Atmospheric PM2.5 Prediction Based on Multiple Model Adaptive Unscented Kalman Filter
Abstract
:1. Introduction
- (1)
- The PM concentration prediction values of different time periods are fused to predict the change trend and fluctuation of PM concentration by the multiple model adaptive method.
- (2)
- The proposed MMAUKF method also considers the estimation of noise in the prediction process. When the PM concentration is predicted, the noise is also estimated adaptively by estimator.
- (3)
- The proposed MMAUKF method improves the accuracy and stability of PM concentration prediction.
2. The Establishment of PM Concentration Prediction System
3. PM Concentration Prediction Based on the SVR-AUKF Method
3.1. Support Vector Regression
3.2. Unscented Kalman Filter Method
3.3. Adaptive Unscented Kalman Filter Noise Estimation for PM Concentration Prediction
4. Multiple Model Adaptive Unscented Kalman Filter for PM Concentration Prediction
5. The Simulation Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, J.; Tian, H.; Cheng, K.; Lu, L.; Zheng, M.; Wang, S.; Hao, J.; Wang, K.; Hua, S.; Zhu, C.; et al. The variation of chemical characteristics of PM2.5 and PM10 and formation causes during two haze pollution events in urban Beijing, China. Atmos. Environ. 2015, 107, 1–8. [Google Scholar] [CrossRef]
- Wang, Y.X.; Jiang, H.; Zhang, S.Q.; Xu, J.H.; Lu, X.H.; Jin, J.X.; Wang, C.L. Estimating and source analysis of surface PM2.5 concentration in the Beijing–Tianjin–Hebei region based on MODIS data and air trajectories. Int. J. Remote Sens. 2016, 37, 4799–4817. [Google Scholar] [CrossRef]
- Peng, W.; Ge, S.; Liu, Z.; Furuta, Y. Adsorption characteristics of sulfur powder by bamboo charcoal to restrain sulfur allergies. Saudi J. Biol. Sci. 2016, 24, 103–107. [Google Scholar] [CrossRef] [Green Version]
- You, S.; Tong, Y.W.; Neoh, K.G.; Dai, Y.; Wang, C.H. On the association between outdoor PM2.5 concentration and the seasonality of tuberculosis for Beijing and Hong Kong. Saudi J. Biol. Sci. 2016, 218, 1170–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Kloog, I.; Coull, B.A.; Kosheleva, A.; Zanobetti, A.; Schwartz, J.D. Estimating Causal Effects of Long-Term PM2.5 Exposure on Mortality in New Jersey. Environ. Health Perspect. 2016, 124, 1182–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavousi-Fard, A.; Samet, H.; Marzbani, F. A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert Syst. Appl. 2014, 41, 6047–6056. [Google Scholar] [CrossRef]
- Sun, W.; Sun, J. Daily PM2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm. J. Environ. Manag. 2017, 188, 144–152. [Google Scholar] [CrossRef]
- Zhang, Y.; Lang, J.; Cheng, S.; Li, S.; Zhou, Y.; Chen, D.; Zhang, H.; Wang, H. Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn. Sci. Total Environ. 2018, 630, 72–82. [Google Scholar] [CrossRef]
- Cobourn, W. An enhanced PM2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations. Atmos. Environ. 2010, 44, 3015–3023. [Google Scholar] [CrossRef]
- Elangasinghe, M.A.; Singhal, N.; Dirks, K.N.; Salmond, J.A.; Samarasinghe, S. Complex time series analysis of PM10 and PM2.5 for a coastal site using artificial neural network modelling and k-means clustering. Atmos. Environ. 2014, 94, 106–116. [Google Scholar] [CrossRef]
- Voukantsis, D.; Karatzas, K.; Kukkonen, J.; Räsänen, T.; Karppinen, A.; Kolehmainen, M. Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki. Sci. Total Environ. 2014, 140, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Jiang, H.; Wang, J.; Zhou, J. A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network. Sci. Total Environ. 2014, 496, 264–274. [Google Scholar] [CrossRef]
- Zhan, Y.; Luo, Y.; Deng, X.; Chen, H.; Grieneisen, M.L.; Shen, X.; Zhu, L.; Zhang, M. Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm. Atmos. Environ. 2017, 155, 129–139. [Google Scholar] [CrossRef]
- Kadlyala, A.; Kumar, A. Vector—time—series—based back propagation neural network modeling of air quality inside a public transportation bus using available software. Environ. Prog. Sustain. Energy. 2017, 35, 7–13. [Google Scholar] [CrossRef]
- Das Chagas Moura, M.; Zio, E.; Lins, I.D.; Droguett, E. Failure and reliability prediction by support vector machines regression of time series data. Reliab. Eng. Syst. Saf. 2011, 96, 1527–1534. [Google Scholar] [CrossRef]
- Sivakumar, S. Marginally Stable Triangular Recurrent Neural Network Architecture for Time Series Prediction. IEEE Trans. Cybern. 2018, 48, 2836–2850. [Google Scholar] [CrossRef]
- Dai, X.L.; Liu, J.J.; Li, Y.L. A recurrent neural network using historical data to predict time series indoor PM2.5 concentrations for residential buildings. Indoor Air. 2021, 1–10. [Google Scholar] [CrossRef]
- Qiu, X.; Ren, Y.; Suganthan, P.N.; Amaratunga, G.A. Empirical Mode Decomposition based ensemble deep learning for load demand time series forecasting. Appl. Soft. Comput. 2017, 54, 246–255. [Google Scholar] [CrossRef]
- Cassola, F.; Burlando, M. Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output. Appl. Energy 2012, 99, 154–166. [Google Scholar] [CrossRef]
- Cassola, F.; Burlando, M. Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter. Energy 2013, 49, 413–422. [Google Scholar]
- Nasseri, M.; Moeini, A.; Tabesh, M. Forecasting monthly urban water demand using Extended Kalman Filter and Genetic Programming. Expert Syst. Appl. 2011, 38, 7387–7395. [Google Scholar] [CrossRef]
- Santamaría-Bonfil, G.; Reyes-Ballesteros, A.; Gershenson, C. Wind speed forecasting for wind farms: A method based on support vector regression. Renew. Energy 2016, 85, 790–809. [Google Scholar] [CrossRef]
- Bisoi, R.; Dash, P.K. A hybrid evolutionary dynamic neural network for stock market trend analysis and prediction using unscented Kalman filter. Appl. Softw. Comput. 2014, 19, 41–56. [Google Scholar] [CrossRef]
- Meng, J.; Luo, G.; Gao, F. Lithium Polymer Battery State-of-Charge Estimation Based on Adaptive Unscented Kalman Filter and Support Vector Machine. IEEE Trans. Power Electron. 2016, 31, 2226–2238. [Google Scholar] [CrossRef]
- Sun, F.; Hu, X.; Zou, Y.; Li, S.G. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles. Energy 2011, 36, 3531–3540. [Google Scholar] [CrossRef]
- Blom, H.A.P.; Bar-Shalom, Y. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans. Autom. Control. 1988, 33, 780–783. [Google Scholar] [CrossRef]
- Mazinan, A.H.; Sadati, N. Fuzzy predictive control based multiple models strategy for a tubular heat exchanger system. Appl. Intell. 2010, 33, 247–263. [Google Scholar] [CrossRef]
- Xie, G.; Gao, H.; Qian, L.; Huang, B.; Li, K.; Wang, J. Vehicle Trajectory Prediction by Integrating Physics- and Maneuver-Based Approaches Using Interactive Multiple Models. IEEE Trans. Ind. Electron. 2018, 33, 5999–6008. [Google Scholar] [CrossRef]
- Li, X.L.; Jia, C.; Wang, K.; Wang, J. Trajectory tracking of nonlinear system using multiple series-parallel dynamic neural networks. Neurocomputing 2015, 168, 1–12. [Google Scholar] [CrossRef]
- Li, X.L.; Jia, C.; Liu, D.X.; Ding, D.W. Nonlinear adaptive control using multiple models and dynamic neural networks. Neurocomputing 2014, 136, 190–200. [Google Scholar] [CrossRef]
- Li, X.L.; Zhang, X.F.; Jia, C.; Liu, D.X. Multi-model adaptive control based on fuzzy neural networks. J. Intell. Fuzzy Syst. 2014, 27, 965–975. [Google Scholar] [CrossRef]
- Li, X.L.; Liu, D.X.; Jia, C.; Chen, X.Z. Multi-model control of blast furnace burden surface based on fuzzy SVM. Neurocomputing 2014, 148, 209–215. [Google Scholar] [CrossRef]
- Breeton, R.G.; Lloyd, R.G. Support Vector Machines for classification and regression. Analyst 2009, 23, 230–267. [Google Scholar]
- Yang, W.; Deng, M.; Xu, F.; Wang, H. Prediction of hourly PM2.5 using a space-time support vector regression model. Atmos. Environ. 2018, 181, 12–19. [Google Scholar] [CrossRef]
- Li, X.L.; Luo, A.R.; Li, J.G.; Li, Y. Air Pollutant Concentration Forecast Based on Support Vector Regression and Quantum-Behaved Particle Swarm Optimization. Atmos. Environ. 2019, 24, 205–222. [Google Scholar] [CrossRef]
- Smola, A.; Scholköpf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Gass, S.I.; Fu, M.C. Karush-Kuhn-Tucker (KKT) Conditions. In Encyclopedia of Operations Research and Management Science; Springer: New York, NY, USA, 2013; pp. 833–834. [Google Scholar]
- Chen, K.; Yu, J. Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach. Appl. Energy 2014, 113, 690–705. [Google Scholar] [CrossRef]
- Liu, H.; Tian, H.; Li, Y. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl. Energy 2012, 98, 415–424. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, L.; Ding, Z.; Chen, H. An enhanced interval PM2.5 concentration forecasting model based on BEMD and MLP~1 with influencing factors. Atmos. Environ. 2020, 223, 117200.1–117200.16. [Google Scholar] [CrossRef]
Unit | Mean | Standard Deviation | |
---|---|---|---|
PM | µg/m3 | 51.37 | 24.38 |
PM | µg/m3 | 71.20 | 29.99 |
SO | µg/kg | 5.57 | 4.38 |
NO | mg/m3 | 28.77 | 11.84 |
CO | mmol/L | 0.98 | 0.41 |
O | mg/m | 127.04 | 65.70 |
RH | % | 31.50 | 4.28 |
T | C | 71.21 | 19.42 |
Method | MAE | MAPE(%) | RMSE |
---|---|---|---|
MMAUKF | 4.0492 | 9.5337 | 5.9130 |
SVR-AUKF1 | 4.1994 | 9.6523 | 6.2302 |
SVR-AUKF2 | 4.3706 | 10.7784 | 5.9424 |
SVR-AUKF3 | 4.4815 | 11.8585 | 6.2018 |
Method | MAE | MAPE(%) | RMSE |
---|---|---|---|
MMAUKF | 4.0492 | 9.5337 | 5.9130 |
SVR-AUKF | 4.2304 | 9.7704 | 6.1347 |
AR-Kalman | 5.07 | 10.2621 | 6.8705 |
AR | 5.8735 | 12.7705 | 9.5259 |
BP | 7.2173 | 21.2940 | 8.3226 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, X.; Wang, K.; Cui, G. Atmospheric PM2.5 Prediction Based on Multiple Model Adaptive Unscented Kalman Filter. Atmosphere 2021, 12, 607. https://doi.org/10.3390/atmos12050607
Li J, Li X, Wang K, Cui G. Atmospheric PM2.5 Prediction Based on Multiple Model Adaptive Unscented Kalman Filter. Atmosphere. 2021; 12(5):607. https://doi.org/10.3390/atmos12050607
Chicago/Turabian StyleLi, Jihan, Xiaoli Li, Kang Wang, and Guimei Cui. 2021. "Atmospheric PM2.5 Prediction Based on Multiple Model Adaptive Unscented Kalman Filter" Atmosphere 12, no. 5: 607. https://doi.org/10.3390/atmos12050607
APA StyleLi, J., Li, X., Wang, K., & Cui, G. (2021). Atmospheric PM2.5 Prediction Based on Multiple Model Adaptive Unscented Kalman Filter. Atmosphere, 12(5), 607. https://doi.org/10.3390/atmos12050607