Simulation of Carbon Exchange from a Permafrost Peatland in the Great Hing’an Mountains Based on CoupModel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Vegetation and Meteorological Data
2.3. CoupModel
2.4. Model-Driven Data Construction
2.4.1. Data Source
2.4.2. Future Climate-Driven Data
2.4.3. Representative Concentration Pathway (RCP) Emission Scenarios
2.4.4. Model Performance Tests
2.5. Methods
3. Results
3.1. Comparison of Meteorological Observations and Meteorological Predictions
3.2. Calibration and Validation of CoupModel
3.3. Changes in Peatland NEE, ER, and GPP under Three Future Climate Change Scenarios
4. Discussion
4.1. Comparison of Simulation Results between Scheme I and Scheme II
4.2. Turning Point of NEE Trend
4.3. Analysis of Environmental Factors Affecting NEE, ER, and GPP Changes
4.4. Uncertainty Analysis of Simulation Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Special Report on Global Warming of 1.5 °C; Cambridge University Press: London, UK, 2018. [Google Scholar]
- Mingle, J. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; New York Review of Books: New York, NY, USA, 2020; pp. 49–51. [Google Scholar]
- Overland, J.E.; Wang, M.Y.; Walsh, J.E.; Stroeve, J.C. Future Arctic climate changes: Adaptation and mitigation time scales. Earths Future 2014, 2, 68–74. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Piao, S.; Ciais, P.; Huang, Y. The impacts of climate change on waterresources and agriculture in China. Nature 2010, 2, 467. [Google Scholar]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, M.; Pandey, R.; ZhiGuo, Y.; Cabral-Pinto, M. Forest soil nutrient stocks along altitudinal range of Uttarakhand Himalayas: An aid to Nature Based Climate Solutions. CATENA 2021, 207, 105667. [Google Scholar] [CrossRef]
- Nilawar, A.P.; Waikar, M.L. Impacts of climate change on streamflow and sediment concentration under RCP 4.5 and 8.5: A case study in Purna river basin, India. Sci. Total Environ. 2019, 650, 2685–2696. [Google Scholar] [CrossRef] [PubMed]
- Roulet, N.T.; Lafleur, P.M.; Richard, P.J.H.; Moore, T.R.; Humphreys, E.R.; Bubier, J. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob. Chang. Biol. 2007, 13, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Gorham, E. Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef]
- Bradford, M.A.; Wieder, W.R.; Bonan, G.B.; Fierer, N.; Raymond, P.A.; Crowther, T.W. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Chang. 2016, 6, 751–758. [Google Scholar] [CrossRef]
- Zimov, S.A.; Schuur, E.A.G.; Chapin, F.S. Permafrost and the global carbon budget. Science 2006, 312, 1612–1613. [Google Scholar] [CrossRef]
- Hugelius, G.J.; Strauss, S.; Zubrzycki, J.W.; Harden, E.A.G.; Schuur, C.L.; Ping, L.; Schirrmeister, G.; Grosse, G.J.; Michaelson, C.; Koven, J.; et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 2014, 11, 6573–6593. [Google Scholar] [CrossRef] [Green Version]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Buchanan, P.J.; Matear, R.J.; Lenton, A.; Phipps, S.J.; Chase, Z.; Etheridge, D.M. The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle. Clim. Past 2016, 12, 2271–2295. [Google Scholar] [CrossRef] [Green Version]
- Lacerra, M.; Lund, D.; Yu, J.M.; Schmittner, A. Carbon storage in the mid-depth Atlantic during millennial-scale climate events. Paleoceanography 2017, 32, 780–795. [Google Scholar] [CrossRef]
- Johnston, C.E.; Ewing, S.A.; Harden, J.W.; Varner, R.K.; Wickland, K.P.; Koch, J.C.; Fuller, C.C.; Manies, K.; Jorgenson, M.T. Effect of permafrost thaw on CO2 and CH4 exchange in a western Alaska peatland chronosequence. Environ. Res. Lett. 2014, 9, 0850048. [Google Scholar]
- Pörtner, H.O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Alegría, A.; Nicolai, M.; Weyer, N.M.; et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. 2019. Available online: https://www.eea.europa.eu/data-and-maps/indicators/arctic-sea-ice-3/ipcc-4th-assessment-report-2007 (accessed on 10 December 2021).
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Lantuit, H. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baird, A.J.; Belyea, L.R.; Comas, X.; Reeve, A.S.; Slater, L.D. Understanding Carbon Cycling in Northern Peatlands: Recent Developments and Future Prospects; American Geophysical Union: Washington, DC, USA, 2009. [Google Scholar]
- Couwenberg, J. Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 2011, 674, 67–89. [Google Scholar] [CrossRef]
- Tiemeyer, B. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob. Chang. Biol. 2016, 22, 4134–4149. [Google Scholar] [CrossRef]
- Zhang, L.; Gałka, M.; Kumar, A.; Liu, M.; Knorr, K.H.; Yu, Z.G. Plant succession and geochemical indices in immature peatlands in the Changbai Mountains, northeastern region of China: Implications for climate change and peatland development. Sci. Total Environ. 2021, 773, 143776. [Google Scholar] [CrossRef]
- Shur, Y.L.; Jorgenson, M.T. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr. Periglac. Process 2007, 18, 7–19. [Google Scholar] [CrossRef]
- Loranty, M.M.; Abbott, B.W.; Blok, D.; Douglas, T.A.; Epstein, H.E.; Forbes, B.C.; Jones, B.M.; Kholodov, A.L.; Kropp, H.; Malhotra, A. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 2018, 15, 5287–5313. [Google Scholar] [CrossRef] [Green Version]
- Dieleman, C.M.; Branfireun, B.A.; McLaughlin, J.W.; Lindo, Z. Climate change drives a shift in peatland ecosystem plant community: Implications for ecosystem function and stability. Glob. Chang. Biol. 2015, 21, 388–395. [Google Scholar] [CrossRef]
- Robroek, B.J.M.; Jassey, V.E.J.; Payne, R.J.; Marti, M.; Bragazza, L.; Bleeker, A.; Buttler, A.; Caporn, S.J.M.; Dise, N.B.; Kattge, J.; et al. Taxonomic and functional turnover are decoupled in European peat bogs. Nat. Commun. 2017, 8, 1161. [Google Scholar] [CrossRef]
- Elmendorf, S.C.; Henry, G.H.R.; Hollister, R.D.; Bjork, R.G.; Boulanger-Lapointe, N.; Cooper, E.J.; Cornelissen, J.H.C.; Dorrepaal, E.; Elumeeva, T.G.; Gould, A.; et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Chang. 2012, 2, 453–457. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Elmendorf, S.C.; Beck, P.S.A.; Wilmking, M.; Hallinger, M.; Blok, D.; Tape, K.D.; Rayback, S.A.; .Macias-Fauria, M.; Forbes, B.C.; et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Chang. 2015, 5, 887–891. [Google Scholar] [CrossRef]
- Buttler, A.; Robroek, B.J.M.; Laggoun-Defarge, F.; Jassey, V.E.J.; Pochelon, C.; Bernard, G.; Delarue, F.; Gogo, S.; Mariotte, P.; Mitchell, E.A.D.; et al. Experimental warming interacts with soil moisture to discriminate plant responses in an ombrotrophic peatland. J. Veg. Sci. 2015, 26, 964–974. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Song, C.; Shi, F.; Zhang, X.; Mao, R. Effects of alder expansion on plant community composition and biomass in the peatland in the Da’xingan Mountain. Chin. J. Appl. Environ. Biol. 2017, 23, 778–784. (In Chinese) [Google Scholar]
- Hobbie, S.E.; Chapin, F.S. Response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology 1998, 79, 1526–1544. [Google Scholar]
- Natali, S.M.; Schuur, E.A.G.; Webb, E.E.; Pries, C.E.H.; Crummer., K.G. Permafrost degradation stimulates carbon loss from experimentally warmed tundra. Ecology 2014, 95, 602–608. [Google Scholar] [CrossRef] [Green Version]
- Mauritz, M.; Bracho, R.; Celis, G.; Hutchings, J.; Natali, S.M.; Pegoraro, E.; Salmon, V.G.; Schädel, C.; Webb, E.E.; Schuur, E.A.G. Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw. Glob. Chang. Biol. 2017, 23, 3646–3666. [Google Scholar] [CrossRef]
- Pries, C.E.H.; Schuur, E.A.G.; Crummer, K.G. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using delta 13C and Delta 14C. Glob. Chang. Biol. 2013, 19, 649–661. [Google Scholar] [CrossRef]
- Pries, C.E.H.; Schuur, E.A.G.; Natali, S.M.; Crummer, K.G. Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra. Nat. Clim. Chang. 2016, 6, 214–218. [Google Scholar] [CrossRef]
- Chapin, F.S.; Shaver, G.R.; Giblin, A.E.; Nadelhoffer, K.J.; Laundre, J.A. Responses of Arctic tundra to experimental and observed changes in climate. Ecology 1995, 76, 694–711. [Google Scholar] [CrossRef]
- Natali, S.M.; Schuur, E.A.G.; Rubin, R.L. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J. Ecol. 2012, 100, 488–498. [Google Scholar] [CrossRef]
- Sistla, S.A.; Moore, J.C.; Simpson, R.T.; Gough, L.; Shaver, G.R.; Schimel., J.P. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 2013, 497, 615–618. [Google Scholar] [CrossRef]
- Hobbie, S.E. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol. Monogr. 1996, 66, 503–522. [Google Scholar] [CrossRef]
- Qian, H.F.; Joseph, R.; Zeng, N. Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections. Glob. Chang. Biol. 2010, 16, 641–656. [Google Scholar] [CrossRef]
- Schädel, C.; Koven, C.D.; Lawrence, D.M.; Celis, G.; Garnello, A.J.; Hutchings, J.; Mauritz, M.; Natali, S.; Pegoraro, M.E.; Rodenhizer, H.; et al. Divergent patterns of experimental and model-derived permafrost ecosystem carbon dynamics in response to Arctic warming. Environ. Res. Lett. 2018, 13, 105002. [Google Scholar] [CrossRef]
- Schädel, C.; Mauritz, M.; Taylor, M.; Ledman, J.; Natali, S.; Schuur, E.A.G. Eight Mile Lake Research Watershed, Carbon in Permafrost Experimental Heating Research (CiPEHR): Seasonal Water Table Depth Data 2012–2018. Environ. Data Initiat. 2018. [Google Scholar] [CrossRef]
- Laughlin, B.C. Hydrologic refugia, plants, and climate change. Glob. Chang. Biol. 2017, 23, 2941–2961. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Stocker, T.F. Global Climate Projections; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Xing, W.; Bao, K.; Gallego-Sala, A.V.; Charman, D.J.; Zhang, Z.; Gao, C.; Lu, X.; Wang, G. Climate controls on carbon accumulation in peatlands of Northeast China. Quaternary Sci. Rev. 2015, 118, 78–88. [Google Scholar] [CrossRef]
- Chaudhary, N.; Westermann, S.; Lamba, S.; Shurpali, N.; Sannel, A.B.K.; Schurgers, G.; Milleret, P.A.; Smith, B. Modelling past and future peatland carbon dynamics across the pan-Arctic. Glob. Chang. Biol. 2020, 26, 4119–4133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Dong, W.J.; Guo, X.Y.; Ji, J.J. Simulation of net primary productivity of terrestrial vegetation in China from 1971 to 2000. J. Glaciol. Geocryol. 2007, 29, 226–232. (In Chinese) [Google Scholar]
- McGuire, A.D.; Lawrence, D.M.; Koven, C.; Clein, J.S.; Burke, E.; Chen, G.S.; Jafarov, E.; MacDougall, A.H.; Marchenko, S.D.; Nicolsky, D. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl. Acad. Sci. USA 2018, 115, 3882–3887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shogren, A.J.; Zarnetske, J.P.; Abbott, B.W.; Iannucci, F.; Frei, R.J.; Griffin, N.A.; Bowden, W.B. Revealing biogeochemical signatures of Arctic landscapes with river chemistry. Sci. Rep. 2019, 9, 12894. [Google Scholar] [CrossRef] [Green Version]
- Vonk, J.E.; Tank, S.E.; Walvoord, M.A. Integrating hydrology and biogeochemistry across frozen landscapes. Nat. Commun. 2019, 10, 5377. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.Y.; Song, C.C.; Sun, L.; Wang, X.W.; Shi, F.; Cui, Q.; Tan, W.W. Growing season methane emissions from a permafrost peatland of northeast China: Observations using open-path eddy covariance method. Atmos. Environ. 2017, 153, 135–149. [Google Scholar] [CrossRef]
- Gao, W.F.; Yao, L.L.; Liang, H.; Song, H. Emissions of Nitrous oxide from continuous permafrost region in the Da Xingan Mountains, Northeast China. Atmos. Environ. 2019, 198, 34–45. [Google Scholar] [CrossRef]
- Chen, S.S.; Zang, S.Y.; Sun, L. Characteristics of permafrost degradation in Northeast China and its ecological effects: A review. Sci. Cold Arid Regs. 2020, 12, 1–11. [Google Scholar]
- Xue, Z.S.; Jiang, M.; Zhang, Z.; Wu, H.; Zhang, T. Simulating potential impacts of climate changes on distribution pattern and carbon storage function of high latitude wetland plant communities in the Xing’anling Mountains, China. Land Degrad Dev. 2021, 32, 2704–2714. [Google Scholar] [CrossRef]
- Song, Y.Y.; Jiang, L.; Song, C.C.; Wang, X.W.; Ma, X.Y.; Zhang, H.; Tan, W.W.; Gao, J.L.; Hou, A.X. Microbial abundance and enzymatic activity from tussock and shrub soil in permafrost peatland after 6-year warming. Ecol. Indicat. 2021, 126, 107589. [Google Scholar] [CrossRef]
- Jansson, P.E.; Moon, D.S. A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality. Environ. Model. Softw. 2001, 16, 37–46. [Google Scholar] [CrossRef]
- He, H.X.; Jansson, P.E.; Gärdenäs, A. CoupModel (v6.0): An ecosystem model for coupled phosphorus, nitrogen and carbon dynamics—Evaluated against empirical data from a climatic and fertility gradient in Sweden. Geosci. Model Dev. 2020, 65, 1–55. [Google Scholar] [CrossRef]
- Wu, S.H.; Jansson, P.E.; Kolari, P. Modeling seasonal course of carbon fluxes and evapotranspiration in response to low temperature and moisture in a boreal Scots pine ecosystem. Ecol. Model. 2011, 222, 3103–3119. [Google Scholar] [CrossRef]
- Wu, M.S.; Ran, Y.H.; Jansson, P.E.; Chen, P.; Tan, X.; Zhang, W.X. Global parameters sensitivity analysis of modeling water, energy and carbon exchange of an arid agricultural ecosystem. Agric. For. Meteorol. 2019, 271, 295–306. [Google Scholar] [CrossRef]
- Sun, L.; Song, C.C.; Lafleur, P.M.; Miao, Y.Q.; Wang, X.W.; Gong, C.; Qiao, T.H.; Yu, X.Y.; Tan, W.W. Wetland-atmosphere methane exchange in northeast china: A comparison of permafrost peatland and freshwater wetlands. Agric. For. Meteorol. 2018, 249, 239–249. [Google Scholar] [CrossRef]
- Yu, X.Y.; Song, C.C.; Sun, L.; Wang, X.W.; Tan, W.W. Towards an improved utilization of eddy covariance data: Growing season CO2 exchange from a permafrost peatland in the Great Hing’an Mountains, Northeast China. Ecol. Indic. 2020, 115, 106427. [Google Scholar] [CrossRef]
- Jansson, P.E. CoupModel: Model use, calibration, and validation. Trans. ASABE 2012, 4, 1335–1344. [Google Scholar]
- CoupModel: Current Version of COUP Model for Download. Available online: http://www.coupmodel.com (accessed on 15 December 2021).
- Jansson, P.E.; Karlberg, L. Coupled Heat and Masstransfer Model for Soil–Plant–Atmosphere Systems; Royal Institute of Technology: Stockholm, Sweden, 2010; p. 484. [Google Scholar]
- Zhang, W.; Jansson, P.E.; Sigsgaard, C.; McConnell, A.; Jammet, M.M.; Westergaard-Nielsen, A.; Lund, M.; Friborg, T.; Michelsen, A.; Elberling, B.; et al. Model-data fusion to assess year-round CO2 fluxes for an arctic heath ecosystem in West Greenland (69° N). Agric. Forest Meteorol. 2019, 272, 176–186. [Google Scholar] [CrossRef]
- Miao, Y.Q.; Song, C.C.; Sun, L.; Wang, X.W.; Meng, H.N.; Mao, R. Growing season methane emission from a boreal peatland in the continuous permafrost zone of Northeast China: Effects of active layer depth and vegetation. Biogeosciences 2012, 9, 4455–4464. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Frauenfeld, O.W. A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J. Geophys. Res. Atmos. 2014, 119, 5767–5786. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q. Comparative analysis of CMIP3 and CMIP5 global climate models for simulating the daily mean, maximum, and minimum temperatures and daily precipitation over China. J. Geophys. Res-Atmos. 2015, 120, 4806–4824. [Google Scholar] [CrossRef]
- Haberl, H.; Erb, K.H.; Krausmann, F. Human appropriation of net primary production: Patterns, trends, and planetary boundaries. Annu. Rev. Environ. Resour. 2014, 39, 363–391. [Google Scholar] [CrossRef]
- Peng, S.; Ciais, P.; Chevallier, F.; Peylin, P.; Cadule, P.; Sitch, S.; Li, X. Benchmarking the seasonal cycle of CO2 fluxes simulated by terrestrial ecosystem models. Glob. Biogeochem. Cycles 2015, 29, 46–64. [Google Scholar] [CrossRef] [Green Version]
- Mu, C.; Zhang, T.; Zhao, Q.; Su, H.; Wang, S.; Cao, B.; Peng, X.; Wu, Q.; Wu, X. Permafrost affects carbon exchange and its response to experimental warming on the northern Qinghai-Tibetan Plateau. Agric. Meteorol. 2017, 247, 252–259. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Woodwell, G.M.; Randerson, J.T.; Rastetter, E.B.; Lovett, G.M.; Baldocchi, D.D.; Clark, D.A.; Harmon, M.E.; Schimel, D.S.; Valentini, R.; et al. Reconciling Carbon-cycle Concepts, Terminology, and Methods. Ecosystems 2006, 9, 1041–1050. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.W.; Jones, J.B.; Edward, A.G.S.; Chapin, F.S., III; Zimov, S. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: An expert assessment. Environ. Res. Lett. 2016, 11, 034014. [Google Scholar] [CrossRef]
- Kumar, D.A.; Sharma, M.P.; Tao, Y. Estimation of carbon stock for greenhouse gas emissions from hydropower reservoirs. Stoch Environ. Res Risk Assess. 2018, 32, 3183–3193. [Google Scholar] [CrossRef]
- Keuper, F.; Dorrepaal, E.; van Bodegom, P.M.; van Logtestijn, R.; Venhuizen, G.; van Hal, J.; Aerts, R. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species. Glob. Chang. Biol. 2017, 23, 4257–4266. [Google Scholar] [CrossRef]
- Finger, R.A. Effects of permafrost thaw on nitrogen availability and plant–soil interactions in a boreal Alaskan lowland. J. Ecol. 2016, 104, 1542–1554. [Google Scholar] [CrossRef]
- Keuper, F. A frozen feast: Thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob. Chang. Biol. 2012, 18, 1998–2007. [Google Scholar] [CrossRef]
- Wild, B. Amino acid production exceeds plant nitrogen demand in Siberian tundra. Environ. Res. Lett. 2018, 13, 034002. [Google Scholar] [CrossRef]
- Ott, C.A.; Chimner, R.A. Long-term peat accumulation in temperate forested peatlands (Thuja occidentalis swamps) in the Great Lakes region of North America. Mires Peat. 2016, 18, 1–9. [Google Scholar]
- Wang, H.; Richardson, C.J.; Ho, M. Dual controls on carbon loss during drought in peatlands. Nat. Clim. Chang. 2015, 5, 584–587. [Google Scholar] [CrossRef]
- Keuper, F.; Wild, B.; Kummu, M.; Beer, C.; Blume-Werry, G.; Fontaine, S.; Gavazov, K.; Gentsch, N.; Guggenberger, G.; Hugelius, G.; et al. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nat. Geosci. 2020, 13, 560–565. [Google Scholar] [CrossRef]
- Zhu, K.; Chiariello, N.R.; Tobeck, T.; Fukami, T.; Field, C.B. Nonlinear, interacting responses to climate limit grassland production under global change. Proc. Natl Acad. Sci. USA 2016, 113, 10589–10594. [Google Scholar] [CrossRef] [Green Version]
- Reich, P.B. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature 2018, 562, 263–267. [Google Scholar] [CrossRef]
- Albert, K. Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status. Plant Cell Environ. 2011, 34, 1207–1222. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.A. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 2011, 476, 202–205. [Google Scholar] [CrossRef]
- Gregory, J.M.; Jones, C.D.; Cadule, P.; Friedlingstein, P. Quantifying carbon cycle feedbacks. J. Clim. 2009, 22, 5232–5250. [Google Scholar] [CrossRef]
Model Name | Institution | Country | Spatial Resolution |
---|---|---|---|
GFDL-ESM2M | NOAA | USA | 0.5° × 0.5° |
HadGEM2-ES | MOHC | UK | 0.5° × 0.5° |
IPSL-CM5A-LR | IPSL | France | 0.5° × 0.5° |
MIROC-ESM-CHEM | MIROC | Japan | 0.5° × 0.5° |
NorESM1-M | NCC | Norway | 0.5° × 0.5° |
RCP Scenarios | Emission Pattern | Radiative Forcing (W m−2) until 2100 | CO2 Concentration (ppm) |
---|---|---|---|
RCP2.6 | Mitigation scenario | Reaches a peak of 3.0 W m−2 before 2100 and then drops to 2.6 W m−2 | Reaches a peak of 490 ppm before 2100 and then drops |
RCP6.0 | Stabilization scenario | Stabilizes after reaching 6.0 W m−2 | Reaches a peak of 850 ppm before 2100 and then drops |
RCP8.5 | Business-as-usual scenario | Reaches more than 8.5 W m−2 | Reaches a peak of 1370 ppm before 2100 and then drops |
Parameters | Value | Default | Unit |
---|---|---|---|
TemQ10 | 3 | 2 | - |
Theta Lower Range | 2.5 | 13 | Vol% |
CH4 Aerobic Ox Rate | 0.2 | 0.1 | /day |
Reference Height | 1.8 | 2 | m |
Temp Air Mean | −2.1 | 10 | °C |
Albedo Leaf | 15 | 25 | % |
RespTemQ10 | 3 | 2 | - |
RespTemQ10Bas | 15 | 20 | °C |
Albedo Dry | 10 | 30 | % |
Albedo Wet | 9 | 15 | % |
Latitude | 42.9 | 58.5 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wan, Z.; Sun, L. Simulation of Carbon Exchange from a Permafrost Peatland in the Great Hing’an Mountains Based on CoupModel. Atmosphere 2022, 13, 44. https://doi.org/10.3390/atmos13010044
Li Y, Wan Z, Sun L. Simulation of Carbon Exchange from a Permafrost Peatland in the Great Hing’an Mountains Based on CoupModel. Atmosphere. 2022; 13(1):44. https://doi.org/10.3390/atmos13010044
Chicago/Turabian StyleLi, Yue, Zhongmei Wan, and Li Sun. 2022. "Simulation of Carbon Exchange from a Permafrost Peatland in the Great Hing’an Mountains Based on CoupModel" Atmosphere 13, no. 1: 44. https://doi.org/10.3390/atmos13010044
APA StyleLi, Y., Wan, Z., & Sun, L. (2022). Simulation of Carbon Exchange from a Permafrost Peatland in the Great Hing’an Mountains Based on CoupModel. Atmosphere, 13(1), 44. https://doi.org/10.3390/atmos13010044