Evaluation of a Flexible Single Ice Microphysics and a Gaussian Probability-Density-Function Macrophysics Scheme in a Single Column Model
Abstract
:1. Introduction
2. Scheme Description and Method
2.1. The SGRIST Model
2.2. The Physical Schemes
2.2.1. The SI Microphysics Scheme
2.2.2. The Gauss-PDF Macrophysics Scheme
2.3. Test Cases for Physical Scheme Evaluation
3. Results and Evaluation
3.1. TWP-ICE Simulation
3.2. ARM97 Simulation
4. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tomita, H.; Goto, K.; Satoh, M. A new approach of atmospheric general circulation model: Global cloud resolving model NICAM and its computational performance. Siam J. Sci. Comput. 2008, 30, 2755–2776. [Google Scholar] [CrossRef]
- Zangl, G.; Reinert, D.; Ripodas, P.; Baldauf, M. The ICON (ICOsahedral Nonhydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Q. J. R. Meteorol. Soc. 2015, 141, 563–579. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Duda, M.G.; Fowler, L.D.; Park, S.H.; Ringler, T.D. A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Weather Rev. 2012, 240, 3090–3105. [Google Scholar] [CrossRef] [Green Version]
- Weller, H.; Ringler, T.; Piggott, M.; Wood, N. Challenges facing adaptive mesh modeling of the atmosphere and ocean. Bull. Am. Meteorol. Soc. 2010, 91, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Ringler, T.; Petersen, M.; Higdon, R.L.; Jacobsen, D.; Jones, P.W.; Maltrud, M. A multi-resolution approach to global ocean modeling. Ocean Model. 2013, 69, 211–232. [Google Scholar] [CrossRef]
- Harris, L.M.; Lin, S.-J.; Tu, C. High-resolution climate simulations using GFDL HIRAM with a stretched global grid. J. Clim. 2016, 29, 4293–4314. [Google Scholar] [CrossRef]
- Gettelman, A.; Callaghan, P.; Larson, V.E.; Zarzycki, C.M.; Bacmeister, J.T.; Lauritzen, P.H.; Bogenschutz, P.A.; Neale, R.B. Regional climate simulations with the community earth system model. J. Adv. Model. Earth Syst. 2018, 10, 1245–1265. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, J.; Yu, R.C.; Zhang, S.; Liu, Z.; Huang, J.; Zhou, Y. A layer-averaged nonhydrostatic dynamical framework on an unstructured mesh for global and regional atmospheric modeling: Model description, baseline evaluation, and sensitivity exploration. J. Adv. Model. Earth Syst. 2019, 11, 1685–1714. [Google Scholar] [CrossRef] [Green Version]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef]
- Field, P.R.; Brozková, R.; Chen, M.; Dudhia, J.; Lac, C.; Hara, T.; Honnert, R.; Olson, J.; Siebesma, P.; de Roode, S.; et al. Exploring the convective grey zone with regional simulations of a cold air outbreak. Q. J. R. Meteorol. Soc. 2017, 143, 2537–2555. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.H.; Hong, S.-Y. Representation of the subgridscale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Weather Rev. 2015, 143, 250–271. [Google Scholar] [CrossRef]
- Zhang, X.; Bao, J.W.; Chen, B.; Grell, E.D. A Three-Dimensional Scale-adaptive Turbulent Kinetic Energy Scheme in the ARW-WRF Model. Mon. Weather Rev. 2018, 146, 2023–2045. [Google Scholar] [CrossRef]
- Han, J.; Wang, W.; Kwon, Y.; Hong, S.-Y.; Tallapragada, A.; Yang, F. Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Weather Forecast. 2017, 32, 2005–2017. [Google Scholar] [CrossRef]
- Jeworrek, J.; West, G.; Stull, R. Evaluation of cumulus and microphysics parameterizations in WRF across the convective gray zone. Weather Forecast. 2019, 34, 1097–1115. [Google Scholar] [CrossRef]
- Zhang, F.; Shen, Z.; Li, J.; Zhou, X.; Ma, L. Analytical delta-four-stream doubling-adding method for radiative transfer parameterizations. J. Atmos. Sci. 2013, 70, 794–808. [Google Scholar] [CrossRef]
- Zhao, X.; Lin, Y.; Peng, Y.; Wang, B.; Morrison, H.; Gettelman, A. A single ice approach using varying ice particle properties in global climate model microphysics. J. Adv. Model. Earth Syst. 2017, 9, 2138–2157. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Lin, Y.; Xu, S.; Ma, H.-Y.; Xie, S. A diagnostic pdf cloud scheme to improve subtropical low clouds in NCAR Community Atmosphere Model (CAM5). J. Adv. Model. Earth Syst. 2018, 10, 320–341. [Google Scholar] [CrossRef] [Green Version]
- Wicker, L.J.; Skamarock, W.C. Time-splitting methods for elastic models using forward time schemes. Mon. Weather Rev. 2002, 130, 2088–2097. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Peng, X.; Li, J. Using a single column model (SGRIST1.0) for connecting model physics and dynamics in the Global-to-Regional Integrated forecast SysTem (GRIST-A20.8). Geosci. Model Dev. 2021. preprint for discussions. [Google Scholar]
- Neale, R.B.; Chen, C.; Lauritzen, P.H.; Williamson, D.L.; Conley, A.J.; Smith, A.K.; Mills, M.; Morrison, H. Description of the NCAR Community Atmosphere Model (CAM 5.0); NCAR Tech. Note 2012, NCAR/TN-4861 STR; National Center for Atmospheric Research: Boulder, CO, USA, 2012; Available online: http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf (accessed on 19 December 2019).
- Zhang, G.J.; Mcfarlane, N.A. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos. Ocean 1995, 33, 407–446. [Google Scholar] [CrossRef] [Green Version]
- Morrison, H.; Gettelman, A. A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Clim. 2008, 21, 3642–3659. [Google Scholar] [CrossRef]
- Park, S.; Bretherton, C.S.; Rasch, P.J. Integrating cloud processes in the community atmosphere model, version 5. J. Clim. 2014, 27, 6821–6856. [Google Scholar] [CrossRef]
- Park, S.; Bretherton, C.S. The university of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the community atmosphere model. J. Clim. 2009, 22, 3449–3469. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Park, S. A new moist turbulence parameterization in the community atmosphere model. J. Clim. 2009, 22, 3422–3448. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Niu, G.-Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116, D12109. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Colle, B.A. A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Weather Rev. 2011, 139, 1013–1035. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Bansemer, A.; Twohy, C.H. Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: Temperature dependence. J. Atmos. Sci. 2007, 64, 1047–1067. [Google Scholar] [CrossRef]
- Kim, S.Y.; Han, J.Y.; Choi, I.J.; Bae, S.Y. Evaluation of cloud and precipitation parameterization using a single-column model: A TWP-ICE case study. Asia-Pac. J. Atmos. Sci. 2014, 50, 469–480. [Google Scholar] [CrossRef]
- Cederwall, R.T.; Krueger, S.K.; Xie, S.; Yio, J. ARM/GCSS Single Column Model (SCM) Intercomparison, Procedures for Case 3: Summer1997 SCM IOP; Lawrence Livermore National Laboratory Rep. UCRL-ID-141823; Atmos. Sci. Div., Lawrence Livermore National Laboratory (LLNL): Livermore, CA, USA, 2000. [Google Scholar]
- Xie, S.; Hume, T.; Jakob, C.; Klein, S.A.; McCoy, R.B.; Zhan, M. Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE. J. Clim. 2010, 23, 57–79. [Google Scholar] [CrossRef]
- Zhao, C.; Xie, S.; Klein, S.A.; Protat, A.; Shupe, A.D.; McFarlane, S.A.; Comstock, J.M.; Delanoë, J.; Deng, M.; Dunn, M.; et al. Toward understanding of differences in current cloud retrievals of ARM ground-based measurements. J. Geophys. Res. 2012, 117, D10206. [Google Scholar] [CrossRef]
Exp. Name | MG-PBR | SI-PBR | MG-GPDF | SI-GPDF |
---|---|---|---|---|
Microphysics | MG08 | SI | MG08 | SI |
Macrophysics | PBR14 | PBR14 | Gauss-PDF | Gauss-PDF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Peng, X.; Li, X.; Lin, Y.; Chu, W. Evaluation of a Flexible Single Ice Microphysics and a Gaussian Probability-Density-Function Macrophysics Scheme in a Single Column Model. Atmosphere 2021, 12, 638. https://doi.org/10.3390/atmos12050638
Li J, Peng X, Li X, Lin Y, Chu W. Evaluation of a Flexible Single Ice Microphysics and a Gaussian Probability-Density-Function Macrophysics Scheme in a Single Column Model. Atmosphere. 2021; 12(5):638. https://doi.org/10.3390/atmos12050638
Chicago/Turabian StyleLi, Jiabo, Xindong Peng, Xiaohan Li, Yanluan Lin, and Wenchao Chu. 2021. "Evaluation of a Flexible Single Ice Microphysics and a Gaussian Probability-Density-Function Macrophysics Scheme in a Single Column Model" Atmosphere 12, no. 5: 638. https://doi.org/10.3390/atmos12050638
APA StyleLi, J., Peng, X., Li, X., Lin, Y., & Chu, W. (2021). Evaluation of a Flexible Single Ice Microphysics and a Gaussian Probability-Density-Function Macrophysics Scheme in a Single Column Model. Atmosphere, 12(5), 638. https://doi.org/10.3390/atmos12050638