Crown Fire Modeling and Its Effect on Atmospheric Characteristics
Abstract
:1. Introduction
2. Experiment Explanation and Used Equipment
3. Experimental Results and Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kasischke, E.S.; Christensen, N.L.; Stocks, B.J. Fire, Global Warming, and the Carbon Balance of Boreal Forests. Ecol. Appl. 1995, 5, 437–451. [Google Scholar] [CrossRef]
- Voulgarakis, A.; Field, R.D. Fire Influences on Atmospheric Composition, Air Quality and Climate. Curr. Pollut. Rep. 2015, 70, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Vinogradova, A.A.; Smirnov, N.S.; Korotkov, V.N.; Romanovskaya, A.A. Forest fires in Siberia and the Far East: Emissions and atmospheric transport of black carbon to the Arctic. Atmos. Ocean. Opt. 2015, 28, 512–520. [Google Scholar] [CrossRef]
- Sitnov, S.A.; Mokhov, I.I.; Dzhola, A.V. The confluence of Siberian fires on the content of carbon monoxide in the atmosphere over the European part of Russia in the summer of 2016. Atmos. Ocean. Opt. 2017, 30, 146–152. [Google Scholar]
- Larkin, N.K.; Raffuse, S.M.; Strand, T.M. Wildland fire emissions, carbon, and climate: U.S. emissions inventories. For. Ecol. Manag. 2014, 317, 61–69. [Google Scholar] [CrossRef]
- Popovicheva, O.B.; Kozlov, V.S.; Rakhimov, R.F.; Shmargunov, V.P.; Kireyeva, Y.D.; Persiantseva, N.M.; Timofeyev, M.A.; Engling, G.; Elephteriadis, K.; Diapouli, L.; et al. Optical-microphysical and physicochemical characteristics of combustion fumes of Siberian biomass: Experiments in an aerosol chamber. Atmos. Ocean. Opt. 2016, 29, 323–331. [Google Scholar] [CrossRef]
- Popovicheva, O.; Kistler, M.; Kireeva, E.; Persiantseva, N.; Timofeev, M.; Kopeikin, V.; Kasper Giebl, A. Physicochemical characterization of smoke aerosol during large-scale wildfires: Extreme event of August 2010 in Moscow. Atmos. Environ. 2014, 96, 405–414. [Google Scholar] [CrossRef]
- Shikwambana, L.; Kganyago, M. Observations of Emissions and the Influence of Meteorological Conditions during Wildfires: A Case Study in the USA, Brazil, and Australia during the 2018/19 Period. Atmosphere 2021, 12, 11. [Google Scholar] [CrossRef]
- Bussman, W.R.; Baukal, C.E.; Zink, J., Jr. Ambient conditions impact CO and NOx emissions: Part I. Petrol. Technol. Quart. 2009, 14, 93–99. [Google Scholar]
- Zauscher, M.D.; Wang, Y.; Moore, M.J.K.; Gaston, C.J.; Prather, K.A. Air quality impact and physicochemical aging of biomass burning aerosols during the 2007 San Diego Wildfires. Environ. Sci. Technol. 2013, 47, 7633–7643. [Google Scholar] [CrossRef] [PubMed]
- Lasslop, G.; Kloster, S. Impact of fuel variability on wildfire emission estimates. Atmos. Environ. 2015, 121, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Van Bellen, S.; Garneau, M.; Bergeron, Y. Impact of Climate Change on Forest Fire Severity and Consequences for Carbon Stocks in Boreal Forest Stands of Quebec, Canada: A Synthesis. Fire Ecol. 2010, 6, 16–44. [Google Scholar] [CrossRef]
- Vasileva, A.; Moiseenko, K.; Skorokhod, A.; Belikov, I.; Kopeikin, V.; Lavrova, O. Emission ratios of trace gases and particles for Siberian Forest fires on the basis of mobile ground observations. Atmos. Chem. Phys. 2017, 17, 12303–12325. [Google Scholar] [CrossRef] [Green Version]
- Loboda, E.; Kasymov, D.; Agafontsev, M.; Reyno, V.; Gordeev, Y.; Tarakanova, V.; Martynov, P.; Loboda, Y.; Orlov, K.; Savin, K.; et al. Effect of Small-Scale Wildfires on the Air Parameters near the Burning Centers. Atmosphere 2021, 12, 75. [Google Scholar] [CrossRef]
- Arreola Amaya, M.; Clements, C.B. Evolution of Plume Core Structures and Turbulence during a Wildland Fire Experiment. Atmosphere 2020, 11, 842. [Google Scholar] [CrossRef]
- Lareau, N.P.; Clements, C. The Mean and Turbulent Properties of a Wildfire Convective Plume. J. Appl. Meteorol. Clim. 2017, 56, 2289–2299. [Google Scholar] [CrossRef] [Green Version]
- Mueller, E.V.; Skowronski, N.; Thomas, J.; Clark, K.; Gallagher, M.; Hadden, R.; Mell, W.; Simeoni, A. Local measurements of wildland fire dynamics in a field-scale experiment. Combust. Flame 2018, 194, 452–463. [Google Scholar] [CrossRef] [Green Version]
- Grishin, A.M. Mathematical Modeling of Forest Fires and New Methods of Fighting Them; Publishing House of the Tomsk State University: Tomsk, Russia, 1997. [Google Scholar]
- Filkov, A.I.; Duff, T.J.; Penman, T.D. Frequency of Dynamic Fire Behaviours in Australian Forest Environments. Fire 2020, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [Green Version]
- Clements, C.B.; Lareau, N.P.; Seto, D.; Contezac, J.; Davis, B.; Teske, C.; Zajkowski, T.J.; Hudak, A.T.; Bright, B.C.; Dickinson, M.B.; et al. Fire weather conditions and fire–atmosphere interactions observed during low-intensity prescribed fires—RxCADRE 2012. Int. J. Wildl. Fire 2016, 25, 90–101. [Google Scholar] [CrossRef]
- Loboda, E.L.; Matvienko, O.V.; Vavilov, V.P.; Reyno, V.V. Infrared thermographic evaluation of flame turbulence scale. Infrared Phys. Technol. 2015, 72, 1–7. [Google Scholar] [CrossRef]
- Sagel, D.; Speer, K.; Pokswinski, S.; Quaife, B. Fine-Scale Fire Spread in Pine Straw. Fire 2021, 4, 69. [Google Scholar] [CrossRef]
- Morvan, D.; Dupuy, J.L.; Rigolot, E.; Valette, J.C. FIRESTAR: A Physically based model to study wildfire behaviour. Forest Ecol. Manag. 2006, 234, S114. [Google Scholar] [CrossRef]
- Mell, W.; Jenkins, M.A.; Gould, J.; Cheney, P.H. A physics-based approach to modelling grassland fires. Int. J. Wildl. Fire 2007, 16, 1–22. [Google Scholar] [CrossRef]
- Mell, W.; Maranghides, A.; McDermott, R.; Manzello, S.L. Numerical simulation and experiments of burning Douglas fir trees. Comb. Flame 2009, 156, 2023–2041. [Google Scholar] [CrossRef]
- Mell, W.E.; McDermott, R.J.; Forney, G.P.; Hoffman, C.; Ginder, M. Wildland Fire Behavior Modeling: Perspectives, New Approaches and Applications. In Proceedings of the 3rd Fire Behavior and Fuels Conference, Spokane, WA, USA, 25–29 October 2010. [Google Scholar]
- Filippi, J.B.; Bosseur, F.; Mari, C.; Stradda, S. Numerical experiments using MESONH/FOREFIRE coupled atmospheric model. In Proceedings of the 8th Symposium on Fire and Forest Meteorology, Kalispell, MT, USA, 13–15 October 2009. [Google Scholar]
- Linn, R.R.; Reisner, J.; Colman, J.J.; Winterkamp, J. Studying wildfire behaviour using FIRETEC. Int. J. Wildl. Fire 2002, 11, 233–246. [Google Scholar] [CrossRef]
- Loboda, E.L.; Kasymov, D.P.; Agafontsev, M.V.; Gordeev, E.V.; Tarakanova, V.A.; Martynov, P.S.; Orlov, K.E.; Savin, K.V.; Dutov, A.I. Some results of seminatural researches of small seat of wildland fire. In Proceedings of the 26th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, Moscow, Russia, 29 June–3 July 2020; p. 11560. [Google Scholar] [CrossRef]
- Kasymov, D.P.; Agafontsev, M.V.; Tarakanova, V.A.; Loboda, E.L.; Martynov, P.S.; Orlov, K.E.; Reyno, V.V. Effect of wood structure geometry during firebrand generation in laboratory scale and semi-field experiments. J. Phys. Conf. Series 2021, 1867, 012020. [Google Scholar] [CrossRef]
- Loboda, E.L.; Kasymov, D.P.; Agafontsev, M.V.; Reyno, V.V.; Gordeev, E.V.; Tarkanova, V.A.; Martynov, P.S.; Orlov, K.E.; Savin, K.V.; Dutov, A.I.; et al. Influence of small natural fires on the characteristics of the atmosphere near the source of combustion. Atmos. Ocean. Optics. 2020, 33, 818–823. [Google Scholar] [CrossRef]
- Grishin, A.M.; Filkov, A.I.; Loboda, E.L.; Reyno, V.V.; Kozlov, A.V.; Kuznetsov, V.T.; Kasymov, D.P.; Andreyuk, S.M.; Ivanov, A.I.; Stolyarchuk, N.D. A field experiment on grass fire effects on wooden constructions and peat layer ignition. Int. J. Wildl. Fire 2014, 23, 445–449. [Google Scholar] [CrossRef]
- Loboda, E.L.; Reino, V.V.; Agafontsev, M.V. Choice of a spectral range for measuring temperature fields in a flame and recording high-temperature objects screened by the flame using IR diagnostic methods. Russ. Phys. J. 2015, 58, 278–282. [Google Scholar] [CrossRef]
- Kovadlo, P.G.; Lukin, V.P.; Shikhovtsev, A.Y. Development of the model of turbulent atmosphere at the Large solar vacuum telescope site as applied to image adaptation. Atmos. Ocean. Opt. 2019, 32, 202–206. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loboda, E.; Kasymov, D.; Agafontsev, M.; Reyno, V.; Lutsenko, A.; Staroseltseva, A.; Perminov, V.; Martynov, P.; Loboda, Y.; Orlov, K. Crown Fire Modeling and Its Effect on Atmospheric Characteristics. Atmosphere 2022, 13, 1982. https://doi.org/10.3390/atmos13121982
Loboda E, Kasymov D, Agafontsev M, Reyno V, Lutsenko A, Staroseltseva A, Perminov V, Martynov P, Loboda Y, Orlov K. Crown Fire Modeling and Its Effect on Atmospheric Characteristics. Atmosphere. 2022; 13(12):1982. https://doi.org/10.3390/atmos13121982
Chicago/Turabian StyleLoboda, Egor, Denis Kasymov, Mikhail Agafontsev, Vladimir Reyno, Anastasiya Lutsenko, Asya Staroseltseva, Vladislav Perminov, Pavel Martynov, Yuliya Loboda, and Konstantin Orlov. 2022. "Crown Fire Modeling and Its Effect on Atmospheric Characteristics" Atmosphere 13, no. 12: 1982. https://doi.org/10.3390/atmos13121982
APA StyleLoboda, E., Kasymov, D., Agafontsev, M., Reyno, V., Lutsenko, A., Staroseltseva, A., Perminov, V., Martynov, P., Loboda, Y., & Orlov, K. (2022). Crown Fire Modeling and Its Effect on Atmospheric Characteristics. Atmosphere, 13(12), 1982. https://doi.org/10.3390/atmos13121982