Forecasting and Optimization of Wind Speed over the Gobi Grassland Wind Farm in Western Inner Mongolia
Abstract
:1. Introduction
2. Observational Site and Methodologies
2.1. Observational Site
2.2. Weather Research and Forecasting (WRF) Model
2.3. Postprocessing Methodologies
2.3.1. Mathematical Statistics Algorithms
Bilinear Interpolation and Nearest Replacement
Average Variance–Trend (AVT) Method
2.3.2. Machine Learning Algorithm
- (1)
- It automatically treats categorical features in a special way. First, we make some statistics on categorical features and calculate the frequency of a certain category. Then we add the hyperparameter to generate new numerical features. With CatBoost, one no longer has to manually process categorical features;
- (2)
- CatBoost also uses composite category features to take advantage of the connections between features, which greatly enriches feature dimensions;
- (3)
- The method of Ordered Boost is used to avoid the deviation of gradient estimation and solve the problem of prediction offset;
- (4)
- The base model of CatBoost uses symmetric trees, and the method of calculating leaf value is also different from the traditional boosting algorithm. CatBoost has optimized calculating the average value and adopted other algorithms, all of which can prevent model overfitting.
3. Results
3.1. Wind Speed Distribution and Their Wake Effect
3.2. Wind Speed Correction Based on Mathematical Statistics Algorithms
3.3. Wind Speed Correction Based on CatBoost Artificial Intelligence Algorithm
4. Summary, Discussions, and Outlooks
- (1)
- Inner Mongolia is located in the region jointly affected by Mongolian cyclones, westerlies, and western Pacific Subtropical high, so the data assimilation of the northwest and Mongolian plateau should be strengthened in order to improve the simulation accuracy of wind speed;
- (2)
- In the boundary layer scheme, there are still major problems in parameterizing explicit variables of small-scale processes, and the results obtained by spatial interpolation or replacement methods not only have large deviations but may even cover the real values. Therefore, it is suggested that an optimized parameterization scheme should be proposed and constructed on the basis of the measurement of boundary layer structure over the underlying surface type and boundary layer structure in different seasons in the Gobi grassland landscape;
- (3)
- Local heterogeneous terrain has a pronounced influence on wind speed, and the terrain at wind power sites may have a potential impact on simulation results. It is therefore suggested to introduce high-resolution topographic data within the 30 km domain of the wind farm to improve the simulation precision of the near-surface wind field.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, X.; McElroy, M.B.; Kiviluoma, J. Global potential for wind-generated electricity. Proc. Natl. Acad. Sci. USA 2009, 106, 10933–10938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timilsina, G.R.; van Kooten, G.C.; Narbel, P.A. Global wind power development: Economics and policies. Energy Policy 2013, 61, 642–652. [Google Scholar] [CrossRef]
- Zheng, C.W.; Li, C.Y.; Pan, J.; Liu, M.Y.; Xia, L.L. An overview of global ocean wind energy resource evaluations. Renew. Sustain. Energy Rev. 2016, 53, 1240–1251. [Google Scholar] [CrossRef]
- Zheng, C.W.; Wang, Q.; Li, C.Y. An overview of medium-to long-term predictions of global wave energy resources. Renew. Sustain. Energy Rev. 2017, 79, 1492–1502. [Google Scholar] [CrossRef]
- Cherp, A.; Vinichenko, V.; Tosun, J.; Gordon, J.A.; Jewell, J. National growth dynamics of wind and solar power compared to the growth required for global climate targets. Nat. Energy 2021, 6, 742–754. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.X.; Wang, G.Q. The key technologies and development of offshore wind farm in China. Renew. Sustain. Energy Rev. 2014, 32, 453–462. [Google Scholar] [CrossRef]
- Feng, Y.; Lin, H.Y.; Ho, S.L.; Yan, J.H.; Dong, J.N.; Fang, S.H.; Huang, Y.K. Overview of wind power generation in China: Status and development. Renew. Sustain. Energy Rev. 2015, 50, 847–858. [Google Scholar] [CrossRef]
- Zhang, S.J.; Wei, J.; Chen, X.; Zhao, Y.H. China in global wind power development: Role, status and impact. Renew. Sustain. Energy Rev. 2020, 127, 109881. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, J.R.; Yang, J.X.; Ding, N. Carbon footprint of wind turbine by life cycle assessment. Acta Sci. Circumstantiae 2015, 35, 927–934. (In Chinese) [Google Scholar]
- Kang, Y.T.; Yang, Q.; Bartocci, P.; Wei, H.J.; Liu, S.S.H.; Wu, Z.J.; Zhou, H.W.; Yang, H.P.; Fantozzi, F.; Chen, H.P. Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials. Renew. Sustain. Energy Rev. 2020, 127, 109842. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, W.Y. Assessing the energy transition in China towards carbon neutrality with a probabilistic framework. Nat. Commun. 2022, 13, 87. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Tian, H.Q.; Chen, C.; Li, Y.F. A hybrid statistical method to predict wind speed and wind power. Renew. Energy 2010, 35, 1857–1861. [Google Scholar] [CrossRef]
- Wang, H.Z.; Li, G.Q.; Wang, G.B.; Peng, J.C.; Jiang, H.; Liu, Y.T. Deep learning based ensemble approach for probabilistic wind power forecasting. Appl. Energy 2017, 188, 56–70. [Google Scholar] [CrossRef]
- Wang, L.; Tao, R.; Hu, H.L.; Zeng, Y.R. Effective wind power prediction using novel deep learning network: Stacked independently recurrent autoencoder. Renew. Energy 2021, 164, 642–655. [Google Scholar] [CrossRef]
- Ren, Y.; Suganthan, P.N.; Srikanth, N. A novel empirical mode decomposition with support vector regression for wind speed forecasting. IEEE Trans. Neural Netw. Learn. Syst. 2014, 99, 1–6. [Google Scholar] [CrossRef]
- Wang, J.Z.; Hu, J.M.; Ma, K.L.; Zhang, Y.X. A self-adaptive hybrid approach for wind speed forecasting. Renew. Energy 2015, 78, 374–385. [Google Scholar] [CrossRef]
- Wang, J.Z.; Hu, J.M. A robust combination approach for short-term wind speed forecasting and analysis e combination of the ARIMA (autoregressive integrated moving average), ELM (extreme learning machine), SVM (support vector machine) and LSSVM (least square SVM) forecasts using a GPR (Gaussian process regression) model. Energy 2015, 93, 41–56. [Google Scholar]
- He, Z.S.; Chen, Y.H.; Shang, Z.H.; Li, C.H.; Li, L.; Xu, M.L. A novel wind speed forecasting model based on moving window and multi-objective particle swarm optimization algorithm. Appl. Math. Model. 2019, 76, 717–740. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, X.L. Wind Power Forecasting of an Offshore Wind Turbine Based on High-Frequency SCADA Data and Deep Learning Neural Network. Energy 2020, 21, 117693. [Google Scholar] [CrossRef]
- Qu, Z.; Zhang, K.; Mao, W.; Wang, J.; Liu, C.; Zhang, W. Research and application of ensemble forecasting based on a novel multi-objective optimization algorithm for wind-speed forecasting. Energy Convers. Manag. 2017, 154, 440–454. [Google Scholar] [CrossRef]
- Qu, Z.X.; Mao, W.Q.; Zhang, K.Q.; Zhang, W.Y.; Li, Z.P. Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network. Renew. Energy 2019, 133, 919–929. [Google Scholar] [CrossRef]
- Zhang, L.; Xin, J.Y.; Yin, Y.; Wang, Z.F.; Wang, D.W.; Ma, Y.J.; Jia, D.J.; Jiang, Y.Y.; Wu, L.; Pan, X.L. Adaptability evaluation of boundary layer schemes for simulation of sea and land breeze circulation in the west coast of the Yellow Sea. Atmos. Res. 2022, 278, 106354. [Google Scholar] [CrossRef]
- Zhang, T.J.; Zhao, C.L.; Gong, C.S.; Pu, Z.X. Simulation of Wind Speed Based on Different Driving Datasets and Parameterization Schemes Near Dunhuang Wind Farms in Northwest of China. Atmosphere 2020, 11, 647. [Google Scholar] [CrossRef]
- Zhang, T.J.; Li, Y.H.; Duan, H.X.; Liu, Y.P.; Zeng, D.W.; Zhao, C.L.; Gong, C.S.; Zhou, G.L.; Song, L.L.; Yan, P.C. Development and Evaluation of a WRF-Based Mesoscale Numerical Weather Prediction System in Northwestern China. Atmosphere 2019, 10, 344. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2019. [Google Scholar]
- Sun, Q.D.; Jiao, R.L.; Xia, J.J.; Yan, Z.W.; Li, H.C.; Sun, J.H.; Wang, L.Z.; Liang, Z.M. A adjusting wind speed prediction of numerical weather forecast model based on machine learning methods. Meteorol. Mon. 2019, 45, 426–436. (In Chinese) [Google Scholar]
- Jiménez, P.A.; González-Rouco, J.F.; García-Bustamante, E.; Navarro, J.; Montávez, J.P.; Vilà-Guerau de Arellano, J.; Dudhia, J.; Muñoz-Roldan, A. Surface wind regionalization over complex terrain: Evaluation and analysis of a high-resolution WRF simulation. J. Appl. Meteorol. Climatol. 2010, 2, 268–287. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, P.A.; Dudhia, J. Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteorol. Climatol. 2012, 2, 300–316. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C. A sensitivity study of the WRF model in wind simulation for an area of high wind energy. Environ. Model. Softw. 2012, 33, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Fernández-GonzáLez, S.; Martín, M.L.; García-Ortega, E.; Merino, A.; Lorenzana, J.; Sánchez, J.L.; Valero, F.; Rodrigo, J.S. Sensitivity analysis of the WRF model: Wind-resource assessment for complex terrain. J. Appl. Meteorol. Climatol. 2018, 3, 733–753. [Google Scholar] [CrossRef]
- Zhang, T.J.; Yan, P.C.; Li, Z.R.; Wang, Y.S.; Li, Y.H. A new cycle correction method for wind speed error in wind energy forecast based on short-term historical data. J. Arid. Meteorol. 2017, 35, 1042–1052. [Google Scholar]
- Zhang, T.; Yan, P.; Li, Z.; Wang, Y.; Li, Y. Bias-correction method for wind-speed forecasting. Meteorol. Z. 2019, 28, 293–304. [Google Scholar] [CrossRef]
- Zhang, T.; Yan, P.; Zhang, Z.; Duan, H.; Wang, Y.; Li, Y. Application of Various Technologies in Modification of Wind Speed Forecast in Wind Farms. J. Arid. Meteorol. 2018, 36, 835–844. [Google Scholar]
- Han, Z.; Yan, P.; Li, Y.; Lv, Q.; Zhang, T.; Bian, H.; Wang, Y.; Zhang, L. Study on correction of solar radiation forecast in Hexi region of Gansu Province based on short term historical data. J. Arid. Meteorol. 2022, 40, 125–134. [Google Scholar]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; pp. 6639–6649. [Google Scholar]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Wang, C.H.; Hu, J.; Jin, S.L.; Feng, S.L.; Liu, C. Application and test of lower level wind field simulation with meso-scale model WRF in western region of northwest China. J. Arid. Meteorol. 2011, 29, 161–167. [Google Scholar]
Parameterization Scheme | Scheme Name |
---|---|
Cumulus parameterization scheme | Kain–Fritsch (KF) |
Land surface scheme | NOAH |
Boundary layer scheme | ACM2 |
Long-wave radiation scheme | RRTM |
Short-wave radiation scheme | DUDHIA |
Near-surface scheme | R-M MONIN–OBUKLOV |
Microphysics scheme | WSM6 |
Southerly (0–5 m/s) | Southerly (5–10 m/s) | Southerly (10–15 m/s) | Southerly (>15 m/s) | |
---|---|---|---|---|
Upwind group | 118 KW 3.65 m/s | 524 KW 7.40 m/s | 1283 KW 11.83 m/s | 1494 KW 16.16 m/s |
Middle group | 365 KW 5.87 m/s | 537 KW 7.03 m/s | 711 KW 8.28 m/s | 1234 KW 11.83 m/s |
Downwind group | 368 KW 5.90 m/s | 523 KW 6.97 m/s | 688 KW 8.17 m/s | 1234 KW 11.77 m/s |
Date | WRF_RMSE | CUM_RMSE | CYC_RMSE | AVT_RMSE |
---|---|---|---|---|
26 September | 2.94 | 2.23 | 2.14 | 2.73 |
27 September | 2.69 | 1.99 | 1.90 | 1.85 |
28 September | 3.22 | 2.81 | 2.77 | 2.63 |
29 September | 3.98 | 3.18 | 2.98 | 3.42 |
Average | 3.21 | 2.55 | 2.45 | 2.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, J.; Bao, D.; Ma, Y.; Ma, Y.; Gong, C.; Qiao, S.; Jiang, Y.; Ren, X.; Pang, T.; Yan, P. Forecasting and Optimization of Wind Speed over the Gobi Grassland Wind Farm in Western Inner Mongolia. Atmosphere 2022, 13, 1943. https://doi.org/10.3390/atmos13121943
Xin J, Bao D, Ma Y, Ma Y, Gong C, Qiao S, Jiang Y, Ren X, Pang T, Yan P. Forecasting and Optimization of Wind Speed over the Gobi Grassland Wind Farm in Western Inner Mongolia. Atmosphere. 2022; 13(12):1943. https://doi.org/10.3390/atmos13121943
Chicago/Turabian StyleXin, Jinyuan, Daen Bao, Yining Ma, Yongjing Ma, Chongshui Gong, Shuai Qiao, Yunyan Jiang, Xinbing Ren, Tao Pang, and Pengcheng Yan. 2022. "Forecasting and Optimization of Wind Speed over the Gobi Grassland Wind Farm in Western Inner Mongolia" Atmosphere 13, no. 12: 1943. https://doi.org/10.3390/atmos13121943
APA StyleXin, J., Bao, D., Ma, Y., Ma, Y., Gong, C., Qiao, S., Jiang, Y., Ren, X., Pang, T., & Yan, P. (2022). Forecasting and Optimization of Wind Speed over the Gobi Grassland Wind Farm in Western Inner Mongolia. Atmosphere, 13(12), 1943. https://doi.org/10.3390/atmos13121943