15N Natural Abundance Characteristics of Ammonia Volatilization from Soils Applied by Different Types of Fertilizer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sample and N Fertilizer Types
2.2. Measurements of NH3 Volatilization
2.3. Physical and Chemical Soil Analysis
2.4. Nitrogen Isotopic Analysis
2.5. Statistical Analysis
3. Results
3.1. NH3 Volatilization of Different Fertilizers
3.2. δ15N Values of NH3 Volatilized from Soils
3.3. Variation in Soil Properties
3.4. Relationship between δ15N-NH3 and Soil Properties
4. Discussion
4.1. Characteristics of δ15N-NH3 Volatilized from Different Fertilizers
4.2. Impacts of Fertilizer Types on δ15N-NH3
4.3. Application and Limitation of δ15N-NH3
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20130164. [Google Scholar] [CrossRef] [PubMed]
- Kirkby, J.; Curtius, J.; Almeida, J.; Dunne, E.; Duplissy, J.; Ehrhart, S.; Franchin, A.; Gagne, S.; Ickes, L.; Kurten, A.; et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 2011, 476, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Tan, J.; Zhao, Q.; Du, Z.; He, K.; Ma, Y.; Duan, F.; Chen, G.; Zhao, Q. Characteristics of PM2.5 speciation in representative megacities and across China. Atmos. Chem. Phys. Discuss. 2011, 11, 1025–1051. [Google Scholar] [CrossRef]
- Zhan, X.; Bo, Y.; Zhou, F.; Liu, X.; Paerl, H.W.; Shen, J.; Wang, R.; Li, F.; Tao, S.; Dong, Y.; et al. Evidence for the Importance of Atmospheric Nitrogen Deposition to Eutrophic Lake Dianchi, China. Environ. Sci. Technol. 2017, 51, 6699–6708. [Google Scholar] [CrossRef]
- Dentener, F.; Drevet, J.; Lamarque, J.F.; Bey, I.; Eickhout, B.; Fiore, A.M.; Hauglustaine, D.; Horowitz, L.W.; Krol, M.; Kulshrestha, U.C.; et al. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Glob. Biogeochem. Cycles 2006, 20, GB4003. [Google Scholar] [CrossRef]
- Gu, B.; Zhang, L.; Dingenen, R.V.; Vieno, M.; Grinsven, H.J.V.; Zhang, X.; Zhang, S.; Chen, Y.; Wang, S.; Ren, C.; et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 2021, 374, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Babar, Z.B.; Park, J.-H.; Lim, H.-J. Influence of NH3 on secondary organic aerosols from the ozonolysis and photooxidation of α-pinene in a flow reactor. Atmos. Environ. 2017, 164, 71–84. [Google Scholar] [CrossRef]
- Kang, Y.; Liu, M.; Song, Y.; Huang, X.; Yao, H.; Cai, X.; Zhang, H.; Kang, L.; Liu, X.; Yan, X.; et al. High-resolution ammonia emissions inventories in China from 1980 to 2012. Atmos. Chem. Phys. 2016, 16, 2043–2058. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Zhao, Y.; Henze, D.K.; Zhu, L.; Song, Y.; Paulot, F.; Liu, X.; Pan, Y.; Lin, Y.; et al. Agricultural ammonia emissions in China: Reconciling bottom-up and top-down estimates. Atmos. Chem. Phys. 2018, 18, 339–355. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Zou, J.; Han, Z.; Yu, K.; Wu, S.; Li, Z.; Liu, S.; Niu, S.; Horwath, W.R.; Zhu-Barker, X. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: A refinement based on regional and crop-specific emission factors. Glob. Chang. Biol. 2021, 27, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Luan, S.; Chen, L.; Shao, M. Estimating the volatilization of ammonia from synthetic nitrogenous fertilizers used in China. J. Environ. Manag. 2011, 92, 480–493. [Google Scholar] [CrossRef] [PubMed]
- Sutton, M.A.; Reis, S.; Riddick, S.N.; Dragosits, U.; Nemitz, E.; Theobald, M.R.; Sim Tang, Y.; Braban, C.F.; Vieno, M.; Dore, A.J.; et al. Towards a climate-dependent paradigm of ammonia emission and deposition. Philos. Trans. R. Soc. B-Biol. Sci. 2013, 368. [Google Scholar] [CrossRef] [PubMed]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Estimation of global NH3volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Glob. Biogeochem. Cycles 2002, 16, 8-1–8-14. [Google Scholar] [CrossRef]
- Nikolenko, O.; Jurado, A.; Borges, A.V.; Knller, K.; Brouyre, S. Isotopic composition of nitrogen species in groundwater under agricultural areas: A review. Sci. Total Environ. 2018, 621, 1415–1432. [Google Scholar] [CrossRef]
- Robinson, D. δ15N as an integrator of the nitrogen cycle. Trends Ecol. Evolut. 2001, 16, 153–162. [Google Scholar] [CrossRef]
- Choi, W.-J.; Lee, S.-M.; Ro, H.-M. Evaluation of contamination sources of groundwater NO3− using nitrogen isotope data: A review. Geosci. J. 2003, 7, 81–87. [Google Scholar] [CrossRef]
- Bhattarai, N.; Wang, S.; Pan, Y.; Xu, Q.; Zhang, Y.; Chang, Y.; Fang, Y. delta(15)N-stable isotope analysis of NH x: An overview on analytical measurements, source sampling and its source apportionment. Front. Environ. Sci. Eng. 2021, 15, 126. [Google Scholar] [CrossRef]
- Elliott, E.M.; Yu, Z.; Cole, A.S.; Coughlin, J.G. Isotopic advances in understanding reactive nitrogen deposition and atmospheric processing. Sci. Total Environ. 2019, 662, 393–403. [Google Scholar] [CrossRef]
- Zeng, Y.; Tian, S.; Pan, Y. Revealing the Sources of Atmospheric Ammonia: A Review. Curr. Pollut. Rep. 2018, 4, 189–197. [Google Scholar] [CrossRef]
- Ti, C.; Gao, B.; Luo, Y.; Wang, X.; Wang, S.; Yan, X. Isotopic characterization of NHx-N in deposition and major emission sources. Biogeochemistry 2018, 138, 85–102. [Google Scholar] [CrossRef]
- Chalk, P.M.; Inácio, C.T.; Chen, D. An overview of contemporary advances in the usage of 15N natural abundance (δ15N) as a tracer of agro-ecosystem N cycle processes that impact the environment. Agric. Ecosyst. Environ. 2019, 283. [Google Scholar] [CrossRef]
- Wells, N.S.; Baisden, W.T.; Clough, T.J. Ammonia volatilisation is not the dominant factor in determining the soil nitrate isotopic composition of pasture systems. Agric. Ecosyst. Environ. 2015, 199, 290–300. [Google Scholar] [CrossRef]
- Chang, Y.; Liu, X.; Deng, C.; Dore, A.J.; Zhuang, G. Source apportionment of atmospheric ammonia before, during, and after the 2014 APEC summit in Beijing using stable nitrogen isotope signatures. Atmos. Chem. Phys. 2016, 16, 11635–11647. [Google Scholar] [CrossRef]
- Frank, D.A.; Evans, R.D.; Tracy, B.F. The role of ammonia volatilization in controlling the natural 15N abundance of a grazed grassland. Biogeochemistry 2004, 68, 169–178. [Google Scholar] [CrossRef]
- Ti, C.; Xia, L.; Chang, S.X.; Yan, X. Potential for mitigating global agricultural ammonia emission: A meta-analysis. Environ. Pollut. 2019, 245, 141–148. [Google Scholar] [CrossRef]
- Ti, C.; Ma, S.; Peng, L.; Tao, L.; Wang, X.; Dong, W.; Wang, L.; Yan, X. Changes of delta(15)N values during the volatilization process after applying urea on soil. Environ. Pollut. 2021, 270, 116204. [Google Scholar] [CrossRef]
- Liu, D.; Fang, Y.; Tu, Y.; Pan, Y. Chemical method for nitrogen isotopic analysis of ammonium at natural abundance. Anal. Chem. 2014, 86, 3787–3792. [Google Scholar] [CrossRef]
- Berner, A.H.; David Felix, J. Investigating ammonia emissions in a coastal urban airshed using stable isotope techniques. Sci. Total Environ. 2020, 707, 134952. [Google Scholar] [CrossRef]
- Felix, J.D.; Elliott, E.M.; Gish, T.J.; McConnell, L.L.; Shaw, S.L. Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach. Rapid Commun. Mass Spectrom. 2013, 27, 2239–2246. [Google Scholar] [CrossRef]
- Savard, M.M.; Cole, A.; Smirnoff, A.; Vet, R. δ15 N values of atmospheric N species simultaneously collected using sector-based samplers distant from sources—Isotopic inheritance and fractionation. Atmos. Environ. 2017, 162, 11–22. [Google Scholar] [CrossRef]
- Silva, A.G.B.; Sequeira, C.H.; Sermarini, R.A.; Otto, R. Urease Inhibitor NBPT on Ammonia Volatilization and Crop Productivity: A Meta-Analysis. Agron. J. 2017, 109, 1–13. [Google Scholar] [CrossRef]
- Choi, W.-J.; Kwak, J.-H.; Lim, S.-S.; Park, H.-J.; Chang, S.X.; Lee, S.-M.; Arshad, M.A.; Yun, S.-I.; Kim, H.-Y. Synthetic fertilizer and livestock manure differently affect δ15N in the agricultural landscape: A review. Agric. Ecosyst. Environ. 2017, 237, 1–15. [Google Scholar] [CrossRef]
- Bhujbal, B.M.; Mistry, K.B. Reaction products of ammonium nitrate phosphate fertilizers of varying water-soluble phosphorus content in different Indian soils. Fertil. Res. 1986, 10, 59–71. [Google Scholar] [CrossRef]
- Mariano, E.; de Sant Ana Filho, C.R.; Bortoletto-Santos, R.; Bendassolli, J.A.; Trivelin, P.C.O. Ammonia losses following surface application of enhanced-efficiency nitrogen fertilizers and urea. Atmos. Environ. 2019, 203, 242–251. [Google Scholar] [CrossRef]
- Chien, S.H.; Prochnow, L.I.; Cantarella, H. Chapter 8 Recent Developments of Fertilizer Production and Use to Improve Nutrient Efficiency and Minimize Environmental Impacts. Adv. Agron. 2009, 102, 267–322. [Google Scholar] [CrossRef]
- Christianson, C.B.; Baethgen, W.E.; Carmona, G.; Howard, R.G. Microsite reactions of urea-nbtpt fertilizer on the soil surface. Soil Biol. Biochem. 1993, 25, 1107–1117. [Google Scholar] [CrossRef]
- Larsen, S.; Gunary, D. Ammonia loss from ammoniacal fertilisers applied to calcareous soils. J. Sci. Food Agric. 1962, 13, 566–572. [Google Scholar] [CrossRef]
- Kissel, D.E.; Cabrera, M.L.; Paramasivam, S. Ammonium, ammonia, and urea reactions in soils. In Nitrogen in Agricultural Systems; Schepers, J.S., Raun, W., Eds.; Agronomy Monograph: Madison, WI, USA, 2008; Volume 49, pp. 101–155. [Google Scholar]
- Witter, E.; Lopez-Real, J. Nitrogen Losses During the Composting of Sewage Sludge, and the Effectiveness of Clay Soil, Zeolite, and Compost in Adsorbing the Volatilized Ammonia. Biol. Wastes 1988, 23, 279–294. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, B.; Chen, D. Regional-scale patterns of δ13C and δ15N associated with multiple ecosystem functions along an aridity gradient in grassland ecosystems. Plant Soil 2018, 432, 107–118. [Google Scholar] [CrossRef]
- Högberg, P. Tansley Review No. 95-15N natural abundance in soil-plant systems. New Phytol. 1997, 137, 179–203. [Google Scholar] [CrossRef] [PubMed]
- Heaton, T.H.E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: A review. Chem. Geol. 1986, 59, 87–102. [Google Scholar] [CrossRef]
- Choi, W.J.; Arshad, M.A.; Chang, S.X.; Kim, T.H. Grain 15N of crops applied with organic and chemical fertilizers in a four-year rotation. Plant Soil 2006, 284, 165–174. [Google Scholar] [CrossRef]
- Sommer, S.G.; Schjoerring, J.K.; Denmead, O.T. Ammonia Emission from Mineral Fertilizers and Fertilized Crops. Adv. Agron. 2004, 82, 557–622. [Google Scholar] [CrossRef]
- Pan, B.; Lam, S.K.; Mosier, A.; Luo, Y.; Chen, D. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agric. Ecosyst. Environ. 2016, 232, 283–289. [Google Scholar] [CrossRef]
pH | Total N (g/kg) | SOC (g/kg) | NH4+-N (mg/kg) | NO3−-N (mg/kg) | Clay (%) | Silt (%) | Sand (%) | δ15N-NH4+ (‰) | |
---|---|---|---|---|---|---|---|---|---|
Average | 7.09 | 0.27 | 2.99 | 3.55 | 6.10 | 31.70 | 58.40 | 9.90 | −3.4 |
SD * | 0.03 | 0.02 | 0.15 | 0.05 | 0.27 | 0.7 | 1.1 | 1.7 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, L.; Tao, L.; Ma, S.; Wang, X.; Wang, R.; Tu, Y.; Wang, L.; Ti, C.; Yan, X. 15N Natural Abundance Characteristics of Ammonia Volatilization from Soils Applied by Different Types of Fertilizer. Atmosphere 2022, 13, 1566. https://doi.org/10.3390/atmos13101566
Peng L, Tao L, Ma S, Wang X, Wang R, Tu Y, Wang L, Ti C, Yan X. 15N Natural Abundance Characteristics of Ammonia Volatilization from Soils Applied by Different Types of Fertilizer. Atmosphere. 2022; 13(10):1566. https://doi.org/10.3390/atmos13101566
Chicago/Turabian StylePeng, Lingyun, Limin Tao, Shutan Ma, Xi Wang, Ruhai Wang, Yonghui Tu, Liangjie Wang, Chaopu Ti, and Xiaoyuan Yan. 2022. "15N Natural Abundance Characteristics of Ammonia Volatilization from Soils Applied by Different Types of Fertilizer" Atmosphere 13, no. 10: 1566. https://doi.org/10.3390/atmos13101566
APA StylePeng, L., Tao, L., Ma, S., Wang, X., Wang, R., Tu, Y., Wang, L., Ti, C., & Yan, X. (2022). 15N Natural Abundance Characteristics of Ammonia Volatilization from Soils Applied by Different Types of Fertilizer. Atmosphere, 13(10), 1566. https://doi.org/10.3390/atmos13101566