Characterization of PAHs Trapped in the Soot from the Combustion of Various Mediterranean Species
Abstract
:1. Introduction
2. Materials
2.1. Fuels
2.2. Soot Production (Combustion Process)
2.3. PAHs
3. Analytical Method
3.1. Ultrasonic Extraction
3.2. Solid Phase Extraction-SPE
3.2.1. Conditioning of the Cleaning Column
3.2.2. Loading and Drying
3.2.3. Elution of PAHs
3.3. High Pressure Liquid Chromatography—HPLC
4. Results
4.1. Soot and PAH Production
4.2. Diagnostic Ratios
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Wavelengths Programm
Time (min) | λexcitation (nm) | λemission (nm) |
0 | 280 | 330 |
28 | 250 | 310 |
29.5 | 254 | 370 |
33.4 | 280 | 450 |
34.8 | 240 | 390 |
38 | 265 | 385 |
42 | 395 | 422 |
44.2 | 295 | 422 |
51.5 | 300 | 500 |
References
- Jia, G.; Shevliakova, E.; Artaxo, P.; De Noblet-Ducoudré, N.; Houghton, R.; House, J.; Kitajima, K.; Lennard, C.; Popp, A.; Sirin, A.; et al. Land-Climate Interactions. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019; pp. 131–247. [Google Scholar]
- European Commission. Forest Fires—Sparkling Firesmart Policies in the EU; European Union: Brussels, Belgium, 2018. [Google Scholar]
- Chakrabarty, R.K.; Beres, N.D.; Moosmüller, H.; China, S.; Mazzoleni, C.; Dubey, M.K.; Liu, L.; Mishchenko, M.I. Soot Superaggregates from Flaming Wildfires and Their Direct Radiative Forcing. Sci. Rep. 2014, 4, 5508. [Google Scholar] [CrossRef] [Green Version]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.; van Leeuwen, T.T. Global Fire Emissions and the Contribution of Deforestation, Savanna, Forest, Agricultural, and Peat Fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef] [Green Version]
- Martins, J.V.; Artaxo, P.; Liousse, C.; Reid, J.S.; Hobbs, P.V.; Kaufman, Y.J. Effects of Black Carbon Content, Particle Size, Andmixing on Light Absorption by Aerosols from Biomass Burning InBrazil. J. Geophys Res. 1998, 103, 32041–32050. [Google Scholar] [CrossRef]
- Reid, C.E.; Considine, E.M.; Watson, G.L.; Telesca, D.; Pfister, G.G.; Jerrett, M. Associations between Respiratory Health and Ozone and Fine Particulate Matter during a Wildfire Event. Environ. Int. 2019, 129, 291–298. [Google Scholar] [CrossRef]
- Aguilera, R.; Corringham, T.; Gershunov, A.; Benmarhnia, T. Wildfire Smoke Impacts Respiratory Health More than Fine Particles from Other Sources: Observational Evidence from Southern California. Nat. Commun. 2021, 12, 1493. [Google Scholar] [CrossRef] [PubMed]
- Crutzen, P.J.; Heidt, L.E.; Krasnec, J.P.; Pollock, W.H.; Seiler, W. Biomass Burning as a Source of Atmospheric Gases CO, H2, N2O, NO, CH3Cl and COS. Nature 1979, 282, 253–256. [Google Scholar] [CrossRef]
- Crutzen, P.J.; Andreae, M.O. Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science 1990, 250, 1669–1678. [Google Scholar] [CrossRef]
- Phuleria, H.C. Air Quality Impacts of the October 2003 Southern California Wildfires. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Dennis, A.; Fraser, M.; Anderson, S.; Allen, D. Air Pollutant Emissions Associated with Forest, Grassland, and Agricultural Burning in Texas. Atmos. Environ. 2002, 36, 3779–3792. [Google Scholar] [CrossRef]
- Lighty, J.S.; Veranth, J.M.; Sarofim, A.F. Combustion Aerosols: Factors Governing Their Size and Composition and Implications to Human Health. J. Air Waste Manag. Assoc. 2000, 50, 1565–1618. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, I.M. The Health Effects of Combustion-Generated Aerosols. Proc. Combust. Inst. 2007, 31, 2757–2770. [Google Scholar] [CrossRef]
- Richter, H.; Howard, J.B. Formation of Polycyclic Aromatic Hydrocarbons and Their Growth to Soot—A Review of Chemical Reaction Pathways. Prog. Energy Combust. Sci. 2000, 26, 565–608. [Google Scholar] [CrossRef]
- Kocbach, A.; Li, Y.; Yttri, K.E.; Cassee, F.R.; Schwarze, P.E.; Namor, E. Physicochemical Characterisation of Combustion Particles from Vehicle Exhaust and Residential Wood Smoke. Part. Fibre Toxicol. 2006, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Szatyłowicz, E.; Skoczko, I. Evaluation of the PAH Content in Soot from Solid Fuels Combustion in Low Power Boilers. Energies 2019, 12, 4254. [Google Scholar] [CrossRef] [Green Version]
- Alves, C.A.; Vicente, A.; Monteiro, C.; Gonçalves, C.; Evtyugina, M.; Pio, C. Emission of Trace Gases and Organic Components in Smoke Particles from a Wildfire in a Mixed-Evergreen Forest in Portugal. Sci. Total Environ. 2011, 409, 1466–1475. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.I.; Ferreira, J.; Valente, J.; Santos, P.; Amorim, J.H.; Borrego, C. Smoke Measurements during Gestosa-2002 Experimental Field Fires. Int. J. Wildland Fire 2005, 14, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Alves, C.A.; Gonçalves, C.; Evtyugina, M.; Pio, C.A.; Mirante, F.; Puxbaum, H. Particulate Organic Compounds Emitted from Experimental Wildland Fires in a Mediterranean Ecosystem. Atmos. Environ. 2010, 44, 2750–2759. [Google Scholar] [CrossRef]
- Alves, C.A.; Gonçalves, C.; Pio, C.A.; Mirante, F.; Caseiro, A.; Tarelho, L.; Freitas, M.C.; Viegas, D.X. Smoke Emissions from Biomass Burning in a Mediterranean Shrubland. Atmos. Environ. 2010, 44, 3024–3033. [Google Scholar] [CrossRef]
- Cachier, H.; Aulagnier, F.; Sarda, R.; Gautier, F.; Masclet, P.; Besombes, J.-L.; Marchand, N.; Despiau, S.; Croci, D.; Mallet, M.; et al. Aerosol Studies during the ESCOMPTE Experiment: An Overview. Atmos. Res. 2005, 74, 547–563. [Google Scholar] [CrossRef]
- McGrath, T.E.; Chan, W.G.; Hajaligol, M.R. Low Temperature Mechanism for the Formation of Polycyclic Aromatic Hydrocarbons from the Pyrolysis of Cellulose. J. Anal. Appl. Pyrolysis 2003, 66, 51–70. [Google Scholar] [CrossRef]
- Lima, A.L.C.; Farrington, J.W.; Reddy, C.M. Combustion-Derived Polycyclic Aromatic Hydrocarbons in the Environment—A Review. Environ. Forensics 2005, 6, 109–131. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Guidelines for Carcinogen Risk Assessment; United States Environmental Protection Agency: Washington, DC, USA, 2005; p. 166.
- International Agency for Research on Cancer. Agents Classified by the IARC Monographs; International Agency for Research on Cancer: Lyon, France; Volume 1–125, Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 30 June 2021).
- United States Environmental Protection Agency. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons; United States Environmental Protection Agency: Washington, DC, USA, 1993; pp. 1–20.
- Nisbet, I.C.T.; LaGoy, C.K. Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Working Group on Polycyclic Aromatic Hydrocarbons. Ambient Air Pollution by Polycyclic Aromatic Hydrocarbons (PAH); Office for Official Publications of the European Communities: Luxembourg, 2011; ISBN 92-894-2057-X. [Google Scholar]
- Andrade-Eiroa, A.; Leroy, V.; Dagaut, P.; Bedjanian, Y. Determination of Polycyclic Aromatic Hydrocarbons in Kerosene and Bio-Kerosene Soot. Chemosphere 2010, 78, 1342–1349. [Google Scholar] [CrossRef] [Green Version]
- Kiss, G.; Varga-Puchony, Z.; Hlavay, J. Determination of Polycyclic Aromatic Hydrocarbons in Precipitation Using Solid-Phase Extraction and Column Liquid Chromatography. J. Chromatogr. A 1996, 725, 261–272. [Google Scholar] [CrossRef]
- Oros, D.R.; Simoneit, B.R.T. Identification and Emission Factors of Molecular Tracers in Organic Aerosols from Biomass Burning Part 1. Temperate Climate Conifers. Appl. Geochem. 2001, 16, 1513–1544. [Google Scholar] [CrossRef]
- Lee, S.; Baumann, K.; Schauer, J.J.; Sheesley, R.J.; Naeher, L.P.; Meinardi, S.; Blake, D.R.; Edgerton, E.S.; Russell, A.G.; Clements, M. Gaseous and Particulate Emissions from Prescribed Burning in Georgia. Environ. Sci. Technol. 2005, 39, 9049–9056. [Google Scholar] [CrossRef] [PubMed]
- Struppe, H.G.; Franke, F.; Hofmann, J.; Ondruschka, B. Coupling of Thermal Desorption in Modified Closeable Sampling Columns with Wide-Bore Capillary Gas Chromatography and Mass Spectrometric Detection. J. Chromatogr. A 1996, 750, 239–244. [Google Scholar] [CrossRef]
- Wang, Z.; Bi, X.; Sheng, G.; Fu, J. Characterization of Organic Compounds and Molecular Tracers from Biomass Burning Smoke in South China I: Broad-Leaf Trees and Shrubs. Atmos. Environ. 2009, 43, 3096–3102. [Google Scholar] [CrossRef]
- Mara dos Santos Barbosa, J.; Ré-Poppi, N.; Santiago-Silva, M. Polycyclic Aromatic Hydrocarbons from Wood Pyrolyis in Charcoal Production Furnaces. Environ. Res. 2006, 101, 304–311. [Google Scholar] [CrossRef]
- Vicente, A.; Alves, C.; Monteiro, C.; Nunes, T.; Mirante, F.; Cerqueira, M.; Calvo, A.; Pio, C. Organic Speciation of Aerosols from Wildfires in Central Portugal during Summer 2009. Atmos. Environ. 2012, 57, 186–196. [Google Scholar] [CrossRef]
Specie | C (%) | H (%) | O (%) | N and Minerals (%) |
---|---|---|---|---|
Pinus Pinaster-PP | 50.64 | 6.71 | 41.53 | 1.12 |
Arbutus Unedo-AU | 48.24 | 6.15 | 40.33 | 5.28 |
Cistus Monspeliensis-CM | 46.58 | 6.22 | 37.68 | 9.52 |
Pistacia Lentiscus-PL | 51.43 | 6.35 | 38.69 | 3.53 |
Rosmarinus Officinalis-RO | 50.73 | 6.64 | 40.81 | 1.82 |
Compound | Abbreviation | Number Rings | IARC a [25] | RPF US-EPA b [26] | TEF N&L c [27] | |
---|---|---|---|---|---|---|
LPAHs | Naphtalene | Nap | 2 | 2B | - | 0.001 |
Acenaphtylene | Acy | 3 | - | - | 0.001 | |
Acenaphtene | Ace | 3 | 3 | - | 0.001 | |
Fluorene | Flu | 3 | 3 | - | 0.001 | |
Phenanthrene | Phe | 3 | 3 | - | 0.001 | |
Anthracene | Ant | 3 | 3 | - | 0.01 | |
HPAHs | Fluoranthene | Flt | 4 | 3 | - | 0.001 |
Pyrene | Pyr | 4 | 3 | - | 0.001 | |
Benzo[a]anthracene | BaA | 4 | 2B | 0.1 | 0.1 | |
Chrysene | Chry | 4 | 2B | 0.001 | 0.01 | |
Benzo[b]fluoranthene | BbF | 5 | 2B | 0.1 | 0.1 | |
Benzo[k]fluoranthene | BkF | 5 | 2B | 0.01 | 0.1 | |
Benzo[a]pyrene | BaP | 5 | 1 | 1 | 1 | |
Dibenzo[a,h]anthracene | DahA | 5 | 2A | 1 | 5 | |
Benzo[ghi]perylene | BghiP | 6 | 3 | - | 0.01 | |
Indeno[1,2,3-cd]pyrene | IcdP | 6 | 2B | 0.1 | 0.1 |
Compound | LOD (µg/mL) | Calibration Curves | Correlation Coefficient R2 |
---|---|---|---|
Naphtalene | 0.056 | 58.920x + 6.5 × 103 | 0.9918 |
Acenaphtylene | 0.078 | 1648x − 1.6 × 101 | 0.9999 |
Acenaphtene | 0.090 | 46.566x + 4.6 × 102 | 0.9980 |
Fluorene | 0.149 | 565.075x + 5 × 106 | 0.9832 |
Phenanthrene | 0.087 | 247.308x + 5.5 × 101 | 0.9960 |
Anthracene | 0.101 | 378.993x + 9.8 × 102 | 0.9929 |
Fluoranthene | 0.078 | 104.600x + 3.5 × 102 | 0.9933 |
Pyrene | 0.083 | 402.918x + 1 × 106 | 0.9965 |
Benzo[a]anthracene | 0.075 | 331.175x + 1 × 106 | 0.9927 |
Chrysene | 0.041 | 477.291x + 2 × 106 | 0.9932 |
Benzo[b]fluoranthene | 0.063 | 168.046x + 9.5 × 102 | 0.9950 |
Benzo[k]fluoranthene | 0.056 | 918.249x + 4 × 106 | 0.9981 |
Benzo[a]pyrene | 0.045 | 403.282x + 1 × 106 | 0.9963 |
Dibenzo[a,h]anthracene | 0.073 | 259.042x + 8.6 × 102 | 0.9959 |
Benzo[ghi]perylene | 0.049 | 254.493x + 5.4 × 102 | 0.9948 |
Indeno[1,2,3-cd]pyrene | 0.088 | 59.974x − 9.3 × 101 | 0.9870 |
Biomass Fuel | RO | PP | AU | PL | CM | |
---|---|---|---|---|---|---|
Compound | ||||||
Naphtalene | 0.39 | 9.81 | 2.53 | 0.81 | 14.76 | |
Acenaphtylene | 3.93 | 62.34 | 20.07 | 6.39 | 41.89 | |
Acenaphtene | 1.39 | 15.60 | 4.81 | 5.26 | 19.52 | |
Fluorene | 0.47 | 3.49 | 1.04 | 0.36 | 1.91 | |
Phenanthrene | 3.11 | 70.74 | 4.19 | 1.88 | 7.32 | |
Anthracene | 0.75 | 15.72 | 0.30 | 0.22 | 1.14 | |
Fluoranthene | 0.96 | 18.35 | 1.65 | 0.98 | 1.29 | |
Pyrene | 0.89 | 16.73 | 1.33 | 0.76 | 1.18 | |
Benzo[a]anthracene | 0.15 | 33.22 | 2.40 | 2.03 | 17.07 | |
Chrysene | 0.90 | 16.01 | 2.57 | 0.13 | 6.83 | |
Benzo[b]fluoranthene | 0.33 | 6.27 | 0.11 | 0.07 | 3.46 | |
Benzo[k]fluoranthene | 0.20 | 2.90 | 0.04 | 0.08 | 1.70 | |
Benzo[a]pyrene | 0.40 | 8.51 | 0.03 | 0.07 | 5.19 | |
Dibenzo[a,h]anthracene | 0.17 | 0.93 | 0.00 | 0.06 | 1.17 | |
Benzo[ghi]perylene | 0.29 | 3.08 | 0.10 | 0.09 | 1.36 | |
Indeno[1,2,3-cd]pyrene | 0.00 | 2.04 | 0.00 | 0.02 | 1.21 | |
∑16 PAHs | 14.35 | 285.75 | 41.17 | 19.20 | 127.00 | |
∑LPAHs | 10.04 | 177.71 | 32.95 | 14.92 | 86.53 | |
∑HPAHs | 4.30 | 108.04 | 8.22 | 4.29 | 40.47 |
Biomass Fuel | RO | PP | AU | PL | CM | Average | |
---|---|---|---|---|---|---|---|
Diagnostic Ratio | |||||||
Flu/(Flu + Pyr) | 0.52 | 0.52 | 0.55 | 0.56 | 0.52 | 0.53 | |
Phe/(Phe + Ant) | 0.80 | 0.82 | 0.93 | 0.77 | 0.68 | 0.80 | |
IcdP/(IcdP + BghiP) | - | 0.40 | - | - | 0.43 | - | |
BFs/BghiP | 1.81 | 2.97 | 1.50 | 3.13 | 2.92 | 2.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leroy-Cancellieri, V.; Cancellieri, D.; Leoni, E. Characterization of PAHs Trapped in the Soot from the Combustion of Various Mediterranean Species. Atmosphere 2021, 12, 965. https://doi.org/10.3390/atmos12080965
Leroy-Cancellieri V, Cancellieri D, Leoni E. Characterization of PAHs Trapped in the Soot from the Combustion of Various Mediterranean Species. Atmosphere. 2021; 12(8):965. https://doi.org/10.3390/atmos12080965
Chicago/Turabian StyleLeroy-Cancellieri, Valérie, Dominique Cancellieri, and Eric Leoni. 2021. "Characterization of PAHs Trapped in the Soot from the Combustion of Various Mediterranean Species" Atmosphere 12, no. 8: 965. https://doi.org/10.3390/atmos12080965
APA StyleLeroy-Cancellieri, V., Cancellieri, D., & Leoni, E. (2021). Characterization of PAHs Trapped in the Soot from the Combustion of Various Mediterranean Species. Atmosphere, 12(8), 965. https://doi.org/10.3390/atmos12080965