Using Low-Cost Sensors to Assess PM2.5 Concentrations at Four South Texan Cities on the U.S.—Mexico Border
Abstract
:1. Introduction
2. Study Design and Methods
2.1. Site Selection and Study Period
2.2. Topography and Meteorological Conditions
2.3. Instrumentation
2.4. Quality Assurance and Quality Control (QA/QC) of PM2.5 Data
“Furthermore, in an ideal scenario, comparison of the sensors used in this study should have been collocated with the three TCEQ CAMS sites at the beginning of the study. However, the study was conceived during the peak COVID-19 pandemic period and that presented many logistical challenges due to lockdowns etc. We recommend that future studies by ours as well as other research groups in this region should undertake the sensor comparisons with the TCEQ CAMS sites itself (i.e., installing the sensors in the vicinity or the premises of the TCEQ CAMS sites) pursuant to getting the requisite permission from the government authorities in the city and county and, perhaps, limiting the scope of the study in terms of area and duration. i.e., conducting a study with multiple low-cost sensors within a single city.”
2.5. Statistical Data Analysis
3. Results and Discussion
3.1. PM2.5 Concentration Analyses
3.2. Spatial Heterogeneity across the Four Cities
3.3. Inter-Site Correlation Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feenstra, B.J. Development of Methodologies for the Use and Application of Air Quality Sensors to Enable Community Air Monitoring. Ph.D. Thesis, University of California, Riverside, CA, USA, 2020. [Google Scholar]
- Gao, M.; Cao, J.; Seto, E. A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China. Environ. Pollut. 2015, 199, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Wang, Y.-B.; Yu, H.-L. An efficient spatiotemporal data calibration approach for the low-cost PM2.5 sensing network: A case study in Taiwan. Environ. Int. 2019, 130, 104838. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jayaratne, R.; Thai, P.; Kuhn, T.; Zing, I.; Christensen, B.; Lamont, R.; Dunbabin, M.; Zhu, S.; Gao, J.; et al. Low-cost sensors as an alternative for long-term air quality monitoring. Environ. Res. 2020, 185, 109438. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Stanton, L.G.; Graham, A.R.; Roberts, P.T. Assessing the Utility of Low-Cost Particulate Matter Sensors over a 12-Week Period in the Cuyama Valley of California. Sensors 2017, 17, 1805. [Google Scholar] [CrossRef]
- Wang, Z. Long-Term Evaluation of Low-Cost Air Sensors in Monitoring Indoor Air Quality at a California Community. Master’s Thesis, University of California, Los Angeles, CA, USA, 2020. [Google Scholar]
- deSouza, P.N.; Nthusi, V.K.; Klopp, J.; Shaw, B.E.; Ho, W.O.; Saffell, J.; Jones, R.L.; Ratti, C. A Nairobi experiment in using low cost air quality monitors. Clean Air J. 2017, 27, 12. [Google Scholar] [CrossRef]
- Pang, X.; Chen, L.; Shi, K.; Wu, F.; Chen, J.; Fang, S.; Wang, J.; Xu, M. A lightweight low-cost and multipollutant sensor package for aerial observations of air pollutants in atmospheric boundary layer. Sci. Total Environ. 2021, 764, 142828. [Google Scholar] [CrossRef]
- Khreis, H.; Johnson, J.; Jack, K.; Dadashova, B.; Park, E.S. Evaluating the Performance of Low-Cost Air Quality Monitors in Dallas, Texas. Int. J. Environ. Res. Public Health 2022, 19, 1647. [Google Scholar] [CrossRef]
- Sun, L.; Wong, K.C.; Wei, P.; Ye, S.; Huang, H.; Yang, F.; Westerdahl, D.; Louie, P.K.K.; Luk, C.W.Y.; Ning, Z. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring. Sensors 2016, 16, 211. [Google Scholar] [CrossRef]
- Weissert, L.F.; Salmond, J.A.; Miskell, G.; Alavi-Shoshtari, M.; Grange, S.K.; Henshaw, G.S.; Williams, D.E. Use of a dense monitoring network of low-cost instruments to observe local changes in the diurnal ozone cycles as marine air passes over a geographically isolated urban centre. Sci. Total Environ. 2017, 575, 67–78. [Google Scholar] [CrossRef]
- Zamora, M.L.; Rice, J.; Koehler, K. One Year Evaluation of Three Low-Cost PM(2.5) Monitors. Atmos. Environ. 2020, 235, 117615. [Google Scholar] [CrossRef]
- Esworthy, R. Air Quality: EPA’S 2013 Changes to the Particulate Matter (PM) Standard; CreateSpace: Scotts Valley, CA, USA, 2014; pp. 157–208. [Google Scholar]
- Kim, K.-H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection. NAAQS Table. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 14 May 2022).
- Particulate Matter (PM) Pollution. Available online: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (accessed on 14 May 2022).
- Burton, R.K. Analysis of Low-Cost Particulate Matter Shinyei Sensor for Asthma Research. Master’s Thesis, University of Maryland, Baltimore, MD, USA, 2017. [Google Scholar]
- Dausman, T.B.C. Low Cost Air Quality Monitors in Agriculture. Master’s Thesis, The University of Iowa, Iowa City, IA, USA, 2017. [Google Scholar]
- Srimuruganandam, B.; Shiva Nagendra, S.M. Source characterization of PM10 and PM2.5 mass using a chemical mass balance model at urban roadside. Sci. Total Environ. 2012, 433, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 13 May 2022).
- Atkinson, R.W.; Fuller, G.W.; Anderson, H.R.; Harrison, R.M.; Armstrong, B. Urban Ambient Particle Metrics and Health: A Time-series Analysis. Epidemiology 2010, 21, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Brunekreef, B.; Forsberg, B. Epidemiological evidence of effects of coarse airborne particles on health. Eur. Respir. J. 2005, 26, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Cadelis, G.; Tourres, R.; Molinie, J. Short-Term Effects of the Particulate Pollutants Contained in Saharan Dust on the Visits of Children to the Emergency Department due to Asthmatic Conditions in Guadeloupe (French Archipelago of the Caribbean). PLoS ONE 2014, 9, e91136. [Google Scholar] [CrossRef]
- Correia, A.W.; Pope, C.A., 3rd; Dockery, D.W.; Wang, Y.; Ezzati, M.; Dominici, F. Effect of air pollution control on life expectancy in the United States: An analysis of 545 U.S. counties for the period from 2000 to 2007. Epidemiology 2013, 24, 23–31. [Google Scholar] [CrossRef]
- Fang, Y.; Naik, V.; Horowitz, L.W.; Mauzerall, D.L. Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present. Atmos. Chem. Phys. 2013, 13, 1377–1394. [Google Scholar] [CrossRef]
- Meister, K.; Johansson, C.; Forsberg, B. Estimated short-term effects of coarse particles on daily mortality in Stockholm, Sweden. Environ. Health Perspect. 2012, 120, 431–436. [Google Scholar] [CrossRef]
- Misra, C.; Geller, M.; Shah, P.; Solomon, P. Development and evaluation of a continuous coarse (PM10-PM2.5) particle monitor. J. Air Waste Manag. Assoc. 2001, 51, 1309–1317. [Google Scholar] [CrossRef]
- de Kok, T.M.; Driece, H.A.; Hogervorst, J.G.; Briedé, J.J. Toxicological assessment of ambient and traffic-related particulate matter: A review of recent studies. Mutat. Res. 2006, 613, 103–122. [Google Scholar] [CrossRef]
- Raysoni, A.U.; Sarnat, J.A.; Sarnat, S.E.; Garcia, J.H.; Holguin, F.; Luèvano, S.F.; Li, W.-W. Binational school-based monitoring of traffic-related air pollutants in El Paso, Texas (USA) and Ciudad Juárez, Chihuahua (México). Environ. Pollut. 2011, 159, 2476–2486. [Google Scholar] [CrossRef] [PubMed]
- Raysoni, A.U.; Stock, T.H.; Sarnat, J.A.; Montoya Sosa, T.; Ebelt Sarnat, S.; Holguin, F.; Greenwald, R.; Johnson, B.; Li, W.-W. Characterization of traffic-related air pollutant metrics at four schools in El Paso, Texas, USA: Implications for exposure assessment and siting schools in urban areas. Atmos. Environ. 2013, 80, 140–151. [Google Scholar] [CrossRef]
- Askariyeh, M.H.; Venugopal, M.; Khreis, H.; Birt, A.; Zietsman, J. Near-Road Traffic-Related Air Pollution: Resuspended PM2.5 from Highways and Arterials. Int. J. Environ. Res. Public Health 2020, 17, 2851. [Google Scholar] [CrossRef] [PubMed]
- Girguis, M.S.; Strickland, M.J.; Hu, X.; Liu, Y.; Bartell, S.M.; Vieira, V.M. Maternal exposure to traffic-related air pollution and birth defects in Massachusetts. Environ. Res. 2016, 146, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kioumourtzoglou, M.A.; Schwartz, J.D.; Weisskopf, M.G.; Melly, S.J.; Wang, Y.; Dominici, F.; Zanobetti, A. Long-term PM2.5 Exposure and Neurological Hospital Admissions in the Northeastern United States. Environ. Health Perspect. 2016, 124, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Vallamsundar, S.; Askariyeh, M.H.; Zietsman, J.; Ramani, T.L.; Johnson, N.M.; Pulczinski, J.; Koehler, K.A. Maternal Exposure to Traffic-Related Air Pollution Across Different Microenvironments. J. Transp. Health 2016, 3, S72. [Google Scholar] [CrossRef]
- Weinstock, L.; Watkins, N.; Wayland, R.; Baldauf, R. EPA’s Emerging Near-Road Ambient Monitoring Network: A Progress Report. EM Magazine. 2013. Available online: pubs.awma.org/gsearch/em/2013/7/weinstock.pdf (accessed on 20 May 2022).
- Bozlaker, A.; Buzcu-Güven, B.; Fraser, M.P.; Chellam, S. Insights into PM10 sources in Houston, Texas: Role of petroleum refineries in enriching lanthanoid metals during episodic emission events. Atmos. Environ. 2013, 69, 109–117. [Google Scholar] [CrossRef]
- Bozlaker, A.; Spada, N.J.; Fraser, M.P.; Chellam, S. Elemental characterization of PM2.5 and PM10 emitted from light duty vehicles in the Washburn Tunnel of Houston, Texas: Release of rhodium, palladium, and platinum. Environ. Sci. Technol. 2014, 48, 54–62. [Google Scholar] [CrossRef]
- Juda-Rezler, K.; Reizer, M.; Oudinet, J.-P. Determination and analysis of PM10 source apportionment during episodes of air pollution in Central Eastern European urban areas: The case of wintertime 2006. Atmos. Environ. 2011, 45, 6557–6566. [Google Scholar] [CrossRef]
- Kulkarni, P.; Chellam, S.; Fraser, M.P. Lanthanum and lanthanides in atmospheric fine particles and their apportionment to refinery and petrochemical operations in Houston, TX. Atmos. Environ. 2006, 40, 508–520. [Google Scholar] [CrossRef]
- Kulkarni, P.; Chellam, S.; Fraser, M.P. Tracking petroleum refinery emission events using lanthanum and lanthanides as elemental markers for PM2.5. Environ. Sci. Technol. 2007, 41, 6748–6754. [Google Scholar] [CrossRef]
- Williamson, K.; Das, S.; Ferro, A.R.; Chellam, S. Elemental composition of indoor and outdoor coarse particulate matter at an inner-city high school. Atmos. Environ. 2021, 261, 118559. [Google Scholar] [CrossRef]
- Mendez, E.; Rodriguez, J.; Luna, A.; Raysoni, A.U. Comparative Assessment of Pollutant Concentrations and Meteorological Parameters from TCEQ CAMS Sites at Houston and Rio Grande Valley Regions of Texas, USA in 2016. Open J. Air Pollut. 2022, 11, 13–27. [Google Scholar] [CrossRef]
- The Official South Texas Hurricane Guide. 2021. Available online: https://www.weather.gov/media/crp/2021_HG_English_Final.pdf (accessed on 14 May 2022).
- Rio Grande Valley, Texas Travel Guide. Available online: https://www.go-texas.com/Rio-Grande-Valley/ (accessed on 14 May 2022).
- Karnae, S.; John, K. Source apportionment of PM2.5 measured in South Texas near U.S.A—Mexico Border. Atmos. Pollut. Res. 2019, 10, 1663–1676. [Google Scholar] [CrossRef]
- Akland, G.G.; Schwab, M.; Zenick, H.; Pahl, D. An interagency partnership applied to the study of environmental health in the Lower Rio Grande Valley of Texas. Environ. Int. 1997, 23, 595–609. [Google Scholar] [CrossRef]
- North American Free Trade Agreement (NAFTA). Available online: https://www.trade.gov/north-american-free-trade-agreement-nafta (accessed on 14 May 2022).
- U.S.-Mexico Border Program. Available online: https://www.epa.gov/usmexicoborder/what-border-2025 (accessed on 14 May 2022).
- Population Data for Region: Rio Grande Valley. Available online: https://www.rgvhealthconnect.org/demographicdata?id=281259§ionId=935 (accessed on 14 May 2022).
- Lusk, M.; Staudt, K.; Moya, E.M. Chapter 1: Social Justice in the U.S.-Mexico Border Region 2012; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2012; ISBN 978-94-007-4150-8. [Google Scholar] [CrossRef]
- QuickFacts Hidalgo County, Texas; Cameron County, Texas. Available online: https://www.census.gov/quickfacts/fact/table/hidalgocountytexas,cameroncountytexas/IPE120220#IPE120220 (accessed on 15 May 2022).
- BlueSky Air Quality Monitor. Available online: https://tsi.com/getmedia/4c72a030-4585-4df4-a7c8-596aa1994734/BlueSky-Air-Quality-Monitor_A4_5002492_RevB_Web?ext=.pdf (accessed on 15 May 2022).
- TSI-BlueSky. Available online: http://www.aqmd.gov/aq-spec/sensordetail/tsi---bluesky (accessed on 15 May 2022).
- TCEQ CAMS 43 Location. Available online: https://www17.tceq.texas.gov/tamis/index.cfm?fuseaction=report.view_site&siteID=97&siteOrderBy=name&showActiveOnly=0&showActMonOnly=1&formSub=1&tab=pics (accessed on 10 September 2022).
- United States Environmental Protection Agency. EPA Requirements for Quality Assurance Project Plans: EPA/240/B-01/003. Available online: https://www.epa.gov/sites/default/files/2016-06/documents/r5-final_0.pdf (accessed on 14 May 2022).
- Zou, Y.; Clark, J.D.; May, A.A. Laboratory evaluation of the effects of particle size and composition on the performance of integrated devices containing Plantower particle sensors. Aerosol Sci. Technol. 2021, 55, 848–858. [Google Scholar] [CrossRef]
- Hoek, G.; Brunekreef, B.; Goldbohm, S.; Fischer, P.; van den Brandt, P.A. Association between mortality and indicators of traffic-related air pollution in the Netherlands: A cohort study. Lancet 2002, 360, 1203–1209. [Google Scholar] [CrossRef]
- Lewne, M.; Cyrys, J.; Meliefste, K.; Hoek, G.; Brauer, M.; Fischer, P. Spatial variation in nitrogen dioxide in three European areas. Sci. Total Environ. 2004, 332, 217–230. [Google Scholar] [CrossRef]
- Sarnat, J.A.; Koutrakis, P.; Suh, H.H. Assessing the relationship between personal particulate and gaseous exposures of senior citizens living in Baltimore, MD. J. Air Waste Manag. Assoc. 2000, 50, 1184–1198. [Google Scholar] [CrossRef]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef]
- AQMD Air Quality Sensor Performance Evaluation Center. 2021. Available online: http://www.aqmd.gov/aq-spec/evaluations/summary-pm (accessed on 19 May 2022).
- Pinto, J.P.; Lefohn, A.S.; Shadwick, D.S. Spatial variability of PM2.5 in urban areas in the United States. J. Air Waste Manag. Assoc. 2004, 54, 440–449. [Google Scholar] [CrossRef]
- Krudysz, M.A.; Froines, J.R.; Fine, P.M.; Sioutas, C. Intra-community spatial variation of size-fractionated PM mass, OC, EC, and trace elements in the Long Beach, CA area. Atmos. Environ. 2008, 42, 5374–5389. [Google Scholar] [CrossRef]
- Raysoni, A.U.; Mendez, E.; Luna, A.; Collins, J. Characterization of Particulate Matter Species in an Area Impacted by Aggregate and Limestone Mining North of San Antonio, TX, USA. Sustainability 2022, 14, 4288. [Google Scholar] [CrossRef]
- Tanzer, R.; Malings, C.; Hauryliuk, A.; Subramanian, R.; Presto, A. Demonstration of a Low-Cost Multi-Pollutant Network to Quantify Intra -Urban Spatial Variations in Air Pollutant Source Impacts and to Evaluate Environmental Justice. Int. J. Environ. Res. Public Health 2019, 16, 2523. [Google Scholar] [CrossRef]
- Zikova, N.; Hopke, P.K.; Ferro, A.R. Evaluation of new low-cost particle monitors for PM2.5 concentrations measurements. J. Aerosol Sci. 2017, 105, 24–34. [Google Scholar] [CrossRef]
- Mukherjee, A.; Brown, S.G.; McCarthy, M.C.; Pavlovic, N.R.; Stanton, L.G.; Snyder, J.L.; D’Andrea, S.D.; Hafner, H.R. Measuring Spatial and Temporal PM2.5 Variations in Sacramento, California, Communities Using a Network of Low-Cost. Sensors 2019, 19, 4701. [Google Scholar] [CrossRef] [Green Version]
Site | Mean | Median | Max | Min | StDev | N | |
---|---|---|---|---|---|---|---|
RWS | C43 | 2.8 | 2.7 | 6.1 | 1.0 | 1.0 | 396 |
(m/s) | C80 | 3.0 | 2.8 | 8.3 | 0.1 | 1.4 | 393 |
C323 | 3.4 | 3.7 | 6.7 | 1.1 | 1.1 | 396 | |
C1023 | 3.6 | 3.3 | 8.7 | 1.4 | 1.3 | 396 | |
C1046 | 2.7 | 2.4 | 8.2 | 0.8 | 1.3 | 394 | |
T | C43 | 23.3 | 24.6 | 31.3 | 4.4 | 6.08 | 396 |
(°C) | C80 | 23.2 | 24.1 | 30.6 | 2.8 | 5.73 | 396 |
C323 | 23.5 | 24.5 | 30.9 | 3.3 | 6.02 | 395 | |
C1023 | 23.2 | 24.3 | 31.1 | 3.1 | 6.04 | 396 | |
C1046 | 23.4 | 24.6 | 31.3 | 4.1 | 6.10 | 396 | |
SR | C43 | 0.3 | 0.3 | 0.5 | 0.03 | 0.1 | 396 |
C80 | 0.3 | 0.3 | 0.5 | 0.02 | 0.1 | 396 |
Site | Completeness |
---|---|
B1 | 384/396 (97.0%) |
B2 | 354/396 (89.4%) |
B3 | 379/396 (95.7%) |
B4 | 373/396 (94.2%) |
B5 | 385/396 (97.2%) |
E1 | 390/396 (98.5%) |
E2 | 396/396 (100.0%) |
E3 | 394/396 (99.5%) |
W1 | 383/396 (96.7%) |
W2 | 396/396 (100.0%) |
PI | 396/396 (100.0%) |
C43 | 393/396 (99.2%) |
C80 | 392/396 (99.0%) |
C323 | 352/396 (88.9%) |
Sampled Test | Sampler ID | Collocated Sampler ID | Start Date (0 to 23 h) | End Date (0 to 23 h) | Sampled Hours | R2 | Regression Equation | RMSD | Absolute Precision (µg/m3) | Relative Precision, p (%) | Spearman’s Rho | COD |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Study | W1 | B5 | 12 February 2021 0:00 | 18 February 2021 23:00 | 168 | 0.99 | 0.86x − 0.09 | 1.57 | 1.11 | 13.7 | 0.997 | 0.092 |
19 February 2021 0:00 | 25 February 2021 23:00 | 168 | 0.99 | 0.84x + 0.91 | 2.81 | 1.98 | 22 | 0..994 | 0.043 | |||
26 February 2021 0:00 | 4 March 2021 23:00 | 168 | 0.99 | 1.06x − 0.33 | 0.66 | 0.47 | 5 | 0.997 | 0.044 | |||
5 March 2021 0:00 | 9 March 2021 23:00 | 120 | 0.99 | 0.94x + 0.11 | 0.49 | 0.35 | 5 | 0.995 | 0.038 | |||
Post-Study | B4 | W1 | 15 April 2022 11:00 | 22 April 2022 12:00 | 169 | 0.98 | 0.88x − 0.21 | 1.41 | 0.99 | 12 | 0.987 | 0.084 |
B3 | W1 | 22 April 2022 13:10 | 29 April 2022 14:00 | 169 | 0.95 | 0.67x + 0.21 | 1.93 | 1.37 | 28 | 0.986 | 0.177 | |
W2 | W1 | 29 April 2022 17:00 | 6 May 2022 14:00 | 165 | 0.99 | 0.99x − 0.14 | 0.58 | 0.41 | 4 | 0.994 | 0.032 | |
E1 | W1 | 6 May 2022 16:00 | 13 May 2022 9:00 | 162 | 0.99 | 1.13x − 0.08 | 1.95 | 1.38 | 10 | 0.995 | 0.062 | |
E3 | E1 | 13 May 2022 11:00 | 20 May 2022 10:00 | 167 | 0.99 | 0.72x + 0.02 | 3.05 | 2.16 | 30.5 | 0.992 | 0.164 |
Site | Mean | StDev | Median | Max | Min |
---|---|---|---|---|---|
B1 | 7.24 | 5.39 | 5.50 | 39.95 | 1.14 |
B2 | 5.45 | 3.62 | 4.33 | 26.10 | 0.82 |
B3 | 5.05 | 3.35 | 4.07 | 24.39 | 0.76 |
B4 | 5.99 | 4.01 | 4.82 | 28.32 | 1.24 |
B5 | 6.77 | 5.17 | 5.08 | 35.57 | 1.12 |
E1 | 7.16 | 4.97 | 5.45 | 40.70 | 1.41 |
E2 | 6.45 | 4.78 | 4.96 | 30.33 | 1.06 |
E3 | 5.69 | 4.08 | 4.40 | 29.29 | 0.93 |
W1 | 7.43 | 4.68 | 6.04 | 27.58 | 1.65 |
W2 | 6.47 | 4.79 | 5.00 | 37.21 | 1.10 |
PI | 6.33 | 4.54 | 5.08 | 27.81 | 0.45 |
C43 | 10.76 | 5.81 | 9.13 | 38.29 | 1.96 |
C80 | 8.79 | 5.39 | 7.17 | 31.33 | 1.61 |
C323 | 10.74 | 6.00 | 9.19 | 31.09 | 0.00 |
PM2.5 | B2 | B3 | B4 | B5 | E1 | E2 | E3 | W1 | W2 | PI | C43 | C80 | C323 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B1 | 0.37 | 0.31 | 0.31 | 0.25 | 0.26 | 0.23 | 0.26 | 0.28 | 0.21 | 0.24 | 0.33 | 0.27 | 0.47 |
B2 | 0.39 | 0.32 | 0.39 | 0.40 | 0.36 | 0.36 | 0.43 | 0.36 | 0.37 | 0.49 | 0.43 | 0.58 | |
B3 | 0.33 | 0.30 | 0.31 | 0.27 | 0.27 | 0.35 | 0.26 | 0.26 | 0.45 | 0.36 | 0.54 | ||
B4 | 0.31 | 0.31 | 0.28 | 0.29 | 0.34 | 0.27 | 0.29 | 0.42 | 0.34 | 0.50 | |||
B5 | 0.25 | 0.22 | 0.24 | 0.29 | 0.20 | 0.22 | 0.37 | 0.29 | 0.48 | ||||
E1 | 0.16 | 0.20 | 0.24 | 0.17 | 0.26 | 0.30 | 0.26 | 0.46 | |||||
E2 | 0.11 | 0.24 | 0.10 | 0.21 | 0.33 | 0.27 | 0.47 | ||||||
E3 | 0.27 | 0.14 | 0.23 | 0.38 | 0.31 | 0.50 | |||||||
W1 | 0.22 | 0.29 | 0.31 | 0.28 | 0.46 | ||||||||
W2 | 0.19 | 0.33 | 0.25 | 0.46 | |||||||||
PI | 0.37 | 0.28 | 0.47 | ||||||||||
C43 | 0.23 | 0.39 | |||||||||||
C80 | 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendez, E.; Temby, O.; Wladyka, D.; Sepielak, K.; Raysoni, A.U. Using Low-Cost Sensors to Assess PM2.5 Concentrations at Four South Texan Cities on the U.S.—Mexico Border. Atmosphere 2022, 13, 1554. https://doi.org/10.3390/atmos13101554
Mendez E, Temby O, Wladyka D, Sepielak K, Raysoni AU. Using Low-Cost Sensors to Assess PM2.5 Concentrations at Four South Texan Cities on the U.S.—Mexico Border. Atmosphere. 2022; 13(10):1554. https://doi.org/10.3390/atmos13101554
Chicago/Turabian StyleMendez, Esmeralda, Owen Temby, Dawid Wladyka, Katarzyna Sepielak, and Amit U. Raysoni. 2022. "Using Low-Cost Sensors to Assess PM2.5 Concentrations at Four South Texan Cities on the U.S.—Mexico Border" Atmosphere 13, no. 10: 1554. https://doi.org/10.3390/atmos13101554
APA StyleMendez, E., Temby, O., Wladyka, D., Sepielak, K., & Raysoni, A. U. (2022). Using Low-Cost Sensors to Assess PM2.5 Concentrations at Four South Texan Cities on the U.S.—Mexico Border. Atmosphere, 13(10), 1554. https://doi.org/10.3390/atmos13101554