Indoor Environmental Health Assessment in Eco-Building and Its Case Study
Abstract
:1. Introduction
2. Methodology
2.1. Optimal Classification and Priority Weight Methods
2.2. AHP Decision-Making System
3. Case studies
3.1. IEQ Priority Weight Calculation
3.2. AHP Decision-Making
3.3. Intelligent Forecasting
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, W.; Moon, H.J. Combined effects of acoustic, thermal, and illumination conditions on the comfort of discrete senses and overall indoor environment. Build. Environ. 2019, 148, 623–633. [Google Scholar] [CrossRef]
- World Health Organization. Health Risk Assessment of Air Pollution—General Principles, World Health Organization. 2016. Available online: http://www.euro.who.int/pubrequest%0A (accessed on 20 July 2016).
- D’Ambrosio, F.R.A.; Olesen, B.W.; Palella, B.I.; Riccio, G. Thermal comfort: Design and assessment for energy saving. Energy Build. 2014, 81, 326–336. [Google Scholar] [CrossRef]
- Bellia, L.; Alfano, F.R.D.; Fragliasso, F.; Palella, B.I.; Riccio, G. On the interaction between lighting and thermal comfort: An integrated approach to IEQ. Energy Build. 2021, 231, 110570. [Google Scholar] [CrossRef]
- Abdou, A.A.A.; Abdou, O.A.; El Kholy, G.M. Correlation between indoor environmental quality and productivity in buildings. In Proceedings of the 19th IASP Conference, Alexandria, Egypt, 20–21 May 2006; p. 732. [Google Scholar]
- Tham, K.W.; Parshetti, G.K.; Anand, P.; Cheong, D.K.W.; Sekhar, C. Performance characteristics of a fan filter unit (FFU) in mitigating particulate matter levels in a naturally ventilated classroom during haze conditions. Indoor Air 2021, 31, 795–806. [Google Scholar] [CrossRef]
- Zhong, L.; Yuan, J.; Fleck, B. Fleck Indoor Environmental Quality Evaluation of Lecture Classrooms in an Institutional Building in a Cold Climate. Sustainability 2019, 11, 6591. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yuan, J.; Wang, B. Prediction and analysis of PM2.5 in Fuling District of Chongqing by artificial neural network. Neural Comput. Appl. 2021, 33, 517–524. [Google Scholar] [CrossRef]
- Laskari, M.; Karatasou, S.; Santamouris, M. A methodology for the determination of indoor environmental quality in residential buildings through the monitoring of fundamental environmental parameters: A proposed Dwelling Environmental Quality Index. Indoor Built Environ. 2017, 26, 813–827. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Li, B.; Yang, X.; Wang, Q. A development of a rating method and weighting system for green store buildings in China. Renew. Energy 2015, 73, 123–129. [Google Scholar] [CrossRef]
- Niu, J.L.; Zhang, L.Z. Membrane-based enthalpy exchanger: Material considerations and clarification of moisture resistance. J. Membr. Sci. 2001, 189, 179–191. [Google Scholar] [CrossRef]
- Sofia-Natalia, B.; Irulegi, O.; Santamouris, M. Energy Performance of Buildings; Boemi, N., Irulegi, O., Santamouris, M., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Litti, G.; Audenaert, A.; Braet, J.; Fabbri, K.; Weeren, A. Synthetic scan and simultaneous index aimed at the Indoor Environmental Quality evaluation and certification for people and artworks in heritage buildings. Energy Procedia 2015, 78, 1365–1370. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Meng, Q.; Li, L.; Mu, J. Interaction between sound and thermal influences on patient comfort in the hospitals of China’s northern heating region. Appl. Sci. 2019, 9, 5551. [Google Scholar] [CrossRef] [Green Version]
- Bluyssen, P.M.; Janssen, S.; van den Brink, L.H.; de Kluizenaar, Y. Assessment of wellbeing in an indoor office environment. Build. Environ. 2011, 46, 2632–2640. [Google Scholar] [CrossRef]
- Poveda, C.A.; Lipsett, M. A Review of Sustainability Assessment and Sustainability/Environmental Rating Systems and Credit Weighting Tools. J. Sustain. Dev. 2011, 4, 36–55. [Google Scholar] [CrossRef]
- Boonstra, C.; Pettersen, T.D. Tools for environmental assessment of existing buildings. Ind. Environ. 2003, 26, 80–83. [Google Scholar]
- Assefa, G.; Glaumann, M.; Malmqvist, T.; Kindembe, B.; Hult, M.; Myhr, U.; Eriksson, O. Environmental assessment of building properties—Where natural and social sciences meet: The case of EcoEffect. Build. Environ. 2007, 42, 1458–1464. [Google Scholar] [CrossRef]
- Chou, P. Criteria for Design of Indoor Environment in Sustainable Buildings; IAQ Standards & Guidelines: ROC, Taiwan, 2014. [Google Scholar]
- Chinazzo, G.; Wienold, J.; Andersen, M. Influence of indoor temperature and daylight illuminance on visual perception. Lighting Res. Technol. 2020, 52, 350–370. [Google Scholar] [CrossRef]
- Heinzerling, D.; Schiavon, S.; Webster, T.; Arens, E. Indoor environmental quality assessment models: A literature review and a proposed weighting and classification scheme. Build. Environ. 2013, 70, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Sarbu, I.; Sebarchievici, C. Aspects of indoor environmental quality assessment in buildings. Energy Build. 2013, 60, 410–419. [Google Scholar] [CrossRef]
- Fabian, M.P.; Stout, N.K.; Adamkiewicz, G.; Geggel, A.; Ren, C.; Sandel, M.; Levy, J.I. The effects of indoor environmental exposures on pediatric asthma: A discrete event simulation model. Environ. Health 2012, 11, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hüls, A.; Krämer, U.; Carlsten, C.; Schikowski, T.; Ickstadt, K.; Schwender, H. Comparison of weighting approaches for genetic risk scores in gene-environment interaction studies. BMC Genet. 2017, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.M.; Lai, C.M. A study on the comprehensive indicator of indoor environment assessment for occupants’ health in Taiwan. Build. Environ. 2002, 37, 387–392. [Google Scholar] [CrossRef]
- Cao, B.; Ouyang, Q.; Zhu, Y.; Huang, L.; Hu, H.; Deng, G. Development of a multivariate regression model for overall satisfaction in public buildings based on field studies in Beijing and Shanghai. Build. Environ. 2012, 47, 394–399. [Google Scholar] [CrossRef]
- Nizam, S.; Choen, E.; Lou, W.; Fung, P.; Wood, R.; Che-ani, A.I. Developing weighting system for refurbishment building assessment scheme in Malaysia through analytic hierarchy process (AHP) approach. Energy Policy 2018, 112, 280–290. [Google Scholar] [CrossRef]
- Ncube, M.; Riffat, S. Developing an indoor environment quality tool for assessment of mechanically ventilated office buildings in the UK—A preliminary study. Build. Environ. 2012, 53, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Piasecki, M.; Kostyrko, K.B. Indoor environmental quality assessment, part 2: Model reliability analysis. J. Build. Phys. 2018, 42, 288–315. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Liu, F.; Dong, Y.; Xu, X. Exponentially weighted particle filter for simultaneous localization and mapping based on magnetic field measurements. IEEE Trans. Instrum. Meas. 2017, 66, 1658–1667. [Google Scholar] [CrossRef]
- Shad, R.; Khorrami, M.; Ghaemi, M. Developing an Iranian green building assessment tool using decision making methods and geographical information system: Case study in Mashhad city. Renew. Sustain. Energy Rev. 2017, 67, 324–340. [Google Scholar] [CrossRef]
- Iwaro, J.; Mwasha, A.; Williams, R.G.; Zico, R. An Integrated Criteria Weighting Framework for the sustainable performance assessment and design of building envelope. Renew. Sustain. Energy Rev. 2014, 29, 417–434. [Google Scholar] [CrossRef]
- Alyami, S.H.; Rezgui, Y.; Kwan, A. The development of sustainable assessment method for Saudi Arabia built environment: Weighting system. Sustain. Sci. 2015, 10, 167–178. [Google Scholar] [CrossRef]
- Yang, W.; Moon, H.J.; Jeon, J.Y. Comparison of response scales as measures of indoor environmental perception in combined thermal and acoustic conditions. Sustainability 2019, 11, 3975. [Google Scholar] [CrossRef] [Green Version]
- Brown, S. Quantitative Risk Assessment of Environmental Hazards. Annu. Rev. Public Health 1985, 6, 247–267. [Google Scholar] [CrossRef] [PubMed]
- Myhr, U. Assessing the Outdoor Environment Close To Buildings. Building 2005, 2005, 27–29. [Google Scholar]
- Rezaian, S.; Jozi, S.A. Health- Safety and Environmental Risk Assessment of Refineries Using of Multi Criteria Decision Making Method. APCBEE Procedia 2012, 3, 235–238. [Google Scholar] [CrossRef] [Green Version]
- Saaty, L.G.V.; Thomas, L. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Chiang, C.; Chou, P.; Lai, C.; Li, Y.; Tu, Y. A Study of the Comprehensive Indicators for Indoor. Build. Environ. 2002, 37, 387–392. [Google Scholar] [CrossRef]
- Wong, J.K.; Li, H. Application of the analytic hierarchy process (AHP) in multi-criteria analysis of the selection of intelligent building systems. Build. Environ. 2008, 43, 108–125. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Ashrae Standard Project Committee. Thermal Environmental Conditions For Human Occupancy; American Society of Heating, Refrigerating, and Airconditioning Engineers, Inc.: Atlanta, GA, USA, 2004. [Google Scholar]
- ISO 7730:2005. Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; International Organization for Standardization [ISO]: Geneva, Switzerland, 2005. [Google Scholar]
- D’Ambrosio, F.R.A.; Olesen, B.W.; Palella, B.I.; Pepe, D.; Riccio, G. Fifty Years of PMV Model: Reliability, Implementation and Design of Software for Its Calculation. Atmosphere 2019, 11, 49. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Chen, Z.; Zhong, L.; Wang, B. Indoor air quality management based on fuzzy risk assessment and its case study. Sustain. Cities Soc. 2019, 50, 101654. [Google Scholar] [CrossRef]
- ASTM-E1374. Standard Guide for Office Acoustics and Applicable; ASTM Standards: Philadelphia, PA, USA, 2018. [Google Scholar]
- EN 12464-1. Light and Lighting—Lighting of Work Places—Part 1: Indoor Work Places; Comite Europeen de Normalisation: Brussels, Belgium, 2011. [Google Scholar]
Standard | M1 | M2 | M3 | Mn | Priority Weight, W |
---|---|---|---|---|---|
M1 | P11 | P12 | P13 | P1n | W1 |
M2 | P21 | P22 | P23 | P2n | W2 |
M3 | P31 | P32 | P33 | P3n | W3 |
Mn | P41 | Pn2 | Pn3 | Pnn | Wn |
Index | Unit | Health Classification | Weighting | ||||
---|---|---|---|---|---|---|---|
40 | 60 | 80 | 100 | ||||
IAQ Parameters | Calculated | Average | |||||
PM10 | mg/m3 | ≤0.26 | ≤0.15 | ≤0.09 | ≤0.04 | 0.072 | |
CO2 | ppm | ≤1500 | ≤1000 | ≤800 | ≤600 | 0.020 | |
CO | mg/m3 | ≤15 | ≤10 | ≤8 | ≤5 | 0.292 | |
TVOC | mg/m3 | ≤3 | ≤0.6 | ≤0.3 | ≤0.2 | 0.292 | 0.286 |
HCHO | mg/m3 | ≤0.12 | ≤0.10 | ≤0.05 | ≤0.03 | 0.292 | |
Bacteria | cfu/m3 | ≤2500 | ≤500 | 0.032 | |||
Acoustic Parameters | |||||||
Leq24H (24 hours) | dB(A) | ≤55 | ≤50 | ≤45 | ≤40 | 1 | |
Leq D (day time) | dB(A) | ≤59 | ≤56 | ≤53 | ≤50 | ||
LAeq (eco-meeting room) | dB | ≤55 | ≤50 | ≤45 | ≤40 | 0.33 | 0.286 |
T60 (eco-meeting room) | s | 0.4–0.5 1.2–1.5 | 0.5–0.6 1.0–1.2 | 0.6–0.7 0.8–1.0 | 0.7–0.8 | 0.33 | |
RASTII (eco-meeting room) | ≥0.30 | ≥0.45 | ≥0.60 | ≥0.75 | 0.33 | ||
Thermal Comfort Parameters(ISO 7730 and ASHRAE 55) | |||||||
Indoor air temperature (summer) | ℃ | ≤29 ≥21 | ≤28 ≥22 | ≤27 ≥23 | ≤26 ≥24 | 0.17 | |
Indoor air temperature (winter) | ℃ | ≤27 ≥16 | ≤26 ≥17 | ≤25 ≥18 | ≤24 ≥19 | 0.17 | |
Indoor air temperature (spring & autumn) | ℃ | ≤28 ≥20 | ≤27 ≥21 | ≤26 ≥22 | ≤25 ≥23 | 0.17 | 0.142 |
RH(relative humidity) | % | ≤90 ≥30 | ≤80 ≥35 | ≤70 ≥40 | ≤60 ≥45 | 0.17 | |
Air velocity | m/s | ≤0.45 | ≤0.30 | ≤0.25 | ≤0.15 | 0.17 | |
PMV on the 7-point scale | ≤2.0 ≥−2.0 | ≤1.5 ≥−1.5 | ≤1.0 ≥−1.0 | ≤0.5 ≥−0.5 | 0.5 | ||
Lighting Parameters | |||||||
Average illuminance | lx | >300 | >400 | >500 | 0.5 | ||
Uniformity ratio of Illuminance | >0.7 | >0.8 | >0.9 | 0.5 | |||
Average illuminance | lx | >500 | >600 | >750 | 0.5 | 0.286 | |
Uniformity ratio of Illuminance | >0.7 | >0.8 | >0.9 | 0.5 | |||
Color temperature | General office and meeting room | Between 3300 K and 5300 K, additional point | |||||
Ratio of daylight-use | At working face Cmin ≥ 2%, additional point | ||||||
Brightness (for rooms with VDT) | The brightness of lamps at the 60, elevation of the frontage of the viewpoint, is between 200 and 1000 cd/m2, additional point |
Parameters | Weighting | Cao et al. [26] | Ncube & Riffat [28] | Ã & Li [38] |
---|---|---|---|---|
IAQ | 0.286 | 0.38 | 0.36 | 0.25 |
Acoustic | 0.286 | 0.27 | 0.18 | 0.24 |
Thermal | 0.142 | 0.14 | 0.16 | 0.19 |
Lighting | 0.286 | 0.21 | 0.30 | 0.31 |
Parameters | Index | Data Number | Data Range | Average (Office) | Average (House) | X± s |
---|---|---|---|---|---|---|
IAQ | HCHO (mg/m3) | 109 | 0.02–0.32 | 0.09 | 0.07 | 0.13 ± 0.07 |
TVOC (mg/m3) | 109 | 0.01–1.20 | 0.02 | 0.02 | 0.31 ± 0.25 | |
C6H6 (mg/m3) | 109 | 0.00–0.11 | 0.01 | 0.02 | 0.0140 ± 0.018 | |
NH3 (mg/m3) | 109 | 0.00–0.19 | 0.16 | 0.15 | 0.10 ± 0.23 | |
Radon (Bq/m3) | 49 | 0.07–0.12 | 0.02 | 0.01 | 0.09 ± 0.01 | |
temperature (°C) | 18–16 | 17 ± 0.1 | ||||
Thermal | 0.6 | 0.6 | ||||
Acoustic | 0.8 | 0.6 | ||||
Lighting | 0.8 | 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Zhao, X.; Segun, G.A.; Vakili, M.; Zhong, L. Indoor Environmental Health Assessment in Eco-Building and Its Case Study. Atmosphere 2021, 12, 794. https://doi.org/10.3390/atmos12060794
Yuan J, Zhao X, Segun GA, Vakili M, Zhong L. Indoor Environmental Health Assessment in Eco-Building and Its Case Study. Atmosphere. 2021; 12(6):794. https://doi.org/10.3390/atmos12060794
Chicago/Turabian StyleYuan, Jing, Xiaohui Zhao, Giwa Abdulmoseen Segun, Mohammadtaghi Vakili, and Lexuan Zhong. 2021. "Indoor Environmental Health Assessment in Eco-Building and Its Case Study" Atmosphere 12, no. 6: 794. https://doi.org/10.3390/atmos12060794
APA StyleYuan, J., Zhao, X., Segun, G. A., Vakili, M., & Zhong, L. (2021). Indoor Environmental Health Assessment in Eco-Building and Its Case Study. Atmosphere, 12(6), 794. https://doi.org/10.3390/atmos12060794