Raindrop Size Spectrum in Deep Convective Regions of the Americas
Abstract
:1. Introduction
2. Data and Methods
2.1. Locations of Sites and Field Experiments
- The Southern Great Plains atmospheric observatory from the ARM Program (operating since 1992) has extensive instrumentation in the United States, and is located in north-central Oklahoma and within the southwest part of the Mississippi Basin. This basin is the second-largest in the Americas after the Amazon, where extreme flood events have historically occurred (e.g., during the spring–summer seasons of 1993 [71,72,73]). Houze et al. [74] studied spring storm events in central Oklahoma using a six-year dataset and showed that most of the rain came from the MCS structure of a leading line of convective cells trailed by stratiform rain, as compared to other types of MCSs or storms. Thus, the ARM acronym for this site is SGP (Southern Great Plains)
- The DOE ARM Green Ocean Amazon (GoAmazon) field campaign took place in Manaus, Brazil, in the central part of the Amazon Basin, from January 2014 through December 2015. The Amazon is the most broadly studied and largest basin in the Americas [72,75,76,77]. It is considered a crucial convective area in the tropics where moderately intense to weak convective systems cause significant rainfall throughout the austral summer [63,64,78,79,80,81]. The ARM Mobile Facility (AMF1) and Mobile Aerosol Observing System (MAOS) were at the “T3” site near Manacapuru, which is on the Amazon River and is located 80 km west of the Manaus airport [53,54,55,82]. The ARM acronym for this site is MAO, but this study denotes it as MAN (MANacapuru).
- In connection with the National Science Foundation (NSF)-led RELAMPAGO field campaign, the DOE ARM CACTI field campaign collected disdrometer observations in Villa Yacanto (see Figure 2). Both experiments took place in Córdoba, Argentina, near the SDC during the warm season of 2018–2019. Headwaters in the SDC form the Carcarañá River Basin, which flows into the Paraná River, a major river in the La Plata Basin, the third-largest basin in the Americas. These rivers are vital for socioeconomic activities and are highly influenced by frequent and intense, organized convection and the consequent severe weather impacts, including costly flooding disasters [67,83,84,85,86,87]. Approximately 20 km to the east of the highest terrain of the SDC and 90 km southwest from Córdoba’s capital city was located the ARM Mobile Facility-1 (AMF1) site [60,88,89]. The ARM acronym for this site is COR (CORdoba).
2.2. Disdrometer Instrumentation and Data Analysis Methods
3. Results
3.1. DSD Parameter Distributions
3.2. Joint Distributions of DSD Parameters
3.3. Lpm Observations during CACTI
4. Discussion
5. Summary and Conclusions
- The comparison of the DSDs in terms of pdfs showed that the rain-rate distributions were similar between the midlatitude COR and SGP sites and were less frequent than heavy rains at the tropical MAN site. At the COR site, more frequent precipitation was found, with a smaller median mass diameter and a broader range of normalized droplet concentration.
- The two-dimensional histograms of the normalized droplet concentration revealed that COR exhibited a more considerable variability in the values for both the and rainfall modes in comparison to SGP and MAN, and it had a higher frequency of high concentrations. These high concentrations of particle size distributions extended into the analysis of the - parameter space, where the high concentration numbers observed were associated with small values. However, the co-variability of and appeared to be quite similar for the sites examined in the midlatitudes (COR and SGP), contrary to the co-variability at MAN, which appeared to be extended towards higher values of and , which is a characteristic of tropical rainfall that was observed in previous studies and that is possibly related to enhanced collision–coalescence growth processes there [38,40,116,117].
- In examining cases with high and low values, these appeared to be associated with drizzle and light rain originating from shallow clouds. These warm clouds may be associated with periods of orographic upslope flow, but are not due to seeder–feeder processes, as found in prior studies of light precipitation in complex terrain [62]. Additionally, while some studies have noted that warm clouds may occupy this portion of the – parameter space [62], which resembles both the weak convection and vapor deposition features from Dolan et al. [38] in the – phase space (Section 4), this region occupies the stratiform region according to disdrometer-based convective–stratiform separation techniques; it is recommended to use these with caution in orographically influenced environments, such as that of the COR site.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ARM | Atmospheric Radiation Measurement |
AMF1 | ARM Mobile Facility 1 |
BECAL | Program of Scholarships from the Government of Paraguay “Becas Carlos Antonio López” |
CACTI | Cloud, Aerosol, and Complex Terrain Interactions |
COR | Córdoba |
DOAJ | Directory of open-access journals |
DOE | Department of Energy |
DSD | Drop size distribution |
2DVD | 2D-Video Disdrometer |
GoAmazon | Green Ocean Amazon 2014/15 |
KAZR | Ka ARM Zenith Radar |
MAN | Manacapuru |
MAOS | Mobile Aerosol Observing System |
MDPI | Multidisciplinary Digital Publishing Institute |
NSF | National Science Foundation |
PARS | Parsivel2 disdrometer |
PARS/2DVD | Parsivel disdrometer and/or 2D-Video Disdrometer |
Prov | Province |
PSD | Particle Size Distribution |
RELAMPAGO | Remote sensing of Electrification, Lightning, And mesoscale/microscale Processes with Adaptive Ground Observations 2018/2019 |
SDC | Sierras de Córdoba |
SGP | Southern Great Plains |
TRMM | Tropical Rainfall Measuring Mission |
Appendix A. DSD Parameter Relationships Used in the Data Processing
Appendix A.1. Lhermitte Terminal Velocity: vLhermitte
Appendix A.2. Mass Spectrum: m(D)
Appendix A.3. Mass-Weighted Mean Diameter: Dm
Appendix A.4. Mass Standard Deviation: σm
Appendix A.5. Normalized Intercept Parameter: Nw
Appendix A.6. Liquid Water Content: LWC
Appendix A.7. Median Volume Diameter: D0
References
- Baker, M. Cloud microphysics and climate. Science 1997, 276, 1072–1078. [Google Scholar] [CrossRef]
- Jakob, C.; Miller, M. Parameterization of physical processes: Clouds. In Encyclopedia of Atmospheric Sciences; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1692–1698. [Google Scholar]
- Paukert, M.; Fan, J.; Rasch, P.J.; Morrison, H.; Milbrandt, J.; Shpund, J.; Khain, A. Three-moment representation of rain in a bulk microphysics model. J. Adv. Model. Earth Syst. 2019, 11, 257–277. [Google Scholar] [CrossRef] [Green Version]
- Lamb, D.; Verlinde, J. Physics and Chemistry of Clouds; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Lloyd, G.; Dearden, C.; Choularton, T.; Crosier, J.; Bower, K. Observations of the origin and distribution of ice in cold, warm, and occluded frontal systems during the DIAMET campaign. Mon. Weather Rev. 2014, 142, 4230–4255. [Google Scholar] [CrossRef]
- Sui, C.H.; Tsay, C.T.; Li, X. Convective—Stratiform rainfall separation by cloud content. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Williams, E.R. Meteorological aspects of thunderstorms. Handb. Atmos. Electrodyn. 1995, 1, 27–60. [Google Scholar]
- Emanuel, K.A. Atmospheric Convection; Oxford University Press on Demand: Oxford, UK, 1994. [Google Scholar]
- Jakob, C. An improved strategy for the evaluation of cloud parameterizations in GCMs. Bull. Am. Meteorol. Soc. 2003, 84, 1387–1402. [Google Scholar] [CrossRef]
- Chandrasekar, V.; Bringi, V. Simulation of radar reflectivity and surface measurements of rainfall. J. Atmos. Ocean. Technol. 1987, 4, 464–478. [Google Scholar] [CrossRef] [Green Version]
- Atlas, D.; Ulbrich, C.W. Early foundations of the measurement of rainfall by radar. In Radar in Meteorology; Springer: New York, NY, USA, 1990; pp. 86–97. [Google Scholar]
- Joss, J.; Waldvogel, A.; Collier, C. Precipitation measurement and hydrology. In Radar in Meteorology; Springer: New York, NY, USA, 1990; pp. 577–606. [Google Scholar]
- Uijlenhoet, R.; Pomeroy, J. Raindrop size distributions and radar reflectivity-rain rate relationships for radar hydrology. Hydrol. Earth Syst. Sci. 2001, 5, 615–627. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D.; Ulbrich, C.W. Cloud microphysical properties, processes, and rainfall estimation opportunities. In Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas; Springer: New York, NY, USA, 2003; pp. 237–258. [Google Scholar]
- Bringi, V.; Chandrasekar, V. Polarimetric Doppler Weather Radar: Principles and Applications; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Krajewski, W.; Smith, J.A. Radar hydrology: Rainfall estimation. Adv. Water Resour. 2002, 25, 1387–1394. [Google Scholar] [CrossRef]
- Berne, A.; Krajewski, W.F. Radar for hydrology: Unfulfilled promise or unrecognized potential? Adv. Water Resour. 2013, 51, 357–366. [Google Scholar] [CrossRef]
- Rauber, R.M.; Nesbitt, S.L. Radar Meteorology: A First Course; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Heinemann, G.; Reudenbach, C. Precipitation dynamics of convective clouds. In Dynamics of Multiscale Earth Systems; Springer: New York, NY, USA, 2003; pp. 186–198. [Google Scholar]
- Tao, W.K.; Lang, S.; Zeng, X.; Li, X.; Matsui, T.; Mohr, K.; Posselt, D.; Chern, J.; Peters-Lidard, C.; Norris, P.M.; et al. The Goddard Cumulus Ensemble model (GCE): Improvements and applications for studying precipitation processes. Atmos. Res. 2014, 143, 392–424. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Stephens, G.; Bodas-Salcedo, A.; Wang, M.; Golaz, J.C.; Yokohata, T.; Koshiro, T. Evaluation of the warm rain formation process in global models with satellite observations. J. Atmos. Sci. 2015, 72, 3996–4014. [Google Scholar] [CrossRef]
- Tao, W.K.; Chern, J.; Iguchi, T.; Lang, S.; Lee, M.I.; Li, X.; Loftus, A.; Matsui, T.; Mohr, K.; Nicholls, S.; et al. Microphysics in Goddard Multi-scale Modeling Systems: A Review. In Current Trends in the Representation of Physical Processes in Weather and Climate Models; Springer: Singapore, 2019; pp. 253–316. [Google Scholar] [CrossRef]
- Rosewell, C.J. Rainfall kinetic energy in eastern Australia. J. Clim. Appl. Meteorol. 1986, 25, 1695–1701. [Google Scholar] [CrossRef] [Green Version]
- Caracciolo, C.; Napoli, M.; Porcù, F.; Prodi, F.; Dietrich, S.; Zanchi, C.; Orlandini, S. Raindrop Size Distribution and Soil Erosion. J. Irrig. Drain. Eng. 2012, 138, 461–469. [Google Scholar] [CrossRef]
- Williams, C.R.; Bringi, V.; Carey, L.D.; Chandrasekar, V.; Gatlin, P.N.; Haddad, Z.S.; Meneghini, R.; Joseph Munchak, S.; Nesbitt, S.W.; Petersen, W.A.; et al. Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters. J. Appl. Meteorol. Climatol. 2014, 53, 1282–1296. [Google Scholar] [CrossRef]
- Gong, X.; Zhu, D.; Zhang, L.; Zhang, Y.; Ge, M.; Yang, W. Drop size distribution of fixed spray-plate sprinklers with two-dimensional video disdrometer. Nongye Jixie Xuebao Trans. Chin. Soc. Agric. Mach. 2014, 45, 128–148. [Google Scholar]
- Vaughan, G.; Methven, J.; Anderson, D.; Antonescu, B.; Baker, L.; Baker, T.; Ballard, S.; Bower, K.; Brown, P.; Chagnon, J.; et al. Cloud banding and winds in intense European cyclones: Results from the DIAMET project. Bull. Am. Meteorol. Soc. 2015, 96, 249–265. [Google Scholar] [CrossRef]
- Duan, Q.; Pappenberger, F.; Wood, A.; Cloke, H.L.; Schaake, J. Handbook of Hydrometeorological Ensemble Forecasting; Springer: New York, NY, USA, 2019. [Google Scholar]
- Marshall, J.S.; Palmer, W.M.K. The distribution of raindrops with size. J. Meteorol. 1948, 5, 165–166. [Google Scholar] [CrossRef]
- Ulbrich, C.W. Natural variations in the analytical form of the raindrop size distribution. J. Clim. Appl. Meteorol. 1983, 22, 1764–1775. [Google Scholar] [CrossRef] [Green Version]
- Willis, P.T. Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci. 1984, 41, 1648–1661. [Google Scholar] [CrossRef] [Green Version]
- Testud, J.; Oury, S.; Black, R.A.; Amayenc, P.; Dou, X. The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteorol. 2001, 40, 1118–1140. [Google Scholar] [CrossRef]
- Seliga, T.A.; Bringi, V. Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteorol. 1976, 15, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Ulbrich, C.W.; Atlas, D. The rain parameter diagram: Methods and applications. J. Geophys. Res. Ocean. 1978, 83, 1319–1325. [Google Scholar] [CrossRef]
- Wilson, J.W.; Brandes, E.A. Radar measurement of rainfall—A summary. Bull. Am. Meteorol. Soc. 1979, 60, 1048–1060. [Google Scholar] [CrossRef] [Green Version]
- Bringi, V.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W.; Schoenhuber, M. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci. 2003, 60, 354–365. [Google Scholar] [CrossRef]
- Deo, A.; Walsh, K.J. Contrasting tropical cyclone and non-tropical cyclone related rainfall drop size distribution at Darwin, Australia. Atmos. Res. 2016, 181, 81–94. [Google Scholar] [CrossRef]
- Dolan, B.; Fuchs, B.; Rutledge, S.; Barnes, E.; Thompson, E. Primary modes of global drop size distributions. J. Atmos. Sci. 2018, 75, 1453–1476. [Google Scholar] [CrossRef]
- Bringi, V.; Williams, C.; Thurai, M.; May, P. Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J. Atmos. Ocean. Technol. 2009, 26, 2107–2122. [Google Scholar] [CrossRef]
- Thompson, E.J.; Rutledge, S.A.; Dolan, B.; Thurai, M. Drop size distributions and radar observations of convective and stratiform rain over the equatorial Indian and west Pacific Oceans. J. Atmos. Sci. 2015, 72, 4091–4125. [Google Scholar] [CrossRef]
- Thurai, M.; Bringi, V.; May, P. CPOL radar-derived drop size distribution statistics of stratiform and convective rain for two regimes in Darwin, Australia. J. Atmos. Ocean. Technol. 2010, 27, 932–942. [Google Scholar] [CrossRef]
- Penide, G.; Kumar, V.V.; Protat, A.; May, P.T. Statistics of drop size distribution parameters and rain rates for stratiform and convective precipitation during the north Australian wet season. Mon. Weather Rev. 2013, 141, 3222–3237. [Google Scholar] [CrossRef]
- Gatlin, P.N.; Thurai, M.; Bringi, V.; Petersen, W.; Wolff, D.; Tokay, A.; Carey, L.; Wingo, M. Searching for large raindrops: A global summary of two-dimensional video disdrometer observations. J. Appl. Meteorol. Climatol. 2015, 54, 1069–1089. [Google Scholar] [CrossRef]
- Thurai, M.; Gatlin, P.; Bringi, V.; Petersen, W.; Kennedy, P.; Notaroš, B.; Carey, L. Toward completing the raindrop size spectrum: Case studies involving 2D-video disdrometer, droplet spectrometer, and polarimetric radar measurements. J. Appl. Meteorol. Climatol. 2017, 56, 877–896. [Google Scholar] [CrossRef]
- Bumke, K.; Seltmann, J. Analysis of measured drop size spectra over land and sea. ISRN Meteorol. 2012, 2012, 296575. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Wang, J.; Gong, D. Raindrop size distribution in a midlatitude continental squall line measured by Thies optical disdrometers over East China. J. Appl. Meteorol. Climatol. 2016, 55, 621–634. [Google Scholar] [CrossRef]
- Chase, R.; Nesbitt, S.; McFarquhar, G. Evaluation of the microphysical assumptions within GPM-DPR using ground-based observations of rain and snow. Atmosphere 2020, 11, 619. [Google Scholar] [CrossRef]
- Seidel, J.; Trachte, K.; Orellana-Alvear, J.; Figueroa, R.; Célleri, R.; Bendix, J.; Fernandez, C.; Huggel, C. Precipitation characteristics at two locations in the tropical Andes by means of vertically pointing micro-rain radar observations. Remote Sens. 2019, 11, 2985. [Google Scholar] [CrossRef] [Green Version]
- Guyot, A.; Pudashine, J.; Protat, A.; Uijlenhoet, R.; Pauwels, V.; Seed, A.; Walker, J.P. Effect of disdrometer type on rain drop size distribution characterisation: A new dataset for south-eastern Australia. Hydrol. Earth Syst. Sci. 2019, 23, 4737–4761. [Google Scholar] [CrossRef] [Green Version]
- Tokay, A.; Kruger, A.; Krajewski, W.F.; Kucera, P.A.; Pereira Filho, A.J. Measurements of drop size distribution in the southwestern Amazon basin. J. Geophys. Res. Atmos. 2002, 107, LBA-19. [Google Scholar] [CrossRef]
- Martins, R.C.; Machado, L.A.; Costa, A.A. Characterization of the microphysics of precipitation over Amazon region using radar and disdrometer data. Atmos. Res. 2010, 96, 388–394. [Google Scholar] [CrossRef]
- Tokay, A.; Petersen, W.A.; Gatlin, P.; Wingo, M. Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Ocean. Technol. 2013, 30, 1672–1690. [Google Scholar] [CrossRef]
- Giangrande, S.E.; Toto, T.; Jensen, M.P.; Bartholomew, M.J.; Feng, Z.; Protat, A.; Williams, C.R.; Schumacher, C.; Machado, L. Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during GoAmazon2014/5. J. Geophys. Res. Atmos. 2016, 121, 12–891. [Google Scholar] [CrossRef]
- Martin, S.; Mei, F.; Alexander, L.; Artaxo, P.; Barbosa, H.; Bartholomew, M.J.; Biscaro, T.; Buseck, P.; Chand, D.; Comstock, J.; et al. Campaign Datasets for Observations and Modeling of the Green Ocean Amazon (GOAMAZON). 2016. Available online: https://www.osti.gov/dataexplorer/biblio/dataset/1346559 (accessed on 29 July 2021).
- Wang, D.; Giangrande, S.E.; Bartholomew, M.J.; Hardin, J.; Feng, Z.; Thalman, R.; Machado, L.A. The Green Ocean: Precipitation insights from the GoAmazon2014/5 experiment. Atmos. Chem. Phys. Discuss. (Online) 2018, 18. [Google Scholar] [CrossRef] [Green Version]
- Varble, A.C.; Nesbitt, S.W.; Salio, P.; Hardin, J.C.; Bharadwaj, N.; Borque, P.; DeMott, P.J.; Feng, Z.; Hill, T.C.; Marquis, J.N.; et al. Utilizing a Storm-Generating Hotspot to Study Convective Cloud Transitions: The CACTI Experiment. Bull. Am. Meteorol. Soc. 2021, 1–67. [Google Scholar] [CrossRef]
- Nesbitt, S.W.; Salio, P.V.; Ávila, E.; Bitzer, P.; Carey, L.; Chandrasekar, V.; Deierling, W.; Dominguez, F.; Dillon, M.E.; Garcia, C.M.; et al. A storm safari in Subtropical South America: Proyecto RELAMPAGO. Bull. Am. Meteorol. Soc. 2021, 1–64. [Google Scholar] [CrossRef]
- Mulholland, J.P.; Nesbitt, S.W.; Trapp, R.J.; Rasmussen, K.L.; Salio, P.V. Convective storm life cycle and environments near the Sierras de Córdoba, Argentina. Mon. Weather Rev. 2018, 146, 2541–2557. [Google Scholar] [CrossRef]
- Mulholland, J.P.; Nesbitt, S.W.; Trapp, R.J. A Case Study of Terrain Influences on Upscale Convective Growth of a Supercell. Mon. Weather Rev. 2019, 147, 4305–4324. [Google Scholar] [CrossRef]
- Varble, A.; Nesbitt, S.; Salio, P.; Avila, E.; Borque, P.; DeMott, P.; McFarquhar, G.; van den Heever, S.; Zipser, E.; Gochis, D.; et al. Cloud, Aerosol, and Complex Terrain Interactions (CACTI) Field Campaign Report; Technical Report; ARM Data Center, Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2019. [Google Scholar]
- Cancelada, M.; Salio, P.; Vila, D.; Nesbitt, S.W.; Vidal, L. Backward Adaptive Brightness Temperature Threshold Technique (BAB3T): A methodology to determine extreme convective initiation regions using satellite infrared imagery. Remote. Sens. 2020, 12, 337. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.M.; Barros, A.P. An Investigation of Warm Rainfall Microphysics in the Southern Appalachians: Orographic Enhancement via Low-Level Seeder–Feeder Interactions. J. Atmos. Sci. 2014, 71, 1783–1805. [Google Scholar] [CrossRef]
- Zipser, E.J.; Cecil, D.J.; Liu, C.; Nesbitt, S.W.; Yorty, D.P. Where are the most intense thunderstorms on Earth? Bull. Am. Meteorol. Soc. 2006, 87, 1057–1072. [Google Scholar] [CrossRef] [Green Version]
- Nesbitt, S.W.; Cifelli, R.; Rutledge, S.A. Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Weather Rev. 2006, 134, 2702–2721. [Google Scholar] [CrossRef] [Green Version]
- Romatschke, U.; Houze, R.A., Jr. Extreme summer convection in South America. J. Clim. 2010, 23, 3761–3791. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Houze, R.A., Jr. Orogenic convection in subtropical South America as seen by the TRMM satellite. Mon. Weather Rev. 2011, 139, 2399–2420. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Zuluaga, M.D.; Houze, R.A., Jr. Severe convection and lightning in subtropical South America. Geophys. Res. Lett. 2014, 41, 7359–7366. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Chaplin, M.; Zuluaga, M.; Houze, R., Jr. Contribution of extreme convective storms to rainfall in South America. J. Hydrometeorol. 2016, 17, 353–367. [Google Scholar] [CrossRef]
- Rutledge, S.A.; Houze, R.A., Jr.; Biggerstaff, M.I.; Matejka, T. The Oklahoma–Kansas Mesoscale Convective System of 10–11 June 1985: Precipitation Structure and Single-Doppler Radar Analysis. Mon. Weather Rev. 1988, 116, 1409–1430. [Google Scholar] [CrossRef] [Green Version]
- Casanovas, C.; Salio, P.; Galligani, V.; Dolan, B.; Nesbitt, S.W. Drop Size Distribution Variability in Central Argentina during RELAMPAGO-CACTI. Remote Sens. 2021, 13, 2026. [Google Scholar] [CrossRef]
- Karl, T.R.; Knight, R.W. Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Am. Meteorol. Soc. 1998, 79, 231–242. [Google Scholar] [CrossRef]
- Wolf, A.T.; Natharius, J.A.; Danielson, J.J.; Ward, B.S.; Pender, J.K. International river basins of the world. Int. J. Water Resour. Dev. 1999, 15, 387–427. [Google Scholar] [CrossRef]
- Barraqué, B. The common property issue in flood control through land use in F rance. J. Flood Risk Manag. 2017, 10, 182–194. [Google Scholar] [CrossRef]
- Houze, R.A., Jr.; Smull, B.F.; Dodge, P. Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Weather Rev. 1990, 118, 613–654. [Google Scholar] [CrossRef]
- Nobre, C.A. The Amazon and Climate. 1984. Available online: https://ntrs.nasa.gov/api/citations/19840014047/downloads/19840014047.pdf (accessed on 29 July 2021).
- Gat, J.R.; Matsui, E. Atmospheric water balance in the Amazon Basin: An isotopic evapotranspiration model. J. Geophys. Res. Atmos. 1991, 96, 13179–13188. [Google Scholar] [CrossRef]
- Valverde, M.C.; Marengo, J.A. Extreme rainfall indices in the hydrographic basins of Brazil. Open J. Mod. Hydrol. 2014, 2014, 41739. [Google Scholar] [CrossRef] [Green Version]
- Nesbitt, S.W.; Zipser, E.J.; Cecil, D.J. A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Clim. 2000, 13, 4087–4106. [Google Scholar] [CrossRef] [Green Version]
- Nunes, A.M.; Silva Dias, M.A.; Anselmo, E.M.; Morales, C.A. Severe convection features in the Amazon Basin: A TRMM-based 15-year evaluation. Front. Earth Sci. 2016, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A.; Fisch, G.F.; Alves, L.M.; Sousa, N.V.; Fu, R.; Zhuang, Y. Meteorological context of the onset and end of the rainy season in Central Amazonia during the GoAmazon2014/5. Atmos. Chem. Phys. 2017, 17, 7671. [Google Scholar] [CrossRef] [Green Version]
- Braga, R.C.; Rosenfeld, D.; Weigel, R.; Jurkat, T.; Andreae, M.O.; Wendisch, M.; Pöschl, U.; Voigt, C.; Mahnke, C.; Borrmann, S.; et al. Aerosol concentrations determine the height of warm rain and ice initiation in convective clouds over the Amazon basin. Atmos. Chem. Phys. (ACP) 2017, 17, 14433–14456. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.; Artaxo, P.; Machado, L.; Manzi, A.; Souza, R.; Schumacher, C.; Wang, J.; Andreae, M.; Barbosa, H.; Fan, J.; et al. Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmos. Chem. Phys. 2016, 16, 4785–4797. [Google Scholar] [CrossRef] [Green Version]
- Lozada, J.M.D.; García, C.M.; Herrero, H.; Barchiesi, G.M.; Romagnoli, M.; Portapila, M.; Lopez, F.; Castelló, E.; Cossavella, A.; Brarda, J.P. Cuantificación del escurrimiento superficial de la cuenca del Río Carcarañá. Rev. Fac. Cienc. Exactas Físicas Nat. 2015, 2, 59–72. [Google Scholar]
- LeFevre, K. Stormy Vineyards. p. 52. Available online: https://earthdata.nasa.gov/learn/sensing-our-planet/stormy-vineyards (accessed on 29 July 2021).
- Stenta, H.; Riccardi, G.; Basile, P.A. Modelación distribuida del Escurrimiento Superficial en la Cuenca del río Tercero-Carcaraña. Available online: https://rephip.unr.edu.ar/handle/2133/7172 (accessed on 29 July 2021).
- Bazán, R.; García, M.; Lozada, J.M.D.; Chalimond, M.L.; Herrero, H.; Bonansea, M.; Bonfanti, E.; Busso, F.; Cossavella, A. Estudio multidisciplinario e interinstitucional de dos fuentes principales de agua potable para la Provincia de Córdoba. Rev. Fac. Cienc. Exactas Físicas Nat. 2018, 5, 57. [Google Scholar]
- Pal, S.; Dominguez, F.; Dillon, M.E.; Alvarez, J.; Garcia, C.M.; Nesbitt, S.W.; Gochis, D. Hydrometeorological Observations and Modeling of an Extreme Rainfall Event using WRF and WRF-Hydro during the RELAMPAGO Field Campaign in Argentina. J. Hydrometeorol. 2020, 22, 331–351. [Google Scholar] [CrossRef]
- Varble, A.; Hardin, J.C.; Bharadwaj, N.; Feng, Z.; Marquis, J.; Nesbitt, S.W.; Zhang, Z. Sensitivity of deep convective upscale growth to precipitation properties and ambient environmental conditions during the CACTI field campaign. AGUFM 2019, 2019, A53U-3042. [Google Scholar]
- Hardin, J.; Hunzinger, A.; Schuman, E.; Matthews, A.; Bharadwaj, N.; Varble, A.; Johnson, K.; Giangrande, S. CACTI Radar b1 Processing: Corrections, Calibrations, and Processing Report. 2020. Available online: https://arm.gov/publications/brochures/doe-sc-arm-tr-244.pdf (accessed on 29 July 2021).
- Marzuki, M.; Randeu, W.L.; Schönhuber, M.; Bringi, V.N.; Kozu, T.; Shimomai, T. Raindrop size distribution parameters of distrometer data with different bin sizes. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3075–3080. [Google Scholar] [CrossRef]
- Löffler-Mang, M.; Joss, J. An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Ocean. Technol. 2000, 17, 130–139. [Google Scholar] [CrossRef]
- Bartholomew, M. Parsivel2 Handbook. 2014. Available online: https://www.arm.gov/publications/tech_reports/handbooks/ldis_handbook.pdf (accessed on 29 July 2021).
- Tokay, A.; Wolff, D.B.; Petersen, W.A. Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2. J. Atmos. Ocean. Technol. 2014, 31, 1276–1288. [Google Scholar] [CrossRef]
- Giangrande, S.E.; Wang, D.; Bartholomew, M.J.; Jensen, M.P.; Mechem, D.B.; Hardin, J.C.; Wood, R. Midlatitude oceanic cloud and precipitation properties as sampled by the ARM Eastern North Atlantic Observatory. J. Geophys. Res. Atmos. 2019, 124, 4741–4760. [Google Scholar] [CrossRef]
- Schumacher, C. Observations and Modeling of the Green Ocean Amazon 2014/15: Parsivel2 Field Campaign Report. 2016. Available online: https://www.arm.gov/publications/programdocs/doe-sc-arm-16-042.pdf (accessed on 29 July 2021).
- Schönhuber, M.; Günter, L.; Randeu, W. The 2D-Video-Disdrometer; Springer Science & Business Media: Heidelberg, Germany, 2008; pp. 4–22. [Google Scholar]
- Thurai, M.; Petersen, W.; Tokay, A.; Schultz, C.; Gatlin, P. Drop size distribution comparisons between Parsivel and 2-D video disdrometers. Adv. Geosci. 2011, 30, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Bartholomew, M. Two-Dimensional Video Disdrometer (VDIS) Instrument Handbook. 2017. Available online: https://www.arm.gov/publications/tech_reports/handbooks/vdis_handbook.pdf (accessed on 29 July 2021).
- Hardin, J.; Giangrande, S.; Zhou, A. Laser Disdrometer Quantities (LDQUANTS) and Video Disdrometer Quantities (VDISQUANTS) Value-Added Products Report. 2020. Available online: https://www.arm.gov/capabilities/instruments/vdis (accessed on 29 July 2021).
- Lin, L.; Bao, X.; Zhang, S.; Zhao, B.; Xia, W. Correction to raindrop size distributions measured by PARSIVEL disdrometers in strong winds. Atmos. Res. 2021, 260, 105728. [Google Scholar] [CrossRef]
- Lhermitte, R.M. Centimeter & Millimeter Wavelength Radars in Meteorology. 2002. Available online: https://books.google.com.hk/books/about/Centimeter_Millimeter_Wavelength_Radars.html?id=UzpPAAAACAAJ&redir_esc=y (accessed on 29 July 2021).
- Hardin, J. PyDisdrometer Version v1.0. 2014. Available online: https://zenodo.org/record/9991#.YQJLeEARXIU (accessed on 29 July 2021).
- Caracciolo, C.; Porcu, F.; Prodi, F. Precipitation classification at mid-latitudes in terms of drop size distribution parameters. Adv. Geosci. 2008, 16, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Gultepe, I.; Rabin, R.; Ware, R.; Pavolonis, M. Light snow precipitation and effects on weather and climate. In Advances in Geophysics; Elsevier: Amsterdam, The Netherlands, 2016; Volume 57, pp. 147–210. [Google Scholar]
- Williams, C.R. Documenting DSD Parameter Relationships. 2011. Available online: https://www.dsd.gov.hk/EN/Files/Technical_Manual/technical_manuals/Stormwater_Drainage_Manual_Eurocodes.pdf (accessed on 29 July 2021).
- Zhang, G. Comments on “Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters”. J. Appl. Meteorol. Climatol. 2015, 54, 1970–1976. [Google Scholar] [CrossRef]
- Tacchino, A.; Ingaramo, R.; Rodriguez, A.; Saffe, J.; Martina, A.; Petroli, G.; Capone, E.; Montamat, I.; Zigaran, G.; Furbato, C.; et al. Comparative Analysis of Hydrometeorological Events in the Province of Córdoba, Argentina, Monitored by Remote Sensors (Aws, Meteorological Radar and Satellite). Available online: https://program.eventact.com/Agenda/Lecture/194111?code=4154961 (accessed on 29 July 2021).
- Lindenmaier, I.; Bharadwaj, N.; Johnson, K.; Nelson, D.; Isom, B.; Hardin, J.; Matthews, A.; Wendler, T.; Castro, V. Ka ARM Zenith Radar (KAZRCFRMD). Atmospheric Radiation Measurement (ARM) User Facility. Available online: https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-203.pdf (accessed on 29 July 2021).
- Rémillard, J.; Kollias, P.; Luke, E.; Wood, R. Marine boundary layer cloud observations in the Azores. J. Clim. 2012, 25, 7381–7398. [Google Scholar] [CrossRef] [Green Version]
- Bartholomew, M. Rain Gauges Handbook; Technical Report; DOE ARM Climate Research Facility: Washington, DC, USA, 2016. [Google Scholar]
- Bartholomew, M.J. Weighing Bucket Rain Gauge Instrument Handbook; Technical Report; ARM Data Center, Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2019. [Google Scholar]
- Liu, X.; Gao, T.; Liu, L. A comparison of rainfall measurements from multiple instruments. Atmos. Meas. Tech. 2013, 6, 1585–1595. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Bartholomew, M. Rain Gauge (RAINTB). Available online: https://www.arm.gov/capabilities/instruments/rain (accessed on 29 July 2021).
- Dolan, B.; Rutledge, S.A.; Fuchs, B.R. GPM Ground Validation DSD Variability as Revealed from Empirical Orthogonal Function Analysis. Available online: https://ui.adsabs.harvard.edu/abs/2016AGUFM.H13R..08D/abstract (accessed on 29 July 2021).
- Bringi, V.; Thurai, M.; Nakagawa, K.; Huang, G.; Kobayashi, T.; Adachi, A.; Hanado, H.; Sekizawa, S. Rainfall estimation from C-band polarimetric radar in Okinawa, Japan: Comparisons with 2D-video disdrometer and 400 MHz wind profiler. J. Meteorol. Soc. Jpn. Ser. II 2006, 84, 705–724. [Google Scholar] [CrossRef] [Green Version]
- Tokay, A.; Short, D.A. Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteorol. 1996, 35, 355–371. [Google Scholar] [CrossRef] [Green Version]
- Yuter, S.E.; Houze, R.A., Jr. Measurements of raindrop size distributions over the Pacific warm pool and implications for Z–R relations. J. Appl. Meteorol. 1997, 36, 847–867. [Google Scholar] [CrossRef] [Green Version]
- Williams, E.; Rosenfeld, D.; Madden, N.; Gerlach, J.; Gears, N.; Atkinson, L.; Dunnemann, N.; Frostrom, G.; Antonio, M.; Biazon, B.; et al. Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res. Atmos. 2002, 107, LBA 50-1–LBA 50-19. [Google Scholar] [CrossRef] [Green Version]
- Nesbitt, S.W.; Zipser, E.J. The Diurnal Cycle of Rainfall and Convective Intensity according to Three Years of TRMM Measurements. J. Clim. 2003, 16, 1456–1475. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, K.L.; Choi, S.L.; Zuluaga, M.D.; Houze, R.A. TRMM precipitation bias in extreme storms in South America. Geophys. Res. Lett. 2013, 40, 3457–3461. [Google Scholar] [CrossRef]
- Gultepe, I.; Agelin-Chaab, M.; Komar, J.; Elfstrom, G.; Boudala, F.; Zhou, B. A meteorological supersite for aviation and cold weather applications. Pure Appl. Geophys. 2019, 176, 1977–2015. [Google Scholar] [CrossRef]
- Newsom, R.; Krishnamurthy, R. Doppler Lidar (DLPPI). Atmospheric Radiation Measurement (ARM) User Facility. Available online: https://www.osti.gov/biblio/1025186 (accessed on 29 July 2021).
- Keeler, E.; Kyrouac, J. Balloon-Borne Sounding System (SONDEWNPN). Atmospheric Radiation Measurement (ARM) User Facility. Available online: https://www.osti.gov/dataexplorer/biblio/dataset/1021460 (accessed on 29 July 2021).
- Collis, S.; Giangrande, S. Corrected Moments in Antenna Coordinates, Version 2 (CSAPR2CMACPPI). Atmospheric Radiation Measurement (ARM) User Facility. Available online: https://www.osti.gov/dataexplorer/biblio/dataset/1668872 (accessed on 29 July 2021).
- Lindenmaier, I.; Bharadwaj, N.; Johnson, K.; Nelson, D.; Isom, B.; Hardin, J.; Matthews, A.; Wendler, T.; Castro, V. Ka-Band Scanning ARM Cloud Radar (KASACRCFRPPIV). Atmospheric Radiation Measurement (ARM) User Facility. Available online: https://www.osti.gov/dataexplorer/biblio/dataset/1482699 (accessed on 29 July 2021).
- Lhermitte, R.M. Observation of rain at vertical incidence with a 94 GHz Doppler radar: An insight on Mie scattering. Geophys. Res. Lett. 1988, 15, 1125–1128. [Google Scholar] [CrossRef]
Site | Campaign | City, State/Prov, Country | Latitude, Longitude, Altitude | Observation Period [Day Month Year] | Source [/ ] | Rain Mode [] | No. Rainy [minutes] | [dBR] | [mm] | [] |
---|---|---|---|---|---|---|---|---|---|---|
, , | 36.666 −97.624 311.50 m | 15 April–30 September 2017 15 April–30 September 2018 15 April–11 September 2019 | 8414 | −5.50 | 0.58 0.80 | 3.70 4.45 | ||||
12,011 | 2.90 | 1.20 | 3.30 | |||||||
36.605 −97.485 318.0 m | 15 April–30 September 2017 15 April–30 September 2018 15 April–11 September 2019 | 16,409 | −5.52 | 0.52 0.91 | 3.40 4.55 | |||||
10,761 | 3.00 | 1.40 | 3.20 | |||||||
, , | −3.213−60.698 50.0 m | 15 October 2014–30 April 2015 15 October–01 December 2015 | 16,037 | −4.85 | 0.68 0.83 | 3.55 | ||||
9821 | 2.10 | 1.15 | 3.80 | |||||||
- | , , | −32.126 −64.728 1141.0 m | 15 October 2018–30 April 2019 | 20,517 | −5.59 | 0.45 | 4.15 4.80 | |||
10,833 | 1.25 | 0.63 | 4.0 5.0 | |||||||
−32.126 −64.728 1141.0 m | 15 October 2018–30 April 2019 | 14,295 | −5.39 | 0.40 0.64 | 4.0 5.20 | |||||
7231 | 1.25 | 0.55 0.80 | 4.30 5.40 |
Date | Number of Minutes (00-00 UTC) |
---|---|
22 October 2018 | 795 |
23 February 2019 | 461 |
25 April 2019 | 437 |
11 March 2019 | 430 |
23 October 2018 | 386 |
25 October 2018 | 350 |
18 December 2018 | 338 |
24 October 2018 | 276 |
19 December 2018 | 258 |
25 February 2019 | 247 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivelli Zea, L.; Nesbitt, S.W.; Ladino, A.; Hardin, J.C.; Varble, A. Raindrop Size Spectrum in Deep Convective Regions of the Americas. Atmosphere 2021, 12, 979. https://doi.org/10.3390/atmos12080979
Rivelli Zea L, Nesbitt SW, Ladino A, Hardin JC, Varble A. Raindrop Size Spectrum in Deep Convective Regions of the Americas. Atmosphere. 2021; 12(8):979. https://doi.org/10.3390/atmos12080979
Chicago/Turabian StyleRivelli Zea, Lina, Stephen W. Nesbitt, Alfonso Ladino, Joseph C. Hardin, and Adam Varble. 2021. "Raindrop Size Spectrum in Deep Convective Regions of the Americas" Atmosphere 12, no. 8: 979. https://doi.org/10.3390/atmos12080979
APA StyleRivelli Zea, L., Nesbitt, S. W., Ladino, A., Hardin, J. C., & Varble, A. (2021). Raindrop Size Spectrum in Deep Convective Regions of the Americas. Atmosphere, 12(8), 979. https://doi.org/10.3390/atmos12080979