Radiological Risk Assessment for Karstic Springs Used as Drinking Water in Rural Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Concentration of 222Rn and 226Ra
2.2. Annual Effective Dose Due to Radon and Radium
- -
- Dwater (mSv/y) represents the annual effective dose of radon or radium ingestion;
- -
- -
- Cw is the water consumption rate, taken to be 2 L/day;
- -
- T is the duration of consumption (365 days);
- -
- Aw is the activity of radon or radium in water (Bq/L).
2.3. Statistical Analysis
3. Results and Discussions
3.1. Radon and Radium Concentrations
3.2. Radon and Radium Temporal Variability
3.3. Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nazaroff, W.W. Radon Transport from Soil to Air. Rev. Geophys. 1992, 30, 137–160. [Google Scholar] [CrossRef]
- Moreno, V.; Bach, J.; Baixeras, C.; Font, L. Radon Levels in Groundwaters and Natural Radioactivity in Soils of the Volcanic Region of La Garrotxa, Spain. J. Environ. Radioact. 2014, 128, 1–8. [Google Scholar] [CrossRef]
- Vinson, D.S.; Vengosh, A.; Hirschfeld, D.; Dwyer, G.S. Relationships between Radium and Radon Occurrence and Hydrochemistry in Fresh Groundwater from Fractured Crystalline Rocks, North Carolina (USA). Chem. Geol. 2009, 260, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Dickson, B.L. The Environmental Behaviour of Radium; IAEA: Vienna, Austria, 1990; Volume 1, pp. 335–372. ISBN 92-0-125090-8. ISSN 0074-1914. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/21/039/21039568.pdf?r=1&r=1 (accessed on 20 July 2021).
- Roba, C.A.; Niţă, D.; Cosma, C.; Codrea, V.; Olah, S. Correlations between Radium and Radon Occurrence and Hydrogeochemical Features for Various Geothermal Aquifers in Northwestern Romania. Geothermics 2012, 42, 32–46. [Google Scholar] [CrossRef]
- Almeida, R.M.; Lauria, D.C.; Ferreira, A.C.; Sracek, O. Groundwater Radon, Radium and Uranium Concentrations in Região Dos Lagos, Rio de Janeiro State, Brazil. J. Environ. Radioact. 2004, 73, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Cosma, C.; Moldovan, M.; Dicu, T.; Kovacs, T. Radon in Water from Transylvania (Romania). Radiat. Meas. 2008, 43, 1423–1428. [Google Scholar] [CrossRef]
- Luo, X.; Jiao, J.J. Unraveling Controlling Factors of Concentration Discharge Relationships in a Fractured Aquifer Dominant Spring-Shed: Evidence from Mean Transit Time and Radium Reactive Transport Model. J. Hydrol. 2019, 571, 528–544. [Google Scholar] [CrossRef]
- Duque, C.; Knee, K.L.; Russoniello, C.J.; Sherif, M.; Abu Risha, U.A.A.; Sturchio, N.C.; Michael, H.A. Hydrogeological Processes and near Shore Spatial Variability of Radium and Radon Isotopes for the Characterization of Submarine Groundwater Discharge. J. Hydrol. 2019, 579, 124192. [Google Scholar] [CrossRef]
- Miklyaev, P.S.; Petrova, T.B.; Marennyy, A.M.; Shchitov, D.V.; Sidyakin, P.A.; Murzabekov, M.A.; Lopatin, M.N. High Seasonal Variations of the Radon Exhalation from Soil Surface in the Fault Zones (Baikal and North Caucasus Regions). J. Environ. Radioact. 2020, 219, 106271. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.K.; Katlamudi, M.; Barman, C.; Lakshmi, G.U. Identification of Earthquake Precursors in Soil Radon-222 Data of Kutch, Gujarat, India Using Empirical Mode Decomposition Based Hilbert Huang Transform. J. Environ. Radioact. 2020, 222, 106353. [Google Scholar] [CrossRef]
- Kawabata, K.; Sato, T.; Takahashi, H.A.; Tsunomori, F.; Hosono, T.; Takahashi, M.; Kitamura, Y. Changes in Groundwater Radon Concentrations Caused by the 2016 Kumamoto Earthquake. J. Hydrol. 2020, 584, 124712. [Google Scholar] [CrossRef]
- Wen, H.; Cheng, X.; Fan, S.; Xu, Y.; Ren, S.; Guo, J. A method for detecting hidden fire source in deep mine goafs based on radon measurement and its experimental verification. J. Appl. Geochem. 2020, 117, 104603. [Google Scholar] [CrossRef]
- Chambers, S.D.; Podstawczyńska, A. Characterizing Urban Pollution Variability in Central Poland Using Radon-222. Nukleonika 2020, 65, 59–65. [Google Scholar] [CrossRef]
- Vives i Batlle, J.; Ulanovsky, A.; Copplestone, D. A Method for Assessing Exposure of Terrestrial Wildlife to Environmental Radon (222Rn) and Thoron (220Rn). Sci. Total Environ. 2017, 605–606, 569–577. [Google Scholar] [CrossRef]
- Gaskin, J.; Doug, C.; Whyte, J.; Krewksi, D. Global Estimate of Lung Cancer Mortality Attributable to Residential Radon. Environ. Health Perspect. 2018, 126, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Inácio, M.; Soares, S.; Almeida, P. Radon Concentration Assessment in Water Sources of Public Drinking of Covilhã’s County, Portugal. J. Radiat. Res. 2017, 10, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Dicu, T.; Burghele, B.D.; Cucos, A.; Mishra, R.; Sapra, B.K. Assessment of annual effective dose from exposure to natural radioactivity sources in a case-control study in Bihor County, Romania. Radiat. Prot. Dosim. 2019, 185, 15–24. [Google Scholar] [CrossRef]
- Burghele, B.; Ţenter, A.; Cucoş, A.; Dicu, T.; Moldovan, M.; Papp, B.; Szacsvai, K. The first Large-Scale Mapping of Radon Concentration in Soil Gas and Water in Romania. Sci. Total Environ. 2019, 669, 887–892. [Google Scholar] [CrossRef]
- Nita, D.C.; Moldovan, M.; Sferle, T.; Ona, V.D.; Burghele, B.D. Radon Concentrations in Water and Indoor Air in North-West Regions of Romania. Cancer 2013, 2, 3. [Google Scholar]
- Khursheed, A. Doses to systemic tissues from radon gas. Radiat. Prot. Dosim. 2000, 88, 171–181. [Google Scholar] [CrossRef]
- Moldovan, O.T.; Constantin, S.; Cheval, S. Drip heterogeneity and the impact of decreased flow rates on the vadose zone fauna in Ciur-Izbuc Cave, NW Romania. Ecohydrology 2018, 11, e2028. [Google Scholar] [CrossRef]
- Moldovan, A.; Hoaghia, M.A.; Kovacs, E.; Mirea, I.C.; Kenesz, M.; Arghir, R.A.; Petculescu, A.; Levei, E.A.; Moldovan, O.T. Quality and Health Risk Assessment Associated with Water Consumption—A Case Study on Karstic Springs. Water 2020, 12, 3510. [Google Scholar] [CrossRef]
- Hoaghia, M.A.; Moldovan, A.; Kovacs, E.; Mirea, I.C.; Kenesz, M.; Brad, T.; Cadar, O.; Micle, V.; Levei, E.A.; Moldovan, O.T. Water Quality and Hydrogeochemical Characteristics of Some Karst Water Sources in Apuseni Mountains, Romania. Water 2021, 13, 857. [Google Scholar] [CrossRef]
- Moldovan, O.; Skoglund, R.Ø.; Banciu, H.L.; Cucoș, A.; Levei, E.A.; Perșoiu, A.; Lauritzen, S.E. Monitoring and Risk Assessment for Groundwater Sources in Rural Communities of Romania (GROUNDWATERISK). Res. Ideas Outcomes 2019, 1–20. Available online: https://bora.uib.no/bora-xmlui/handle/1956/23613 (accessed on 20 July 2021). [CrossRef] [Green Version]
- National Primary Drinking Water Regulations; Radon-222. Available online: https://www.federalregister.gov/documents/1999/11/02/99-27741/national-primary-drinking-water-regulations-radon-222 (accessed on 20 July 2021).
- Guidelines for Drinking-Water Quality, 4th ed.; Incorporating the 1st Addendum; Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 24 April 2017).
- Sources-to-Effects Assessment for Radon in Homes and Workplaces. Available online: https://ci.nii.ac.jp/naid/10026964099/#cit (accessed on 20 July 2019).
- Thivya, C.; Chidambaram, R.; Thilagavathi, R.; Keesari, T.; Rao, M.S.; Prasanna, M.V.; Nepolian, M. Occurrence of High Uranium and Radon in Hard Rock Aquifers of South India–Evaluating the Temporal and Spatial Trends. Groundw. Sustain. Dev. 2015, 1, 68–77. [Google Scholar] [CrossRef]
- Mullinger, N.J.; Binley, A.M.; Pates, J.M.; Crook, N.P. Radon in Chalk Streams: Spatial and Temporal Variation of Groundwater Sources in the Pang and Lambourn Catchments, UK. J. Hydrol. 2007, 339, 172–182. [Google Scholar] [CrossRef] [Green Version]
- Official Journal. Official Journal of the European Union. 2013, Volume 56, p. 216. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:C:2013:216:FULL&from=EL (accessed on 30 July 2013).
- Jobbágy, V.; Hult, M. Performance Evaluation of a European Scale Proficiency Test on Radon-in-Water Measurements in Europe. Appl. Radiat. Isot. 2020, 160, 109111. [Google Scholar] [CrossRef]
- Moldovan, M.; Benea, V.; Niţă, D.C.; Papp, B.; Burghele, B.D.; Bican-Brişan, N.; Cosma, C. Radon and Radium Concentration in Water from North-West of Romania and the Estimated Doses. Radiat. Prot. Dosim. 2014, 162, 96–100. [Google Scholar] [CrossRef] [PubMed]
- International Atomic Energy Agency. International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, CD-ROM ed.; Safety Series No. 115/CD; IAEA: Vienna, Austria, 2003; Available online: https://www.iaea.org/publications/6900/international-basic-safety-standards-for-protection-against-ionizing-radiation-and-for-the-safety-of-radiation-sources-cd-rom-edition-2003 (accessed on 20 July 2021).
- International Institute of Public Health. Establishing the Requirements for Protection of Human Health as Regards Radioactive Substances in Drinking Water. Available online: http://legislatie.just.ro/Public/DetaliiDocumentAfis/173618 (accessed on 27 November 2015).
- Shu’aibu, H.K.; Khandaker, M.U.; Baballe, A.; Tata, S.; Adamu, M.A. Determination of Radon Concentration in Groundwater of Gadau, Bauchi State, Nigeria and Estimation of Effective Dose. Radiat. Phys. Chem. 2020, 178, 108934. [Google Scholar] [CrossRef]
- Seminsky, K.Z.; Seminsky, A.K. Radon Concentration in Groundwater Sources of the Baikal Region (East Siberia, Russia). J. Appl. Geochem. 2019, 111, 104446. [Google Scholar] [CrossRef]
- Tirmarche, M.; Harrison, J.D.; Laurier, D.; Paquet, F.; Blanchardon, E.; Marsh, J.W. Lung Cancer Risk from Radon and Progeny and Statement on Radon. Ann. ICRP 2010, 40, 115. Available online: https://www.icrp.org/publication.asp?id=icrp%20publication%20115 (accessed on 20 July 2010).
- Cucos, A.; Papp, B.; Dicu, T.; Moldovan, M.; Burghele, B.D.; Moraru, I.T.; Țenter, A.; Cosma, C. Residential, soil and water radon surveys in north-western part of Romania. J. Environ. Radioact. 2017, 166, 412–416. [Google Scholar] [CrossRef] [PubMed]
Spring | Temperature (°C) | Electrical Conductivity (µS/cm) | Flow Rate (L/min) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Oct | Jan | May | Aug | Oct | Jan | May | Aug | Oct | Jan | May | Aug | |
GWR1 | 15.2 | 5.2 | 12.2 | 15.6 | 380 | 370 | 420 | 370 | 20 | 15 | 15 | 30 |
GWR2 | 13.5 | 10.2 | 11.1 | 14.1 | 500 | 460 | 390 | 450 | 480 | 1890 | 600 | 1800 |
GWR3 | 12.4 | 9.2 | 11.9 | 13.9 | 280 | 450 | 390 | 370 | 50 | 66 | 60 | 42.8 |
GWR5 | 9 | 8 | 9.4 | 11.3 | 420 | 420 | 440 | 440 | 3600 | 32,400 | 75,000 | 13,860 |
GWR6 | 12.6 | 11.6 | 12.6 | 13.4 | 710 | 730 | 710 | 690 | 25 | 60 | 36 | 60 |
GWR7 | 15.4 | 7 | 14.4 | 21.6 | 600 | 530 | 580 | 660 | 0.5 | 0.03 | 0.8 | 0.25 |
GWR8 | 11.5 | 8.5 | 10.3 | 13.1 | 640 | 560 | 500 | 590 | 30 | 120 | 90 | 20 |
GWR9 | - | 0 | 8.5 | 8.8 | - | 0 | 300 | 290 | - | 0 | 1.3 | 12 |
GWR10 | 10.3 | 0 | 7.8 | 11.8 | 440 | 0 | 420 | 460 | 0.5 | 0 | 2 | 3.75 |
GWR11 | 8.6 | 6.8 | 8.4 | 9.1 | 470 | 460 | 420 | 480 | 27.3 | 25 | 30 | 60 |
GWR12 | 11.7 | 9.5 | 11 | 11.7 | 390 | 250 | 290 | 380 | 2 | 7.5 | 60 | 60 |
GWR13 | - | 6.7 | 9.2 | 10.7 | - | 500 | 420 | 440 | - | 15 | 15 | 24 |
GWR14 | 13.5 | 10.2 | 12.5 | 13.5 | 460 | 440 | 520 | 480 | 5 | 2.7 | 6 | 10 |
GWR15 | 11.1 | 10.1 | 11.1 | 12 | 630 | 650 | 630 | 630 | 24 | 10 | 30 | 50 |
GWR16 | 10 | 8.8 | 10.3 | 11.5 | 510 | 480 | 500 | 560 | 7.5 | 6.6 | 15 | 15 |
GWR17 | 11.4 | 0 | 10.7 | 11.8 | 670 | 0 | 660 | 680 | 2.8 | 0 | 5 | 7 |
GWR18 | 29.6 | 29.1 | 29.2 | 30.3 | 250 | 250 | 250 | 250 | 300 | 300 | 600 | 150 |
GWR19 | 13.8 | 11.9 | 14.6 | 15.7 | 570 | 570 | 630 | 570 | 6.8 | 6 | 7.5 | 7.5 |
GWR20 | 13.3 | 10.9 | 12.8 | 15.1 | 1050 | 1030 | 1040 | 1080 | 10 | 10 | 10 | 15 |
GWR21 | 11.7 | 8.3 | 12 | 14 | 540 | 570 | 540 | 640 | 100 | 35 | 30 | 200 |
GWR22 | 10.9 | 8.5 | 10.3 | 11.1 | 330 | 320 | 360 | 330 | 10 | 6.6 | 7.5 | 10 |
GWR23 | 18.2 | 16.3 | 18.9 | 20.3 | 2160 | 2170 | 2230 | 2210 | 60 | 80 | 40 | 28 |
GWR24 | 20.7 | 20.2 | 21.9 | 24.2 | 1820 | 1790 | 1840 | 1830 | 100 | 60 | 90 | 100 |
GWR25 | 10 | 9.6 | 12.5 | 14.2 | 540 | 560 | 560 | 550 | 4 | 2.5 | 2 | 7.5 |
GWR26 | 9.2 | 0 | 10.5 | 9.4 | 540 | 0 | 520 | 590 | 2.7 | 0 | 3 | 12 |
GWR27 | 14 | 12.9 | 15.8 | 15.5 | 1270 | 1280 | 1280 | 1240 | 120 | 42 | 45 | 90 |
GWR28 | 14.2 | 14.9 | 15.3 | 15.5 | 1210 | 1210 | 1220 | 1210 | 200 | 120 | 200 | 200 |
GWR29 | 13.3 | 4.7 | 17.6 | 20.4 | 1470 | 1540 | 1490 | 1470 | 2.3 | 21 | 4 | 3.33 |
GWR30 | 13.5 | 10.5 | 13.2 | 15.5 | 1410 | 1390 | 1420 | 1390 | 12.5 | 6 | 12 | 10 |
Sample | Radon Concentration (Bq/L) | ||||
---|---|---|---|---|---|
Autumn | Winter | Spring | Summer | Annual Average | |
GWR1 | 2.1 | 2.3 | 4.2 | 2.2 | 2.7 |
GWR2 | 3.1 | 4.0 | 4.6 | 4.0 | 3.9 |
GWR3 | 2.4 | 5.1 | 6.6 | 5.1 | 4.8 |
GWR5 | 6.2 | 5.2 | 8.9 | 7.1 | 6.8 |
GWR6 | 4.1 | 4.5 | 4.3 | 4.8 | 4.4 |
GWR7 | 3.3 | 6.7 | 4.8 | 4.4 | 4.8 |
GWR8 | 7.2 | 7.1 | 7.1 | 8.5 | 7.5 |
GWR9 | dried | 5.2 | 8.1 | 7.8 | 7.1 |
GWR10 | 4.1 | 5.2 | 7.2 | 5.2 | 5.4 |
GWR11 | 6.2 | 4.0 | 7.6 | 5.7 | 5.9 |
GWR12 | 4.1 | 4.8 | 8.2 | 5.6 | 5.6 |
GWR13 | dried | 7.4 | 11.0 | 9.8 | 9.4 |
GWR14 | 10.9 | 11.6 | 11.0 | 9.5 | 10.8 |
GWR15 | 5.4 | 8.6 | 7.6 | 6.4 | 7.0 |
GWR16 | 11.5 | 10.8 | 13.6 | 12.6 | 12.1 |
GWR17 | 19.6 | 11.3 | 15.1 | 19.7 | 16.4 |
GWR18 | 17.0 | 10.8 | 17.3 | 19.0 | 16 |
GWR19 | 10.9 | 11.6 | 8.4 | 9.2 | 10.0 |
GWR20 | 16.1 | 13.6 | 17.5 | 17.5 | 16.2 |
GWR21 | 11.4 | 10.6 | 12.6 | 12.6 | 11.8 |
GWR22 | 5.0 | 4.0 | 6.5 | 4.9 | 5.1 |
GWR23 | 12.3 | 10.8 | 10.8 | 14.2 | 12.0 |
GWR24 | 6.9 | 9.6 | 6.1 | 7.8 | 7.6 |
GWR25 | 4.8 | 8.5 | 7.2 | 6.1 | 6.7 |
GWR26 | 2.7 | 3.7 | 6.1 | 4.0 | 4.1 |
GWR27 | 3.9 | 3.5 | 5.1 | 4.2 | 4.2 |
GWR28 | 8.1 | 9.7 | 11.6 | 6.4 | 9.0 |
GWR29 | 3.0 | 3.9 | 4.9 | 3.3 | 3.8 |
GWR30 | 5.5 | 6.2 | 6.4 | 5.2 | 5.8 |
Sample | Radium Concentration (Bq/L) | ||||
---|---|---|---|---|---|
Autumn | Winter | Spring | Summer | Annual Average | |
GWR1 | bdl | 0.6 | 0.6 | bdl * | 0.6 |
GWR2 | bdl | 0.8 | 0.6 | bdl | 0.7 |
GWR3 | 0.6 | 1.0 | 0.8 | 0.7 | 0.8 |
GWR5 | 0.8 | 1.1 | 1.0 | 0.8 | 1.0 |
GWR6 | 0.6 | 0.7 | 0.6 | 0.8 | 0.7 |
GWR7 | 1.0 | 1.0 | 1.1 | 0.9 | 1.0 |
GWR8 | 1.2 | 0.8 | 1.0 | 1.0 | 0.9 |
GWR9 | dried | 0.7 | 0.6 | 0.8 | 0.7 |
GWR10 | 1.5 | 1.2 | 1.2 | 1.1 | 1.2 |
GWR11 | 1.1 | 1.3 | 1.1 | 1.2 | 1.2 |
GWR12 | 0.6 | 0.7 | 0.7 | 0.9 | 0.8 |
GWR13 | dried | 0.6 | 0.6 | bdl | 0.6 |
GWR14 | 1.4 | 1.5 | 1.3 | 1.2 | 1.3 |
GWR15 | 0.9 | 1.0 | 0.9 | 1.1 | 1.0 |
GWR16 | 1.1 | 0.9 | 0.9 | 0.7 | 0.8 |
GWR17 | 2.3 | 2 | 1.8 | 1.6 | 1.8 |
GWR18 | 1.8 | 1.5 | 1.4 | 1.3 | 1.4 |
GWR19 | 0.7 | bdl | 0.6 | 0.8 | 0.7 |
GWR20 | 2.9 | 3 | 2.5 | 2.4 | 2.6 |
GWR21 | 2.4 | 2.4 | 2.4 | 2.6 | 2.4 |
GWR22 | 0.7 | 0.9 | 0.8 | 0.6 | 0.8 |
GWR23 | 1.8 | 1.5 | 1.5 | 1.4 | 1.5 |
GWR24 | 0.6 | bdl | 0.7 | bdl | 0.7 |
GWR25 | dry | bdl | 0.6 | 0.6 | 0.6 |
GWR26 | 0.8 | 1.0 | 0.7 | 0.8 | 0.8 |
GWR27 | 0.8 | 0.8 | 0.8 | 0.7 | 0.8 |
GWR28 | 0.7 | 0.8 | 0.7 | 0.6 | 0.7 |
GWR29 | 1.3 | 1.2 | 0.8 | 1.1 | 1.0 |
GWR30 | 0.8 | 0.6 | bdl | 0.6 | 0.6 |
Sample | Radon | Radium | ||
---|---|---|---|---|
Annual Conc. (Bq/L) | Dose (mSv/y) | Annual Conc. (Bq/L) | Dose (mSv/y) | |
UNSCEAR | IAEA | |||
GWR1 | 2.7 | 9.80 × 10−6 | 0.6 | 6.50 × 10−5 |
GWR2 | 3.9 | 1.40 × 10−5 | 0.7 | 6.90 × 10−5 |
GWR3 | 4.8 | 1.70 × 10−5 | 0.8 | 8.50 × 10−5 |
GWR5 | 6.8 | 2.50 × 10−5 | 1.0 | 9.80 × 10−5 |
GWR6 | 4.4 | 1.60 × 10−5 | 0.7 | 7.20 × 10−5 |
GWR7 | 4.8 | 1.70 × 10−5 | 1.0 | 1.00 × 10−4 |
GWR8 | 7.5 | 2.70 × 10−5 | 0.9 | 9.50 × 10−5 |
GWR9 | 7.1 | 2.60 × 10−5 | 0.7 | 6.80 × 10−5 |
GWR10 | 5.4 | 2.00 × 10−5 | 1.2 | 1.20 × 10−4 |
GWR11 | 5.9 | 2.10 × 10−5 | 1.2 | 1.20 × 10−4 |
GWR12 | 5.6 | 2.10 × 10−5 | 0.8 | 7.70 × 10−5 |
GWR13 | 9.4 | 3.40 × 10−5 | 0.6 | 6.30 × 10−5 |
GWR14 | 10.8 | 3.90 × 10−5 | 1.3 | 1.40 × 10−4 |
GWR15 | 7.0 | 2.50 × 10−5 | 1.0 | 1.00 × 10−4 |
GWR16 | 12.1 | 4.40 × 10−5 | 0.8 | 8.30 × 10−5 |
GWR17 | 16.4 | 6.00 × 10−5 | 1.8 | 1.90 × 10−4 |
GWR18 | 16.0 | 5.90 × 10−5 | 1.4 | 1.50 × 10−4 |
GWR19 | 10.0 | 3.70 × 10−5 | 0.7 | 7.00 × 10−5 |
GWR20 | 16.2 | 5.90 × 10−5 | 2.6 | 2.70 × 10−4 |
GWR21 | 11.8 | 4.30 × 10−5 | 2.4 | 2.50 × 10−4 |
GWR22 | 5.1 | 1.90 × 10−5 | 0.8 | 7.90 × 10−5 |
GWR23 | 12.0 | 4.40 × 10−5 | 1.5 | 1.50 × 10−4 |
GWR24 | 7.6 | 2.80 × 10−5 | 0.7 | 7.40 × 10−5 |
GWR25 | 6.7 | 2.40 × 10−5 | 0.6 | 6.20 × 10−5 |
GWR26 | 4.1 | 1.50 × 10−5 | 0.8 | 8.50 × 10−5 |
GWR27 | 4.2 | 1.50 × 10−5 | 0.8 | 8.00 × 10−5 |
GWR28 | 9.0 | 3.30 × 10−5 | 0.7 | 7.10 × 10−5 |
GWR29 | 3.8 | 1.40 × 10−5 | 1.0 | 1.10 × 10−4 |
GWR30 | 5.8 | 2.10 × 10−5 | 0.6 | 5.90 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cucoș, A.L.; Moldovan, M.C.; Burghele, B.D.; Dicu, T.; Moldovan, O.T. Radiological Risk Assessment for Karstic Springs Used as Drinking Water in Rural Romania. Atmosphere 2021, 12, 1207. https://doi.org/10.3390/atmos12091207
Cucoș AL, Moldovan MC, Burghele BD, Dicu T, Moldovan OT. Radiological Risk Assessment for Karstic Springs Used as Drinking Water in Rural Romania. Atmosphere. 2021; 12(9):1207. https://doi.org/10.3390/atmos12091207
Chicago/Turabian StyleCucoș, Alexandra Laura, Mircea Claudiu Moldovan, Bety Denissa Burghele, Tiberius Dicu, and Oana Teodora Moldovan. 2021. "Radiological Risk Assessment for Karstic Springs Used as Drinking Water in Rural Romania" Atmosphere 12, no. 9: 1207. https://doi.org/10.3390/atmos12091207
APA StyleCucoș, A. L., Moldovan, M. C., Burghele, B. D., Dicu, T., & Moldovan, O. T. (2021). Radiological Risk Assessment for Karstic Springs Used as Drinking Water in Rural Romania. Atmosphere, 12(9), 1207. https://doi.org/10.3390/atmos12091207