Sensitivity of Spring Phenology Simulations to the Selection of Model Structure and Driving Meteorological Data
Abstract
:1. Introduction
- How accurately can models simulate the observed SOS climatology in the region?
- Are models able to capture observed interannual variability and long-term trends of SOS?
- Is the choice of model or the choice of the meteorological database a more important factor affecting the accuracy of estimated SOS?
2. Materials and Methods
2.1. Study Area
2.2. Phenology Models
2.2.1. WM
2.2.2. CWM
2.2.3. GSIM
2.2.4. Applicability of the Models
2.3. Meteorological Datasets
2.3.1. CarpatClim Database
2.3.2. FORESEE Database
2.3.3. ERA5 Database
2.4. Remote Sensing Based Reference Spring Phenology Dataset
2.5. Ancillary Data Used in the Study
2.6. Optimisation of Phenological Models
2.7. Statistical Analysis
3. Results
3.1. Model Parameterisation
3.2. Climatology Maps for SOS
3.3. Interannual Variability
3.4. Trend Analysis
3.5. Model and Driving Meteorology Database Selection
4. Discussion
4.1. Model Parametrisation, Model Structural Differences
4.2. Spring Plant Phenology in Central Europe
4.3. Evaluation of Model Performance
4.4. Model Selection Versus Meteorology Database Selection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forkel, M.; Migliavacca, M.; Thonicke, K.; Reichstein, M.; Schaphoff, S.; Weber, U.; Carvalhais, N. Codominant Water Control on Global Interannual Variability and Trends in Land Surface Phenology and Greenness. Glob. Chang. Biol. 2015, 21, 3414–3435. [Google Scholar] [CrossRef]
- Peaucelle, M.; Janssens, I.A.; Stocker, B.D.; Descals Ferrando, A.; Fu, Y.H.; Molowny-Horas, R.; Ciais, P.; Peñuelas, J. Spatial Variance of Spring Phenology in Temperate Deciduous Forests Is Constrained by Background Climatic Conditions. Nat. Commun. 2019, 10, 5388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M.D. Shifting Plant Phenology in Response to Global Change. Trends Ecol. Evol. 2007, 22, 357–365. [Google Scholar] [CrossRef]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant Phenology and Global Climate Change: Current Progresses and Challenges. Glob. Chang. Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef] [PubMed]
- Basler, D. Evaluating Phenological Models for the Prediction of Leaf-out Dates in Six Temperate Tree Species across Central Europe. Agric. For. Meteorol. 2016, 217, 10–21. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate Change, Phenology, and Phenological Control of Vegetation Feedbacks to the Climate System. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aaasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.; Briede, A.; et al. European Phenological Response to Climate Change Matches the Warming Pattern. Glob. Chang. Biol. 2006, 12, 1969–1976. [Google Scholar] [CrossRef]
- Richardson, A.D.; Hufkens, K.; Milliman, T.; Aubrecht, D.M.; Chen, M.; Gray, J.M.; Johnston, M.R.; Keenan, T.F.; Klosterman, S.T.; Kosmala, M.; et al. Tracking Vegetation Phenology across Diverse North American Biomes Using PhenoCam Imagery. Sci. Data 2018, 5, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Templ, B.; Koch, E.; Bolmgren, K.; Ungersböck, M.; Paul, A.; Scheifinger, H.; Rutishauser, T.; Busto, M.; Chmielewski, F.M.; Hájková, L.; et al. Pan European Phenological Database (PEP725): A Single Point of Access for European Data. Int. J. Biometeorol. 2018, 62, 1109–1113. [Google Scholar] [CrossRef]
- Schwartz, M.D. Advancing to Full Bloom: Planning Phenological Research for the 21st Century. Int. J. Biometeorol. 1999, 42, 113–118. [Google Scholar] [CrossRef]
- Chuine, I. A Unified Model for Budburst of Trees. J. Theor. Biol. 2000, 207, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Melaas, E.K.; Richardson, A.D.; Friedl, M.A.; Dragoni, D.; Gough, C.M.; Herbst, M.; Montagnani, L.; Moors, E. Using FLUXNET Data to Improve Models of Springtime Vegetation Activity Onset in Forest Ecosystems. Agric. For. Meteorol. 2013, 171–172, 46–56. [Google Scholar] [CrossRef]
- Hufkens, K.; Basler, D.; Milliman, T.; Melaas, E.K.; Richardson, A.D. An Integrated Phenology Modelling Framework in R. Methods Ecol. Evol. 2018, 9, 1276–1285. [Google Scholar] [CrossRef] [Green Version]
- Asse, D.; Randin, C.F.; Bonhomme, M.; Delestrade, A.; Chuine, I. Process-Based Models Outcompete Correlative Models in Projecting Spring Phenology of Trees in a Future Warmer Climate. Agric. For. Meteorol. 2020, 285–286, 107931. [Google Scholar] [CrossRef]
- Wang, H.; Wu, C.; Fu, Y.; Ge, Q.; Ciais, P. Overestimation of the Effect of Climatic Warming on Spring Phenology Due to Misrepresentation of Chilling. Nat. Commun. 2020, 4945. [Google Scholar] [CrossRef]
- Moon, M.; Seyednasrollah, B.; Richardson, A.D.; Friedl, M.A. Using Time Series of MODIS Land Surface Phenology to Model Temperature and Photoperiod Controls on Spring Greenup in North American Deciduous Forests. Remote Sens. Environ. 2021, 260. [Google Scholar] [CrossRef]
- Chuine, I.; Cambon, G.; Comtois, P. Scaling Phenology from the Local to the Regional Level: Advances from Species-Specific Phenological Models. Glob. Chang. Biol. 2000, 6, 943–952. [Google Scholar] [CrossRef]
- Randall, D.A.; Bitz, C.M.; Danabasoglu, G.; Denning, A.S.; Gent, P.R.; Gettelman, A.; Griffies, S.M.; Lynch, P.; Morrison, H.; Pincus, R.; et al. 100 Years of Earth System Model Development. Meteorol. Monogr. 2018, 59, 12.1–12.66. [Google Scholar] [CrossRef]
- Peano, D.; Hemming, D.; Materia, S.; Delire, C.; Fan, Y.; Joetzjer, E.; Lee, H.; Nabel, J.; Park, T.; Peylin, P.; et al. Plant Phenology Evaluation of CRESCENDO Land Surface Models–Part I: Start and End of Growing Season. Biogeosci. Discuss. 2021, 18, 2405–2428. [Google Scholar] [CrossRef]
- White, M.A.; Thornton, P.E.; Running, S.W. A Continental Phenology Model for Monitoring Vegetation Responses to Interannual Climatic Variability. Glob. Biogeochem. Cycles 1997, 11, 217–234. [Google Scholar] [CrossRef]
- Zhang, L.; Lei, H.; Shen, H.; Cong, Z.; Yang, D.; Liu, T. Evaluating the Representation of Vegetation Phenology in the Community Land Model 4.5 in a Temperate Grassland. J. Geophys. Res. Biogeosci. 2019, 124, 187–210. [Google Scholar] [CrossRef]
- Fantini, A.; Raffaele, F.; Torma, C.; Bacer, S.; Coppola, E.; Giorgi, F.; Ahrens, B.; Dubois, C.; Sanchez, E.; Verdecchia, M. Assessment of Multiple Daily Precipitation Statistics in ERA-Interim Driven Med-CORDEX and EURO-CORDEX Experiments against High Resolution Observations. Clim. Dyn. 2018, 51, 877–900. [Google Scholar] [CrossRef]
- Yue, X.; Unger, N.; Keenan, T.F.; Zhang, X.; Vogel, C.S. Probing the Past 30-Year Phenology Trend of US Deciduous Forests. Biogeosciences 2015, 12, 4693–4709. [Google Scholar] [CrossRef] [Green Version]
- Botta, A.; Viovy, N.; Ciais, P.; Friedlingstein, P.; Monfray, P. A Global Prognostic Scheme of Leaf Onset Using Satellite Data. Glob. Chang. Biol. 2000, 6, 709–725. [Google Scholar] [CrossRef]
- Stöckli, R.; Rutishauser, T.; Baker, I.; Liniger, M.A.; Denning, A.S. A Global Reanalysis of Vegetation Phenology. J. Geophys. Res. Biogeosciences 2011, 116, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Thornton, P.E.; Hasenauer, H.; White, M.A. Simultaneous Estimation of Daily Solar Radiation and Humidity from Observed Temperature and Precipitation: An Application over Complex Terrain in Austria. Agric. For. Meteorol. 2000, 104, 255–271. [Google Scholar] [CrossRef]
- Thornton, P.E.; Thornton, M.M.; Mayer, B.W.; Wei, Y.; Devarakonda, R.; Vose, R.S.; Cook, R.B. Daymet: Daily Surface Weather Data on a 1-Km Grid for North America, Version 3; ORNL DAAC: Oak Ridge, TN, USA, 2016. [Google Scholar] [CrossRef]
- Melaas, E.K.; Friedl, M.A.; Richardson, A.D. Multiscale Modeling of Spring Phenology across Deciduous Forests in the Eastern United States. Glob. Chang. Biol. 2016, 22, 792–805. [Google Scholar] [CrossRef]
- Kern, A.; Marjanović, H.; Barcza, Z. Evaluation of the Quality of NDVI3g Dataset against Collection 6 MODIS NDVI in Central Europe between 2000 and 2013. Remote Sens. 2016, 8, 955. [Google Scholar] [CrossRef] [Green Version]
- Kern, A.; Marjanović, H.; Dobor, L.; Anić, M.; Hlásny, T.; Barcza, Z. Identification of Years with Extreme Vegetation State in Central Europe Based on Remote Sensing and Meteorological Data. South East Eur. For. 2017, 8, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Kern, A.; Marjanović, H.; Barcza, Z. Spring Vegetation Green-up Dynamics in Central Europe Based on 20-Year Long MODIS NDVI Data. Agric. For. Meteorol. 2020, 287, 107969. [Google Scholar] [CrossRef]
- Barcza, Z.; Bondeau, A.; Churkina, G.; Ciais, P.; Czóbel, S.; Gelybó, G.; Grosz, B.; Haszpra, L.; Hidy, D.; Horváth, L.; et al. Model-Based Biospheric Greenhouse Gas Balance of Hungary. Atmos. Greenh. Gases Hung. Persp. 2011, 295–330. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, H.; Dong, W.; Yuan, W. Comparison of Phenology Models for Predicting the Onset of Growing Season over the Northern Hemisphere. PLoS ONE 2014, 9, e109544. [Google Scholar] [CrossRef]
- Jeong, S.J.; Medvigy, D.; Shevliakova, E.; Malyshev, S. Uncertainties in Terrestrial Carbon Budgets Related to Spring Phenology. J. Geophys. Res. Biogeosci. 2012, 117, 1–17. [Google Scholar] [CrossRef]
- Jolly, W.M.; Nemani, R.; Running, S.W. A Generalized, Bioclimatic Index to Predict Foliar Phenology in Response to Climate. Glob. Chang. Biol. 2005, 11, 619–632. [Google Scholar] [CrossRef]
- Porter, J.R.; Gawith, M. Temperatures and the Growth and Development of Wheat: A Review. Eur. J. Agron. 1999, 10, 23–36. [Google Scholar] [CrossRef]
- Cesaraccio, C.; Spano, D.; Snyder, R.L.; Duce, P. Chilling and Forcing Model to Predict Bud-Burst of Crop and Forest Species. Agric. For. Meteorol. 2004, 126, 1–13. [Google Scholar] [CrossRef]
- Dobor, L. Possible Impacts of Climate Change on the Productivity and Carbon Balance of Hungarian Croplands. Ph.D. Thesis, Eotvos Lorand University, Budapest, Hungary, 2016. (In Hungarian). [Google Scholar]
- Szalai, S.; Auer, I.; Hiebl, J.; Milkovich, J.; Radim, T.; Stepanek, P.; Zahradnicek, P.; Bihari, Z.; Lakatos, M.; Szentimrey, T.; et al. Climate of the Greater Carpathian Region. Final Technical. 2013. Available online: www.carpatclim-eu.org (accessed on 10 December 2020).
- Dobor, L.; Barcza, Z.; Hlásny, T.; Havasi; Horváth, F.; Ittzés, P.; Bartholy, J. Bridging the Gap between Climate Models and Impact Studies: The FORESEE Database. Geosci. Data J. 2015, 2, 1–11. [Google Scholar] [CrossRef]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). 2017. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 10 December 2020).
- Hersbach, H.; Bell, B.; Berrisford, P.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global Reanalysis: Goodbye ERA-Interim, Hello ERA5. ECMWF Newsl. 2019, 17–24. [Google Scholar] [CrossRef]
- Caparros-Santiago, J.A.; Rodriguez-Galiano, V.; Dash, J. Land Surface Phenology as Indicator of Global Terrestrial Ecosystem Dynamics: A Systematic Review. ISPRS J. Photogramm. 2021, 171, 330–347. [Google Scholar] [CrossRef]
- Eklundh, L.; Jönsson, P. Timesat for processing time-series data from satellite sensors for land surface monitoring. In Remote Sensing and Digital Image Processing, 1st ed.; Ban, Y., Ed.; Springer International Publishing: Cham, Germany, 2016; Volume 20, pp. 177–194. [Google Scholar] [CrossRef]
- Studer, S.; Stöckli, R.; Appenzeller, C.; Vidale, P.L. A Comparative Study of Satellite and Ground-Based Phenology. Int. J. Biometeorol. 2007, 51, 405–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-Based Crop Identification Using Multiple Vegetation Indices, Textural Features and Crop Phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef]
- White, M.A.; de Beurs, K.M.; Didan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P.; O’Keefe, J.; Zhang, G.; Nemani, R.R.; van Leeuwen, W.J.D.; et al. Intercomparison, Interpretation, and Assessment of Spring Phenology in North America Estimated from Remote Sensing for 1982–2006. Glob. Chang. Biol. 2009, 15, 2335–2359. [Google Scholar] [CrossRef]
- Pinzon, J.E.; Tucker, C.J. A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Piao, S.; Cong, N.; Zhang, G.; Jassens, I.A. Precipitation Impacts on Vegetation Spring Phenology on the Tibetan Plateau. Glob. Chang. Biol. 2015, 21, 3647–3656. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled Seamless SRTM Data V4; International Centre for Tropical Agriculture (CIAT): Cali, Colombia, 2008; Available online: http://srtm.csi.cgiar.org (accessed on 11 January 2021).
- Sándor, R.; Barcza, Z.; Hidy, D.; Lellei-Kovács, E.; Ma, S.; Bellocchi, G. Modelling of Grassland Fluxes in Europe: Evaluation of Two Biogeochemical Models. Agric. Ecosyst. Environ. 2016, 215, 1–19. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Schwartz, M.D. Assessing the Onset of Spring: A Climatological Perspective. Phys. Geogr. 1993, 14, 536–550. [Google Scholar] [CrossRef]
- Dunay, S. Plant Phenological Observations in Hungary. Légkör 1984, 29, 2–9. (In Hungarian) [Google Scholar]
- Walkovszky, A. Changes in Phenology of the Locust Tree (Robinia pseudoacacia L.) in Hungary. Int. J. Biometeorol. 1998, 41, 155–160. [Google Scholar] [CrossRef]
- Menzel, A. Trends in Phenological Phases in Europe between 1951 and 1996. Int. J. Biometeorol. 2000, 44, 76–81. [Google Scholar] [CrossRef]
- Molnár, V.A.; Tökölyi, J.; Végvári, Z.; Sramkó, G.; Sulyok, J.; Barta, Z. Pollination Mode Predicts Phenological Response to Climate Change in Terrestrial Orchids: A Case Study from Central Europe. J. Ecol. 2012, 100, 1141–1152. [Google Scholar] [CrossRef]
- Varga, Z.; Varga-Haszonits, Z.; Enzsölné Gerencsér, E.; Lantos, Z.; Milics, G. Bioclimatological Analysis of the Development of Lilac (Robinia pseudoacacia L.). Acta Agron. Ovariensis 2012, 54, 35–52. (In Hungarian) [Google Scholar]
- Szabó, B.; Vincze, E.; Czúcz, B. Flowering Phenological Changes in Relation to Climate Change in Hungary. Int. J. Biometeorol. 2016, 60, 1347–1356. [Google Scholar] [CrossRef]
- Jánosi, I.M.; Silhavy, D.; Tamás, J.; Csontos, P. Bulbous Perennials Precisely Detect the Length of Winter and Adjust Flowering Dates. New Phytol. 2020. [Google Scholar] [CrossRef]
- Roetzer, T.; Wittenzeller, M.; Haeckel, H.; Nekovar, J. Phenology in Central Europe-Differences and Trends of Spring Phenophases in Urban and Rural Areas. Int. J. Biometeorol. 2000, 44, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Stöckli, R.; Vidale, P.L. European Plant Phenology and Climate as Seen in a 20-Year AVHRR Land-Surface Parameter Dataset. Int. J. Remote Sens. 2004, 25, 3303–3330. [Google Scholar] [CrossRef]
- Richardson, A.D.; Black, T.A.; Ciais, P.; Delbart, N.; Friedl, M.A.; Gobron, N.; Hollinger, D.Y.; Kutsch, W.L.; Longdoz, B.; Luyssaert, S.; et al. Influence of Spring and Autumn Phenological Transitions on Forest Ecosystem Productivity. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3227–3246. [Google Scholar] [CrossRef] [Green Version]
- Gauzere, J.; Lucas, C.; Ronce, O.; Davi, H.; Chuine, I. Sensitivity Analysis of Tree Phenology Models Reveals Increasing Sensitivity of Their Predictions to Winter Chilling Temperature and Photoperiod with Warming Climate. Ecol. Modell. 2019, 411, 108805. [Google Scholar] [CrossRef]
- Migliavacca, M.; Cremonese, E.; Colombo, R.; Busetto, L.; Galvagno, M.; Ganis, L.; Meroni, M.; Pari, E.; Rossini, M.; Siniscalco, C.; et al. European Larch Phenology in the Alps: Can We Grasp the Role of Ecological Factors by Combining Field Observations and Inverse Modelling? Int. J. Biometeorol. 2008, 52, 587–605. [Google Scholar] [CrossRef]
- Vitasse, Y.; François, C.; Delpierre, N.; Dufrêne, E.; Kremer, A.; Chuine, I.; Delzon, S. Assessing the Effects of Climate Change on the Phenology of European Temperate Trees. Agric. For. Meteorol. 2011, 151, 969–980. [Google Scholar] [CrossRef]
- Xin, Q.; Broich, M.; Zhu, P.; Gong, P. Modeling Grassland Spring Onset across the Western United States Using Climate Variables and MODIS-Derived Phenology Metrics. Remote Sens. Environ. 2015, 161, 63–77. [Google Scholar] [CrossRef]
- Richardson, A.D.; Anderson, R.S.; Arain, M.A.; Barr, A.G.; Bohrer, G.; Chen, G.; Chen, J.M.; Ciais, P.; Davis, K.J.; Desai, A.R.; et al. Terrestrial Biosphere Models Need Better Representation of Vegetation Phenology: Results from the North American Carbon Program Site Synthesis. Glob. Chang. Biol. 2012, 18, 566–584. [Google Scholar] [CrossRef] [Green Version]
- Fiddes, J.; Gruber, S. TopoSCALE v.1.0: Downscaling Gridded Climate Data in Complex Terrain. Geosci. Model Dev. 2014, 7, 387–405. [Google Scholar] [CrossRef] [Green Version]
- Frei, C. Interpolation of Temperature in a Mountainous Region Using Nonlinear Profiles and Non-Euclidean Distances. Int. J. Climatol. 2014, 34, 1585–1605. [Google Scholar] [CrossRef]
Grasslands | Forests | Croplands | |
---|---|---|---|
GSIM | |||
TMMin [°C] | −1.5 | 1.5 | −1.5 |
TMMax [°C] | 10.5 | 9 | 10.5 |
VPDmin [hPa] | 1000 | 1400 | 1400 |
VPDmax [hPa] | 4200 | 4600 | 4600 |
Photomin [s] | 36,000 | 36,000 | 36,000 |
Photomax [s] | 36,900 | 36,900 | 36,900 |
GSIthreshold | 0.5 | 0.45 | 0.55 |
Smoothing [days] | 30 | ||
CWM | |||
a [°C days] | −76 | −47 | −47 |
b [°C days] | 624 | 652 | 624 |
c | −0.011 | −0.101 | −1.0103 |
Tbase [°C] | 4 | 5 | 4 |
NCD_Tbase [°C] | 4 | 5 | 5 |
WM | |||
Tbase [°C] | 5 | 7 | 5 |
GDDthreshold [°C days] | 105 | 112 | 128 |
Phenology Model | CWM | WM | GSIM | CWM | WM | GSIM | CWM | WM | GSIM | NDVI3g |
---|---|---|---|---|---|---|---|---|---|---|
Driving Meteorology | CarpatClim | FORESEE | ERA5 | |||||||
overall median | 104 | 104 | 100 | 104 | 103 | 99 | 105 | 103 | 94 | 105 |
0–100 m median | 103 | 103 | 98 | 103 | 102 | 99 | 103 | 103 | 93 | 102.3 |
100–200 m median | 105 | 104 | 100 | 104 | 103 | 98 | 105 | 104 | 95 | 105 |
200–700 m median | 106 | 109 | 106 | 106 | 109 | 102 | 106 | 103 | 99 | 106 |
overall SD | 2.0 | 4.0 | 4.7 | 1.6 | 3.3 | 3.6 | 1.8 | 3.6 | 3.7 | 7.6 |
0–100 m SD | 0.8 | 2.2 | 1.6 | 0.8 | 1.9 | 2.5 | 0.9 | 1.9 | 1.3 | 7 |
100–200 m SD | 1.1 | 2.5 | 3.6 | 1.0 | 2.1 | 3.1 | 1.3 | 2.5 | 2.6 | 7.9 |
200–700 m SD | 2.8 | 5.5 | 6.9 | 1.6 | 3.9 | 4.3 | 1.2 | 3.8 | 4.6 | 4.8 |
overall 5th perc | 102 | 100 | 96 | 102 | 100 | 94 | 102 | 99 | 92 | 92 |
0–100 m 5th perc | 102 | 100 | 96 | 102 | 99 | 93 | 102 | 99 | 92 | 90.7 |
100–200 m 5th perc | 103 | 101 | 96 | 102 | 101 | 94 | 103 | 102 | 93 | 96 |
200–700 m 5th perc | 104 | 103 | 94 | 104 | 104 | 96 | 105 | 103 | 93 | 103.7 |
overall 95th perc | 108 | 112 | 109 | 107 | 111 | 106 | 108 | 112 | 103 | 118 |
0–100 m 95th perc | 105 | 107 | 101 | 104 | 106 | 102 | 105 | 105 | 96 | 112.7 |
100–200 m 95th perc | 106 | 109 | 107 | 105 | 108 | 104 | 107 | 109 | 101 | 119.3 |
200–700 m 95th perc | 113 | 121 | 117 | 109 | 116 | 109 | 109 | 115 | 107 | 118 |
Phenology Model | CWM | WM | GSIM | CWM | WM | GSIM | CWM | WM | GSIM | NDVI3g |
---|---|---|---|---|---|---|---|---|---|---|
Driving Meteorology | CarpatClim | FORESEE | ERA5 | |||||||
overall SD | 5.6 | 8.9 | 7.9 | 5.5 | 8.8 | 7.5 | 5.8 | 9.0 | 8.8 | 5.4 |
0–100 m SD | 5.7 | 9.0 | 7.8 | 5.5 | 8.8 | 7.4 | 6.0 | 9.4 | 9.2 | 7.8 |
100–200 m SD | 5.7 | 8.9 | 8.1 | 5.8 | 9.3 | 7.9 | 5.7 | 9.0 | 8.8 | 5.5 |
200–700 m SD | 5.5 | 8.0 | 8.3 | 5.6 | 8.6 | 7.8 | 7.6 | 7.3 | 7.6 | 3.2 |
Phenology Model | CWM | WM | GSIM | CWM | WM | GSIM | CWM | WM | GSIM | NDVI3g |
---|---|---|---|---|---|---|---|---|---|---|
Driving Meteorology | CarpatClim | FORESEE | ERA5 | |||||||
overall decadal trend | −1.6 | −3.6 | −2.2 | −1.4 | −3.6 | −2.8 | −1.2 | −3.1 | −1.2 | −2.4 |
0–100 m trend | −1.2 | −3.1 | −1.6 | −1.2 | −3.3 | −2.4 | −1.6 | −3.0 | −1.2 | −3.1 |
100–200 m trend | −1.7 | −3.7 | −2.1 | −1.7 | −3.8 | −2.9 | −1.2 | −3.4 | −1.3 | −2.0 |
200–700 m trend | −1.7 | −4.4 | −3.8 | −1.8 | −4.0 | −3.4 | −1.6 | −4.2 | −2.1 | −2.3 |
Reference | Biome Type | Location, Spatial Scale | Model Type | RMSE [Days] | R2 | Bias [Days] |
---|---|---|---|---|---|---|
[5] | deciduous and evergreen tree species | Central Europe, individual based | several model types driving by chilling or forcing and photoperiod | 7–9 | ||
[11] | deciduous and evergreen tree species | southern France, individual based | Unified Model 1 | 0.53–0.92 | ||
UniChill 1 | 0.53–0.9 | |||||
UniForc 1 | 0.29–0.84 | |||||
[23] | deciduous broadleaf forest | USA, site level evaluation | Sequential-, Parallel- and Alternating Model 2 | 5–17 | 0.06–0.581 | |
USA, continental-scale evaluation | Alternating Model 2 | 5–8 | 0.36–0.49 | |||
[33] | 15 biome types including deciduous and evergreen forests, grasslands, shrublands, savannas | Northern Hemisphere, 500 × 500 m | WM | 20 ± 19 | 0.67 | |
Number of Growing Days model | 19 ± 18 | 0.73 | ||||
Number of Chilling Days-Growing Degree Day model (CWM) | 22 ± 20 | 0.61 | ||||
Biome-BGC | 5–11 | 0.68 | ||||
[65] | deciduous and evergreen tree species | Pyrenees Mountains, individual based | UniFord 1 | 6.29–10 | ||
UniChill 1 | 6.72–9.07 | |||||
phototermal endo- ecodormancy model | 5.85–9.45 | |||||
[66] | Larch | 8 sites in the Alps with wide altitudinal distribution | optimised WM | 4 | 0.9 | |
optimised GSIM | 5 | 0.92 | ||||
original GSIM | 27 | 0.92 | ||||
[67] | deciduous and evergreen tree species | western France, individual based | models based on forcing or both forcing and chilling temperature | 2.6–9.4 | −0.5–2.4 | |
[68] | grasslands | western USA, 0.125° × 0.125° | WM | 41.6–45.3 | 0.04–0.087 | −39.6–−35.1 |
modified WM | 16.4–18.9 | 0.43–0.84 | 0.2–8.2 | |||
Sequential Model 2 | 18.9–19.9 | 0.49–0.54 | 1.3–5.8 | |||
Parallel Model 2 | 18.5–19.9 | 0.35–0.42 | 1.5–5.8 | |||
GSIM | 44.2–67.8 | 0.51–0.59 | 33–36.2 | |||
Accumulated GSIM | 17.1–18.5 | 0.86-0.91 | 1.2–7.8 | |||
this study | mixed landscape | regional scale, 1/12° × 1/12° | CWM | 6.5–18.7 | 0–0.24 | −11.6–10.9 |
WM | 7.6–19 | 0–0.40 | −12.5–11.5 | |||
GSIM | 8.6–23.2 | 0–0.27 | −20–9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dávid, R.Á.; Barcza, Z.; Kern, A.; Kristóf, E.; Hollós, R.; Kis, A.; Lukac, M.; Fodor, N. Sensitivity of Spring Phenology Simulations to the Selection of Model Structure and Driving Meteorological Data. Atmosphere 2021, 12, 963. https://doi.org/10.3390/atmos12080963
Dávid RÁ, Barcza Z, Kern A, Kristóf E, Hollós R, Kis A, Lukac M, Fodor N. Sensitivity of Spring Phenology Simulations to the Selection of Model Structure and Driving Meteorological Data. Atmosphere. 2021; 12(8):963. https://doi.org/10.3390/atmos12080963
Chicago/Turabian StyleDávid, Réka Ágnes, Zoltán Barcza, Anikó Kern, Erzsébet Kristóf, Roland Hollós, Anna Kis, Martin Lukac, and Nándor Fodor. 2021. "Sensitivity of Spring Phenology Simulations to the Selection of Model Structure and Driving Meteorological Data" Atmosphere 12, no. 8: 963. https://doi.org/10.3390/atmos12080963
APA StyleDávid, R. Á., Barcza, Z., Kern, A., Kristóf, E., Hollós, R., Kis, A., Lukac, M., & Fodor, N. (2021). Sensitivity of Spring Phenology Simulations to the Selection of Model Structure and Driving Meteorological Data. Atmosphere, 12(8), 963. https://doi.org/10.3390/atmos12080963