natures
Removing Variables with Heavy Missing Values
Value Scaling
3.2. GMM-SMOTE
3.3. XGBoost Classifier
4. Hyperparameter Tuning Process
5. Experiment and Results
5.1. Hyperparameter Tuning for Model Selection
5.1.1. Hyperparameters Tuning for SHIPS Data Filter
5.1.2. The Number of Clusters Selected in GMM-SMOTE
5.1.3. Other Hyperparameters Tuning for GMM-SMOTE and XGboost
5.1.4. Hyperparameters Tuning for XGboost Decision Threshold
5.2. Classification Results
5.2.1. Model Results on Test Data
5.2.2. Model Performance Comparison
5.3. Feature Importance
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Tables
No. | Parameters |
---|---|
1 | IRM1_16, IR00_10, IR00_13, IR00_15, IR00_16, IR00_2, IR00_4, IR00_6, IR00_7, IR00_8, IR00_9, IRM1_10, IRM1_12, IRM1_13, IRM1_15, IRM1_2, IRM1_4, IRM1_6, IRM1_7, IRM1_8, IRM1_9, IRM3_10, IRM3_12, IRM3_13, IRM3_15, IRM3_16, IRM3_2, IRM3_4, IRM3_6, IRM3_7, IRM3_8, IRM3_9 |
2 | E000, CSST, DSST, DSTA, ENEG, ENSS, EPOS, MTPW_10, MTPW_12, MTPW_14, MTPW_16, MTPW_20, MTPW_2, MTPW_4, MTPW_6, MTPW_8, PW03, PW05, PW07, PW09, PW11, PW13, PW15, PW17, PW21, RSST, T000, XDST, XNST, XTMX |
3 | HIST_8, HIST_9, HIST_10, HIST_11, HIST_12, HIST_13, HIST_14, HIST_2, HIST_3, HIST_4, HIST_5, HIST_6, HIST_7 |
4 | PW14, MTPW_11, MTPW_13, MTPW_15, MTPW_3, MTPW_5, PW04, PW06, PW12, PW16 |
5 | CD26, CD20, COHC, ND26, XD20, XD22, XD24, XD26, XO20, XOHC |
6 | MTPW_19, MTPW_0, MTPW_18, PW01, PW19, PW20, |
7 | HIST_15, HIST_16, HIST_17, HIST_18, HIST_19, HIST_20 |
8 | IRM3_19, IRM1_18, IRM1_19, IRM1_20, IRM3_18, IRM3_20 |
9 | PW08, MTPW_9, MTPW_17, PW10, PW18 |
10 | PSLV_4, PSLV_2, PSLV_6, U200, U20C |
11 | IRM1_5, IR00_5, IRM1_3, IRM3_3, IRM3_5 |
12 | SHRD, SHDC, SHGC, SHRG |
13 | V850, TWAC, V000, V500 |
14 | IRM3_11, IR00_11, IRM1_11 |
15 | RHMD, RHHI, RHLO |
16 | IR00_20, IR00_18, IR00_19 |
17 | DTL, LON, TLON |
18 | PSLV_3, PSLV_5, PSLV_7 |
19 | PENV, PENC, Z000 |
20 | VVAC, VMFX, VVAV |
21 | BD12, BD06, BD18 |
22 | T250, T200 |
23 | NSST, NTMX |
24 | HIST_1, HIST_0 |
25 | NOHC, RHCN |
26 | RD26, RD20 |
27 | XD18, XD16 |
28 | D200, DIVC |
29 | PC00, IR00_1 |
30 | OAGE, NAGE |
31 | NTFR, XTFR |
32 | PCM1, IRM1_1 |
33 | HE07, HE05 |
34 | PEFC, V20C |
35 | PCM3, IRM3_1 |
36 | VMAX, MSLP |
37 | TLAT, LAT |
38 | MTPW_1, PW02 |
39 | O500, O700 |
40 | NDFR, XDFR |
41 | IR00_12 |
42 | VMPI |
43 | IR00_3 |
44 | ND20 |
45 | EPSS |
46 | TWXC |
47 | G150 |
48 | SHTD |
49 | NDTX |
50 | XDML |
51 | Z850 |
52 | CFLX |
53 | XDTX |
54 | SHTS |
55 | SDDC |
56 | jd |
57 | SHRS |
58 | IR00_14 |
59 | IR00_17 |
60 | G250 |
61 | G200 |
62 | REFC |
63 | PSLV_1 |
64 | V300 |
65 | IRM1_17 |
66 | T150 |
67 | TGRD |
68 | TADV |
69 | IRM3_14 |
70 | R000 |
71 | IRM3_17 |
72 | IRM1_14 |
Ranking | Variable | Score |
---|---|---|
1 | BD12 | 0.0362 |
2 | DTL | 0.0217 |
3 | CFLX | 0.0207 |
4 | SHRD | 0.0206 |
5 | G150 | 0.0205 |
6 | jd | 0.0204 |
7 | VMAX | 0.0199 |
8 | IRM1_5 | 0.0199 |
9 | PW08 | 0.0191 |
10 | VMPI | 0.019 |
11 | SHTD | 0.0187 |
12 | IR00_12 | 0.0183 |
13 | HE07 | 0.018 |
14 | MTPW_1 | 0.0177 |
15 | XD18 | 0.0177 |
16 | SHTS | 0.0175 |
17 | PW14 | 0.0173 |
18 | TWXC | 0.0172 |
19 | R000 | 0.0168 |
20 | V300 | 0.0167 |
21 | OAGE | 0.0165 |
22 | PSLV_1 | 0.0162 |
23 | Z850 | 0.0161 |
24 | SHRS | 0.0161 |
25 | SDDC | 0.0157 |
26 | VVAC | 0.0156 |
27 | PCM3 | 0.0156 |
28 | TGRD | 0.0154 |
29 | T150 | 0.0153 |
30 | CD26 | 0.0153 |
31 | TADV | 0.0152 |
32 | V850 | 0.0151 |
33 | PSLV_4 | 0.0148 |
34 | PSLV_3 | 0.0145 |
35 | REFC | 0.0145 |
36 | RD26 | 0.0142 |
37 | MTPW_19 | 0.014 |
38 | ND20 | 0.0138 |
39 | XDML | 0.0138 |
40 | PENV | 0.0137 |
41 | EPSS | 0.0137 |
42 | G200 | 0.0136 |
43 | IR00_3 | 0.0134 |
44 | D200 | 0.0131 |
45 | NTFR | 0.013 |
46 | T250 | 0.0124 |
47 | O500 | 0.0124 |
48 | IR00_20 | 0.0124 |
49 | NSST | 0.012 |
50 | IRM1_16 | 0.0119 |
51 | TLAT | 0.0119 |
52 | E000 | 0.0115 |
53 | IRM3_17 | 0.0112 |
54 | IRM3_11 | 0.0112 |
55 | HIST_1 | 0.0109 |
56 | G250 | 0.0109 |
57 | RHMD | 0.0109 |
58 | NDFR | 0.0106 |
59 | IR00_17 | 0.0104 |
60 | IRM1_17 | 0.0099 |
61 | NOHC | 0.0098 |
62 | PEFC | 0.0089 |
63 | IR00_14 | 0.0083 |
64 | IRM3_14 | 0.0075 |
65 | PCM1 | 0.0063 |
66 | IRM1_14 | 0.0057 |
67 | NDTX | 0.0052 |
68 | HIST_8 | 0.0043 |
69 | XDTX | 0.0041 |
70 | PC00 | 0.0031 |
71 | IRM3_19 | 0.0023 |
72 | HIST_15 | 0.0019 |
References
- Kaplan, J.; De Maria, M. Large-Scale Characteristics of Rapidly Intensifying Tropical Cyclones in the North Atlantic Basin. Weather Forecast. 2003, 18, 1093–1108. [Google Scholar] [CrossRef] [Green Version]
- De Maria, M.; Mainelli, M.; Shay, L.K.; Knaff, J.A.; Kaplan, J. Further Improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Weather Forecast. 2005, 20, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Tang, J.; Kafatos, M. Improved associated conditions in rapid intensifications of tropical cyclones. Geophys. Res. Lett. 2007, 34, L20807. [Google Scholar] [CrossRef] [Green Version]
- Rappaport, E.N.; Franklin, J.L.; Avila, L.A.; Baig, S.R.; Beven, J.L.I.I.; Blake, E.S.; Burr, C.A.; Jiing, J.; Juckins, C.A.; Knabb, R.D.; et al. Advances and Challenges at the National Hurricane Center. Weather Forecast. 2009, 24, 395–419. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, J.; De Maria, M.; Knaff, J.A. A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Weather Forecast. 2010, 25, 220–241. [Google Scholar] [CrossRef]
- Kaplan, J.; Rozoff, C.M.; DeMaria, M.; Sampson, C.R.; Kossin, J.P.; Velden, C.S.; Cione, J.J.; Dunion, J.P.; Knaff, J.A.; Zhang, J.A.; et al. Evaluating Environmental Impacts on Tropical Cyclone Rapid Intensification Predictability Utilizing Statistical Models. Weather Forecast. 2015, 30, 1374–1396. [Google Scholar] [CrossRef]
- Rozoff, C.M.; Kossin, J.P. New probabilistic forecast models for the prediction of tropical cyclone rapid intensification. Weather Forecast. 2011, 26, 677–689. [Google Scholar] [CrossRef]
- Trevor, H.; Robert, T.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Yang, R.; Sun, D.; Tang, J. A “sufficient” condition combination for rapid intensifications of tropical cyclones. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Yang, R.; Tang, J.; Sun, D. Association Rule Data Mining Applications for Atlantic Tropical Cyclone Intensity Changes. Weather Forecast. 2011, 26, 337–353. [Google Scholar] [CrossRef]
- Yang, R. A Systematic Classification Investigation of Rapid Intensification of Atlantic Tropical Cyclones with the SHIPS Database. Weather Forecast. 2016, 31, 495–513. [Google Scholar] [CrossRef]
- Holmes, G.; Donkin, A.; Witten, I. WEKA: A machine learning workbench. In Proceedings of the ANZIIS ’94—Australian New Zealnd Intelligent Information Systems Conference, Brisbane, QLD, Australia, 29 November–2 December 2002; pp. 357–361. [Google Scholar]
- Hawkins, D.M. The Problem of Overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [Google Scholar] [CrossRef]
- SHIPS. 2018a: SHIPS Statistical Tropical Cyclone Intensity Forecast Technique Development, Developmental Data. Available online: http://rammb.cira.colostate.edu/research/tropical_cyclones/ships/developmental_data.asp (accessed on 31 July 2020).
- SHIPS. 2018b: A Link to the 2018 Version of the SHIPS Developmental Data. Available online: http://rammb.cira.colostate.edu/research/tropical_cyclones/ships/docs/AL/lsdiaga_1982_2017_sat_ts.dat (accessed on 3 February 2020).
- SHIPS. 2018c: A Link to the 2018 Version of the SHIPS Developmental Data Variables. Available online: http://rammb.cira.colostate.edu/research/tropical_cyclones/ships/docs/ships_predictor_file_2018.doc (accessed on 3 February 2020).
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In International Conference on Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2005; pp. 878–887. [Google Scholar]
- Last, F.; Douzas, G.; Bacao, F. Oversampling for Imbalanced Learning Based on K-Means and SMOTE. arXiv 2017, arXiv:1711.00837. [Google Scholar]
- Volinsky, C.T.; Raftery, A.E. Bayesian information criterion for censored survival models. Biometrics 2000, 56, 256–262. [Google Scholar] [CrossRef]
- Song, J.; Huang, X.; Qin, S.; Song, Q. A bi-directional sampling based on K-means method for imbalance text classification. In Proceedings of the 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), Okayama, Japan, 26–29 June 2016; pp. 1–5. [Google Scholar]
- Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61, 399–409. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011; p. 676. [Google Scholar]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; De Freitas, N. Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE 2015, 104, 148–175. [Google Scholar] [CrossRef] [Green Version]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian optimization of machine learning algorithms. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2012; pp. 2951–2959. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013. [Google Scholar]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI 1995, 14, 1137–1145. [Google Scholar]
- Knaff, J.A.; Cram, T.A.; Schumacher, A.B.; Kossin, J.P.; DeMaria, M. Objective identification of annular hurricanes. Weather Forecast. 2008, 23, 17–88. [Google Scholar] [CrossRef]
- Berger, E. The European Forecast Model Already Kicking America’s Butt Just Improved. Ars Technica, 11 March 2016; Retrieved 16 August 2016. [Google Scholar]
- Asif, A.; Dawood, M.; Jan, B.; Khurshid, J.; De Maria, M.; Minhas, F. PHURIE: Hurricane intensity estimation from infrared satellite imagery using machine learning. Neural. Comput. Applic. 2020, 32, 4821–4834. [Google Scholar] [CrossRef]
- Piñeros, M.F.; Ritchie, E.A.; Tyo, J.S. Estimating tropical cyclone intensity from infrared image data. Weather Forecast. 2011, 26, 690–698. [Google Scholar] [CrossRef]
- Ritchie, G.; Valliere-Kelley, G.; Piñeros, M.F.; Tyo, J.S. Tropical cyclone intensity estimation in the North At-lantic Basin using an improved deviation angle variance technique. Weather Forecast. 2012, 27, 1264–1277. [Google Scholar] [CrossRef] [Green Version]
- Zagrodnik, J.P.; Jiang, H. Rainfall, Convection, and Latent Heating Distributions in Rapidly Intensifying Tropical Cyclones. J. Atmos. Sci. 2014, 71, 2789–2809. [Google Scholar] [CrossRef]
- Alvey, G.R., III; Zawislak, J.; Zipser, E. Precipitation Properties Observed during Tropical Cyclone Intensity Change. Mon. Weather Rev. 2015, 143, 4476–4492. [Google Scholar] [CrossRef]
- Fischer, M.S.; Tang, B.H.; Corbosiero, K.L.; Rozoff, C.M. Normalized Convective Characteristics of Tropical Cyclone Rapid Intensification Events in the North Atlantic and Eastern North Pacific. Mon. Weather. Rev. 2018, 146, 1133–1155. [Google Scholar] [CrossRef]
- De Maria, M.; Kaplan, J. An Updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and Eastern North Pacific Basins Mark. Weather Forecast. 1999, 14, 326–337. [Google Scholar] [CrossRef]
- De Maria, M.; Kaplan, J. A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic Basin. Weather. Forecast. 1994, 9, 209–220. [Google Scholar] [CrossRef]
- Wang, S.; Camargo, S.J.; Sobel, A.H.; Polvani, L.M. Impact of the Tropopause Temperature on the Intensity of Tropical Cyclones: An Idealized Study Using a Mesoscale Model. J. Atmos. Sci. 2014, 71, 4333–4348. [Google Scholar] [CrossRef]
- Su, H.; Wu, L.; Jiang, J.H.; Pai, R.; Liu, A.; Zhai, A.J.; Tavallali, P.; De Maria, M. Applying satellite observations of tropical cyclone internal structures to rapid intensification forecast with machine learning. Geophys. Res. Lett. 2020, 47, e2020GL089102. [Google Scholar] [CrossRef]
- Wadler, J.B.; Zhang, J.A.; Rogers, R.F.; Jaimes, B.; Shay, L.K. The Rapid Intensification of Hurricane Michael, 2018: Storm Structure and the Relationship to Environmental and Air–Sea Interactions. Mon. Weather. Rev. 2021, 149, 245–267. [Google Scholar] [CrossRef]
- Alvey, G.R., III; Zipser, E.; Zawislak, J. How Does Hurricane Edouard (2014) Evolve toward Sym-metry before Rapid Intensification? A High-Resolution Ensemble Study. J. Atmos. Sci. 2020, 77, 1329–1351. [Google Scholar] [CrossRef]
- Bhalachandran, S.; Chavas, D.R.; Marks, F.D., Jr.; Dubey, S.; Shreevastava, A.; Krishnamurti, T.N. Characterizing the Energetics of Vortex-Scale and Sub-Vortex-Scale Asymmetries during Tropical Cyclone Rapid Intensity Changes. J. Atmos. Sci. 2020, 77, 315–336. [Google Scholar] [CrossRef] [Green Version]
- Hazelton, A.T.; Zhang, X.; Gopalakrishnan, S.; Ramstrom, W.; Marks, F.; Zhang, J.A. High-Resolution Ensemble HFV3 Forecasts of Hurricane Michael (2018): Rapid Intensification in Shear. Mon. Weather. Rev. 2020, 148, 2009–2032. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.S.; Rogers, R.F.; Reasor, P.D. The Rapid Intensification and Eyewall Replacement Cycles of Hurricane Irma (2017). Mon. Weather. Rev. 2020, 148, 981–1004. [Google Scholar] [CrossRef]
- Chen, X.; Gu, J.; Zhang, J.A.; Marks, F.D.; Rogers, R.F.; Cione, J.J. Boundary Layer Recovery and Precipitation Symmetrization Preceding Rapid Intensification of Tropical Cyclones under Shear. J. Atmos. Sci. 2021. Available online: https://journals.ametsoc.org/view/journals/atsc/aop/JAS-D-20-0252.1/JAS-D-20-0252.1.xml (accessed on 24 March 2021). [CrossRef]
- Wu, S.; Soden, B.J.; Alaka, G.J. Ice Water Content as a Precursor to Tropical Cyclone Rapid Intensification. Geophys. Res. Lett. 2020, 47, e2020GL089669. [Google Scholar] [CrossRef]
- Mercer, A.E.; Grimes, A.D.; Wood, K.M. Application of Unsupervised Learning Techniques to Identify Atlantic Tropical Cyclone Rapid Intensification Environments. J. Appl. Meteorol. Climatol. 2021, 60, 119–138. [Google Scholar] [CrossRef]
- Wei, Y. An Advanced Artificial Intelligence System for Investing the Tropical Cyclone Rapid Intensification. Ph.D. Thesis, George Mason University, Fairfax, VA, USA, 2020. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
BD06 | BD12 | BD18 | Group List | |
---|---|---|---|---|
BD06 | 1.00 | 0.86 | 0.75 | BD06, BD12 |
BD12 | 0.86 | 1.00 | 0.92 | BD12, BD06, BD18 |
BD18 | 0.75 | 0.92 | 1.00 | BD18, BD12 |
Hyperparameter | Component | Explanation | Min | Max | Initial Value |
---|---|---|---|---|---|
n_cluster | GMM-SMOTE | The maximum number of clusters in the Gaussian mixture model | 2 | 10 | 2 |
m_neighbors | GMM-SMOTE | The number of nearest neighbors used to determine if a minority sample is in danger | 3 | 10 | 10 |
k_neighbors | GMM-SMOTE | The number of nearest neighbors used to construct synthetic samples | 3 | 14 | 5 |
shrinkage | XGBoost | Shrinkage ratio for each feature | 0 | 0.3 | 0.1 |
n_estimator | XGBoost | The number of CART to grow | 100 | 2000 | 100 |
subsample | XGBoost | Subsample ratio of the training instances | 0.5 | 1 | 1 |
colsample | XGBoost | Subsample ratio of columns for creating each classifier | 0.5 | 1 | 1 |
reg_alpha | XGBoost | L1 regularization term on weights | 0 | 20 | 0 |
reg_lambda | XGBoost | L2 regularization term on weights | 0.5 | 20 | 1 |
gamma | XGBoost | Minimum loss reduction required to make a further partition on a CART node | 0 | 10 | 0 |
min_child_weight | XGBoost | Minimum sum of instance weight in a split | 0.5 | 5 | 1 |
max_depth | XGBoost | Max depth of each CART model in XGBoost | 3 | 10 | 3 |
decision threshold | XGBoost | Decision threshold on the XGBoost classifier output | 0 | 1 | 0.5 |
Predicted Positive | Predicted Negative | |
---|---|---|
Actual positive | Truth positive (TP) | False negative (FN) |
Actual negative | False positive (FP) | Truth negative (TN) |
Correlation Threshold | 5th | 4th | 3rd | 2nd | 1st | Mean | Number Variables Selected |
---|---|---|---|---|---|---|---|
0.7 | 0.314 | 0.321 | 0.334 | 0.352 | 0.392 | 0.343 | 56 |
0.8 | 0.404 | 0.407 | 0.411 | 0.417 | 0.418 | 0.411 | 72 |
0.9 | 0.402 | 0.403 | 0.405 | 0.415 | 0.419 | 0.409 | 99 |
0.95 | 0.387 | 0.397 | 0.401 | 0.409 | 0.411 | 0.401 | 136 |
Cluster | 1 | 2 | 3 | 4 | 5 | 6 | Total |
---|---|---|---|---|---|---|---|
Minority instance | 84 | 69 | 12 | 235 | 5 | 118 | 523 |
Total instance | 2275 | 1481 | 1255 | 2390 | 1146 | 1638 | 10,185 |
IIR | 0.724 | 0.914 | 0.187 | 1.928 | 0.086 | 1.413 | 1 |
Name | M38 | M11 | M25 | M36 | M14 |
---|---|---|---|---|---|
Kappa score | 0.405 | 0.407 | 0.411 | 0.417 | 0.418 |
m_neighbors | 4 | 3 | 3 | 3 | 5 |
k_neighbors | 6 | 11 | 9 | 10 | 10 |
shrinkage | 0.29 | 0.23 | 0.3 | 0.3 | 0.21 |
n_estimators | 2000 | 572 | 2000 | 376 | 1510 |
subsample | 0.75 | 0.5 | 0.5 | 0.5 | 0.67 |
colsample | 0.99 | 0.78 | 0.99 | 0.9 | 0.99 |
reg_alpha | 0.5 | 1.34 | 0.5 | 0.5 | 0.5 |
reg_lambda | 20 | 20 | 20 | 18.91 | 20 |
gamma | 0 | 0 | 0 | 0 | 0 |
min_child_weight | 0.5 | 0.5 | 2.12 | 1.26 | 0.91 |
max_depth | 7 | 8 | 7 | 7 | 10 |
Name | M38 | M11 | M25 | M36 | M14 |
---|---|---|---|---|---|
m_neighbors | 2 (4) | 3 (1) | 3 (1) | 3 (1) | 1 (5) |
k_neighbors | 5 (5) | 1 (1) | 4 (4) | 2 (2) | 2 (2) |
shrinkage | 3 (3) | 4 (4) | 1 (1) | 1 (1) | 5 (5) |
n_estimators | 1 (1) | 4 (4) | 1 (1) | 5 (5) | 3 (3) |
subsample | 1 (1) | 3 (3) | 3 (3) | 3 (3) | 2 (2) |
colsample | 1 (1) | 2 (2) | 1 (1) | 3 (3) | 1 (1) |
reg_alpha | 2 (1) | 1 (5) | 2 (1) | 2 (1) | 2 (1) |
reg_lambda | 1 (2) | 1 (2) | 1 (2) | 2 (1) | 1 (2) |
gamma | 1 (1) | 1 (1) | 1 (1) | 1 (1) | 1 (1) |
min_child_weight | 4 (1) | 4 (1) | 1 (5) | 2 (4) | 3 (3) |
max_depth | 3 (3) | 2 (2) | 3 (3) | 3 (3) | 1 (1) |
Total score | 23 | 26 | 23 | 25 | 26 |
Predicted RI | Predicted Non-RI | Actual Total | |
---|---|---|---|
Actual RI | 39 (33) | 56 (62) | 95 |
Actual non-RI | 64 (55) | 1438 (1447) | 1502 |
Predicted total | 103 (88) | 1494 (1509) |
Model | Kappa | PSS | POD | FAR |
---|---|---|---|---|
MB | 0.315 | 0.293 | 0.326 | 0.617 |
MA | 0.354 | 0.368 | 0.411 | 0.621 |
Y16 | 0.275 | NA | 0.340 | 0.711 |
KRD15 | NA | 0.225 | 0.275 | 0.675 |
Improvement Y16 | 28.7% | NA | 20.9% | −12.7% |
Improvement KRD15 | NA | 63.6% | 49.5% | −8.0% |
Variable | Importance | Description |
---|---|---|
BD12 | 0.0362 | The past 12-h intensity change |
DTL | 0.0217 | The distance to nearest major land |
CFLX | 0.0207 | Dry air predictor based on the difference in surface moisture flux between air with the observed (GFS) RH value, and with RH of air mixed from 500 hPa to the surface. |
SHRD | 0.0206 | 850–200 hPa shear magnitude (kt *10) vs time (200–800 km) |
G150 | 0.0205 | Temperature perturbation at 150 hPa due to the symmetric vortex calculated from the gradient thermal wind. Averaged from r = 200 to 800 km centered on input lat/lon |
jd | 0.0204 | Julian day |
VMAX | 0.0201 | Maximum surface wind |
IRM1_5 | 0.0199 | Predictors from GOES data for r = 100–300 km but at 1.5 h before initial time |
PW08 | 0.0191 | 600–800 km TPW standard deviation |
VMPI | 0.0190 | Maximum potential intensity from Kerry Emanuel equation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Yang, R. An Advanced Artificial Intelligence System for Investigating Tropical Cyclone Rapid Intensification with the SHIPS Database. Atmosphere 2021, 12, 484. https://doi.org/10.3390/atmos12040484
Wei Y, Yang R. An Advanced Artificial Intelligence System for Investigating Tropical Cyclone Rapid Intensification with the SHIPS Database. Atmosphere. 2021; 12(4):484. https://doi.org/10.3390/atmos12040484
Chicago/Turabian StyleWei, Yijun, and Ruixin Yang. 2021. "An Advanced Artificial Intelligence System for Investigating Tropical Cyclone Rapid Intensification with the SHIPS Database" Atmosphere 12, no. 4: 484. https://doi.org/10.3390/atmos12040484
APA StyleWei, Y., & Yang, R. (2021). An Advanced Artificial Intelligence System for Investigating Tropical Cyclone Rapid Intensification with the SHIPS Database. Atmosphere, 12(4), 484. https://doi.org/10.3390/atmos12040484