Scavenging of Black Carbon Aerosols by Radiation Fog in Urban Central China
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Overview of Aerosol Radiative Properties
3.2. Scavenging of Black Carbon by Radiation Fog
3.3. Comparison of Aerosol Radiative Properties during Fog with Haze and Clear Periods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wærsted, E.G.; Haeffelin, M.; Dupont, J.-C.; Delanoe, J.; Dubuisson, P. Radiation in fog: Quantification of the impact on fog liquid water based on ground-based remote sensing. Atmos. Chem. Phys. 2017, 17, 10811–10835. [Google Scholar] [CrossRef] [Green Version]
- Haeffelin, M.; Bergot, T.; Elias, T.; Tardif, R.; Carrer, D.; Chazette, P.; Colomb, M.; Drobinski, P.; Dupont, E.; Dupont, J.C.; et al. PARISFOG: Shedding new light on fog physical processes. B Am. Meteorol. Soc. 2010, 91, 767–783. [Google Scholar] [CrossRef] [Green Version]
- Gultepe, I.; Pearson, G.; Milbrandt, J.A.; Hansen, B.; Platnick, S.; Taylor, P.; Gordon, M.; Oakley, J.P.; Cober, S.G. The fog remote sensing and modeling field project. B Am. Meteorol. Soc. 2009, 90, 341–359. [Google Scholar] [CrossRef]
- Barrado, A.I.; Garcia, S.; Sevillano, M.L.; Rodriguez, J.A.; Barrado, E. Vapor-phase concentrations of PAHs and their derivatives determined in a large city: Correlations with their atmospheric aerosol concentrations. Chemosphere 2013, 93, 1678–1684. [Google Scholar] [CrossRef]
- Boutle, I.; Price, J.; Kudzotsa, I.; Kokkola, H.; Romakkaniemi, S. Aerosol–fog interaction and the transition to well-mixed radiation fog. Atmos. Chem. Phys. 2018, 18, 7827–7840. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013. The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Rajesh, T.A.; Ramachandran, S. Black carbon aerosols over urban and high altitude remote regions: Characteristics and radiative implications. Atmos. Environ. 2018, 194, 110–122. [Google Scholar] [CrossRef]
- Shi, C.; Roth, M.; Zhang, H.; Li, Z. Impacts of urbanization on long-term fog variation in Anhui Province, China. Atmos. Environ. 2008, 42, 8484–8492. [Google Scholar] [CrossRef]
- Quan, J.; Zhang, Q.; He, H.; Liu, J.; Huang, M.; Jin, H. Analysis of the formation of fog and haze in North China Plain (NCP). Atmos. Chem. Phys. 2011, 11, 8205–8214. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.T.; Niu, S.J. Haze-to-fog transformation during a long lasting, low visibility episode in Nanjing. J. Trop. Meteorol. 2016, 22, 67–77. [Google Scholar]
- Hammer, E.; Gysel, M.; Roberts, G.C.; Elias, T.; Hofer, J.; Hoyle, C.R.; Bukowiecki, N.; Dupont, J.-C.; Burnet, F.; Baltensperger, U.; et al. Size-dependent particle activation properties in fog during the ParisFog 2012/13 field campaign. Atmos. Chem. Phys. 2014, 14, 10517–10533. [Google Scholar] [CrossRef] [Green Version]
- Han, S.Q.; Wu, J.H.; Zhang, Y.F.; Cai, Z.Y.; Feng, Y.C.; Yao, Q.; Li, X.J.; Liu, Y.W.; Zhang, M. Characteristics and formation mechanism of a winter haze–fog episode in Tianjin, China. Atmos. Environ. 2014, 98, 323–330. [Google Scholar] [CrossRef]
- Guo, L.J.; Guo, X.L.; Fang, C.G.; Zhu, S.C. Observation analysis on characteristics of formation, evolution and transition of a long-lasting severe fog and haze episode in North China. Sci. China Earth Sci. 2015, 58, 329–344. [Google Scholar] [CrossRef]
- Huang, K.; Zhuang, G.; Wang, Q.; Fu, J.S.; Lin, Y.; Liu, T.; Han, L.; Deng, C. Extreme haze pollution in Beijing during January 2013: Chemical characteristics, formation mechanism and role of fog processing. Atmos. Chem. Phys. 2014, 14, 479–486. [Google Scholar]
- Gilardoni, S.; Massoli, P.; Giulianelli, L.; Rinaldi, M.; Paglione, M.; Pollini, F.; Lanconelli, C.; Poluzzi, V.; Carbone, S.; Hillamo, R.; et al. Fog scavenging of organic and inorganic aerosol in the Po Valley. Atmos. Chem. Phys. 2014, 14, 6967–6981. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.J.; Lee, B.Y.L.; Yu, J.Z.; Ng, N.L.; Chan, C.K. Evaluating the degree of oxygenation of organic aerosol during foggy and hazy days in Hong Kong using high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS). Atmos. Chem. Phys. 2013, 13, 8739–8753. [Google Scholar] [CrossRef] [Green Version]
- Collett, J.L.; Herckes, P.; Youngster, S.; Lee, T. Processing of atmospheric organic matter by California radiation fogs. Atmos. Res. 2008, 87, 232–241. [Google Scholar] [CrossRef]
- Elbert, W.; Hoffmann, M.R.; Kramer, M.; Schmitt, G.; Andreae, M.O. Control of solute concentrations in cloud and fog water by liquid water content. Atmos. Environ. 2000, 34, 1109–1122. [Google Scholar] [CrossRef]
- Heintzenberg, J.; Cereceda-Balic, F.; Vidal, V.; Leck, C. Scavenging of black carbon in Chilean coastal fogs. Sci. Total Environ. 2016, 541, 341–347. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, B.; Huang, Y.; An, J.; Xu, J. PM2.5 vertical variation during a fog episode in a rural area of the Yangtze River Delta, China. Sci. Total Environ. 2019, 685, 555–563. [Google Scholar] [CrossRef]
- Bi, X.; Lin, Q.; Peng, L.; Zhang, G.; Wang, X.; Brechtel, F.J.; Chen, D.; Li, M.; Peng, P.; Sheng, G.; et al. In situ detection of the chemistry of individual fog droplet residues in the Pearl River Delta region, China. J. Geophys. Res. 2016, 121, 9105–9116. [Google Scholar] [CrossRef]
- Hao, T.; Han, S.; Chen, S.; Shan, X.; Zai, Z.; Qiu, X.; Yao, Q.; Liu, J.; Chen, J.; Meng, L. The role of fog in haze episode in Tianjin, China: A case study for November 2015. Atmos. Res. 2017, 194, 235–244. [Google Scholar] [CrossRef]
- Zhang, X.; Mao, M. Brown haze types due to aerosol pollution at Hefei in the summer and fall. Chemosphere 2015, 119, 1153–1162. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, S.; Jiang, J.; Fu, Q.; Chen, C.; Xu, B.; Yu, J.; Fu, X.; Hao, J. Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China. Environ. Pollut. 2013, 182, 101–110. [Google Scholar] [CrossRef]
- Volckens, J.; Peters, T.M. Counting and particle transmission efficiency of the aerodynamic particle sizer. J. Aerosol Sci. 2005, 36, 1400–1408. [Google Scholar] [CrossRef]
- Anderson, T.L.; Ogren, J.A. Determining aerosol radiative properties using the TSI 3563 integrating nephelometer. Aerosol Sci. Technol. 1998, 29, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Draxler, R.R.; Rolph, G.D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website; NOAA Air Resources Laboratory: College Park, MD, USA, 2013. Available online: https://www.arl.noaa.gov/HYSPLIT.php (accessed on 24 November 2021).
- Rolph, G.D. Real-time Environmental Applications and Display sYstem (READY) Website; NOAA Air Resources Laboratory: College Park, MD, USA, 2013. Available online: https://www.ready.noaa.gov (accessed on 24 November 2021).
- Acker, J.G.; Leptoukh, G. Online Analysis Enhances Use of NASA Earth Science Data. Eos. Trans. AGU 2007, 88, 14–17. [Google Scholar] [CrossRef]
- Li, W.J.; Shao, L.Y.; Buseck, P.R. Haze types in Beijing and the influence of agricultural biomass burning. Atmos. Chem. Phys. 2010, 10, 8119–8130. [Google Scholar] [CrossRef] [Green Version]
- Mao, M.; Sun, H.; Zhang, X. Air Pollution Characteristics and Health Risks in the Yangtze River Economic Belt, China during Winter. Int. J. Environ. Res. Public Health 2020, 17, 9172. [Google Scholar] [CrossRef]
- Che, H.; Zhang, X.; Xia, X.; Goloub, P.; Holben, B.; Zhao, H.; Wang, Y.; Zhang, X.; Wang, H.; Blarel, L.; et al. Ground-based aerosol climatology of China: Aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmos. Chem. Phys. 2015, 15, 7619–7652. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Che, H.; Xia, X.; Wang, Y.; Wang, H.; Wang, P.; Ma, Y.; Yang, H.; Liu, Y.; Wang, Y. Multiyear Ground-Based Measurements of Aerosol Optical Properties and Direct Radiative Effect Over Different Surface Types in Northeastern China. J. Geophys. Res. 2018, 123, 13887–13916. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Rao, R. Aerosol characteristics including fumigation effect under weak precipitation over the southeastern coast of China. J. Atmos. Sol.-Terr. Phys. 2012, 84, 25–36. [Google Scholar] [CrossRef]
- Herckes, P.; Marcotte, A.R.; Wang, Y.; Collett, J.L. Fog composition in the Central Valley of California over three decades. Atmos. Res. 2015, 151, 20–30. [Google Scholar] [CrossRef]
- Li, W.; Zhou, S.; Wang, X.; Xu, Z.; Yuan, C.; Yu, Y.; Zhang, Q.; Wang, W. Integrated evaluation of aerosols from regional brown hazes over northern China in winter: Concentrations, sources, transformation, and mixing states. J. Geophys. Res. 2011, 116, D09301. [Google Scholar] [CrossRef]
- Izhar, S.; Gupta, T.; Panday, A.K. Scavenging efficiency of water soluble inorganic and organic aerosols by fog droplets in the Indo Gangetic Plain. Atmos. Res. 2020, 235, 104767. [Google Scholar] [CrossRef]
- Keywood, M.D.; Ayers, G.P.; Gras, J.L.; Boers, R.; Leong, C.P. Haze in the Klang Valley of Malaysia. Atmos. Chem. Phys. 2003, 3, 591–605. [Google Scholar] [CrossRef] [Green Version]
- Ma, N.; Zhao, C.S.; Nowak, A.; Muller, T.; Pfeifer, S.; Cheng, Y.F.; Deng, Z.Z.; Liu, P.F.; Xu, W.Y.; Ran, L.; et al. Aerosol optical properties in the North China Plain during HaChi campaign: An in-situ optical closure study. Atmos. Chem. Phys. 2011, 11, 5959–5973. [Google Scholar] [CrossRef]
- Ramanathan, V.; Raman, M.V.; Roberts, G.; Kim, D.; Chung, C.; Winker, D. Warming trends in Asia amplified by brown cloud solar absorption. Nature 2007, 448, 575–578. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Berghof, M.; Garland, R.M.; Wiedensohler, A.; Wehner, B.; Muller, T.; Su, H.; Zhang, Y.H.; Achtert, P.; Nowak, A.; et al. Influence of soot mixing state on aerosol light absorption and single scattering albedo during air mass aging at a polluted regional site in northeastern China. J. Geophys. Res. 2009, 114, D00G10. [Google Scholar] [CrossRef]
- Delene, D.J.; Ogren, J.A. Variability of Aerosol Optical Properties at Four North American Surface Monitoring Sites. J. Atmos. Sci. 2002, 59, 1135–1150. [Google Scholar] [CrossRef]
- Randles, C.A.; Russell, L.M.; Ramaswamy, V. Hygroscopic and optical properties of organic sea salt aerosol and consequences for climate forcing. Geophys. Res. Lett. 2004, 31, L16108. [Google Scholar] [CrossRef]
- Dinar, E.; Riziq, A.A.; Spindler, C.; Erlick, C.; Kiss, G.; Rudich, Y. The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS). Faraday Discuss 2008, 137, 279–295. [Google Scholar] [CrossRef]
Parameters | Instruments |
---|---|
Visibility | Belfort visibility sensor (model 6000) |
Aerosol size distribution and number concentration | Aerodynamic particle sizer spectrometer (model 3321) |
Scattering and backscattering coefficients | Total/back integrating nephelometer (model 3563) |
Absorption coefficients | 7-wavelength Aethalometer (model AE31) |
Parameters | Starting | Ending |
---|---|---|
Visibility, km | 1.0 | 1.0 |
N a, cm−3 | 776 | 772 |
N, size > 1 μm, cm−3 | 7 | 9 |
σs b, 550 nm, Mm−1 | 1510 | 1590 |
αs c, 450–700 nm | 2.18 | 1.85 |
B d, 550 nm | 0.092 | 0.087 |
BC e, 880 nm, ng/m3 | 13943 | 9784 |
σa f, 550 nm, Mm−1 | 354 | 275 |
ω0, 450 nm | 0.83 | 0.87 |
ω0 g, 550 nm | 0.81 | 0.85 |
ω0, 700 nm | 0.75 | 0.81 |
Fog | Haze | Clear | |
---|---|---|---|
N, cm−3 | 1198 (848, 1598) | 335 (225, 493) | 175 (78, 257) |
N, size >1 μm, cm−3 | 10 (6, 12) | 13 (3, 24) | 4 (2, 7) |
σs, 550 nm, Mm−1 | 2690 (1670, 3780) | 428 (296, 651) | 189 (85, 264) |
αs, 450–700 nm | 1.91 (1.78, 2.11) | 1.95 (1.77, 2.14) | 2.12 (1.99, 2.41) |
b, 550 nm | 0.09 (0.079, 0.090) | 0.10 (0.087, 0.11) | 0.11 (0.089, 0.13) |
σa, 550 nm, Mm−1 | 446 (379, 591) | 95 (58, 171) | 59 (27, 105) |
ω0, 450 nm | 0.87 (0.83, 0.89) | 0.84 (0.79, 0.88) | 0.80 (0.71, 0.85) |
ω0, 550 nm | 0.86 (0.81, 0.87) | 0.82 (0.75, 0.87) | 0.76 (0.67, 0.82) |
ω0, 700 nm | 0.81 (0.76, 0.83) | 0.76 (0.68, 0.83) | 0.67 (0.57, 0.76) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhou, Y.; Wang, Y.; Huang, A.; Gao, C.; He, S.; Mao, M. Scavenging of Black Carbon Aerosols by Radiation Fog in Urban Central China. Atmosphere 2022, 13, 205. https://doi.org/10.3390/atmos13020205
Zhang X, Zhou Y, Wang Y, Huang A, Gao C, He S, Mao M. Scavenging of Black Carbon Aerosols by Radiation Fog in Urban Central China. Atmosphere. 2022; 13(2):205. https://doi.org/10.3390/atmos13020205
Chicago/Turabian StyleZhang, Xiaolin, Yu Zhou, Yuanzhi Wang, Aojie Huang, Chang Gao, Siqi He, and Mao Mao. 2022. "Scavenging of Black Carbon Aerosols by Radiation Fog in Urban Central China" Atmosphere 13, no. 2: 205. https://doi.org/10.3390/atmos13020205
APA StyleZhang, X., Zhou, Y., Wang, Y., Huang, A., Gao, C., He, S., & Mao, M. (2022). Scavenging of Black Carbon Aerosols by Radiation Fog in Urban Central China. Atmosphere, 13(2), 205. https://doi.org/10.3390/atmos13020205