Quantitative Effects of Climate Change on Vegetation Dynamics in Alpine Grassland of Qinghai-Tibet Plateau in a County
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Pre-Processing
2.3. Study Method
3. Results
3.1. Vegetation Dynamics Analyzed by Growing Season NDVI
3.2. Characteristics of Climatic Factors
3.3. Relationships between GSN Change and Climate Factors
4. Discussion
5. Conclusions
- (1)
- The annual growing season NDVI of the study area ranged between 0.151 to 0.264 from 2001 to 2020, and extremely significant wavelike increased at a rate of 0.0035 yr−1. For the 5 vegetation types, the annual growing season NDVI ranking from high to low were shrubland, rest vegetation, meadow, steppe, and desert steppe, and showed similar increasing trends with the whole area at rates of 0.0058 yr−1, 0.0049 yr−1, 0.0034 yr−1, 0.0049 yr−1, and 0.0026 yr−1, respectively.
- (2)
- Over the study area, growing season NDVI gradually decreased from northeast to southwest with ranging values of 0.027–0.717. The fitting slopes of growing season NDVI in individual pixels from 2001 to 2020 were between −0.016 and 0.032, and the positive slopes account for 97.2% of the county area, and growing season NDVI increased significantly in about 76.4% of the county area.
- (3)
- During the study period, growing season evaporation decreased extremely significantly at a rate of 29.6 mm yr−1, growing season average relative humidity increased significantly at a rate of 0.16% yr−1, while growing season average temperature and growing season precipitation were relatively stable.
- (4)
- For the whole study area and 5 vegetations types, growing season evaporation had an extremely significant negative correlation with growing season NDVI, and was the primary climate factor that had a direct effect on vegetation dynamics with a contribution rate of 42.4%–58.8%; growing season average relative humidity had an extremely significant positive correlation with growing season NDVI, and had an indirect effect on vegetation dynamics through growing season evaporation with a contribution rate of 13.9%–25.0%; growing season precipitation had extremely significant positive correlation with growing season NDVI, and also had an indirect effect on vegetation dynamics through growing season evaporation, but its contribution rates were less than 11.0%; growing season average temperature had no significant effect on vegetation dynamics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Yu, G.; Chen, Z.; Hu, Z.; Jiao, C.; Yang, M.; Fu, Z.; Zhang, W.; Han, L.; Fan, M.; et al. Patterns and controls of vegetation productivity and precipitation-use efficiency across Eurasian grasslands. Sci. Total Environ. 2020, 741, 140204. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, Y.; Wang, Q.; Khalifa, M.; Zhang, Z.; Tong, L.; Li, J.; Shi, A. Assessing the dynamics of grassland net primary productivity in response to climate change at the global scale. Chin. Geogr. Sci. 2019, 29, 725–740. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhou, Y.; Wen, R.; Zhou, C.; Xu, L.; Xi, X. Mapping spatiotemporal changes in vegetation growth peak and the response to climate and spring phenology over northeast China. Remote Sens. 2020, 12, 3977. [Google Scholar] [CrossRef]
- Wang, W.; Fang, J. Soil respiration and human effects on global grasslands. Glob. Planet. Chang. 2009, 67, 20–28. [Google Scholar] [CrossRef]
- Parton, W.J.; Scurlock, J.M.O.; Ojima, D.S.; Schimel, D.S.; Hall, D.O. Impact of climate change on grassland production and soil carbon worldwide. Glob. Chang. Biol. 1995, 1, 13–22. [Google Scholar] [CrossRef]
- Fang, J.; Guo, Z.; Piao, S.; Chen, A. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China Ser. D Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Allan, E.; Manning, P.; Alt, F.; Binkenstein, J.; Blaser, S.; Blüthgen, N.; Böhm, S.; Grassein, F.; Hölzel, N.; Klaus, V.H.; et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 2015, 18, 834–843. [Google Scholar] [CrossRef]
- Petrie, M.D.; Peters, D.P.C.; Yao, J.; Blair, J.M.; Burruss, N.D.; Collins, S.L.; Derner, J.D.; Gherardi, L.A.; Hendrickson, J.R.; Sala, O.E.; et al. Regional grassland productivity responses to precipitation during multiyear above- and below-average rainfall periods. Glob. Chang. Biol. 2018, 24, 1935–1951. [Google Scholar] [CrossRef]
- Jia, W.; Liu, M.; Yang, Y.; He, H.; Zhu, X.; Yang, F.; Yin, C.; Xiang, W. Estimation and uncertainty analyses of grassland biomass in Northern China: Comparison of multiple remote sensing data sources and modeling approaches. Ecol. Indic. 2016, 60, 1031–1040. [Google Scholar] [CrossRef]
- Fan, J.; Zhong, H.; Harris, W.; Yu, G.; Wang, S.; Hu, Z.; Yue, Y. Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass. Clim. Chang. 2008, 86, 375–396. [Google Scholar] [CrossRef]
- Sun, H.; Zheng, D.; Yao, T.; Zhang, Y. Protection and construction of the National Ecological Security Shelter Zone on Tibetan Plateau. Acta Geogr. Sin. 2012, 67, 3–12. (In Chinese) [Google Scholar]
- Qin, Y.; Chen, J.; Yi, S. Plateau pikas burrowing activity accelerates ecosystem carbon emission from alpine grassland on the Qinghai-Tibetan Plateau. Ecol. Eng. 2015, 84, 287–291. [Google Scholar] [CrossRef]
- Miehe, G.; Schleuss, P.M.; Seeber, E.; Babel, W.; Biermann, T.; Braendle, M.; Chen, F.; Coners, H.; Foken, T.; Gerken, T.; et al. The Kobresia pygmaea ecosystem of the Tibetan highlands-Origin, functioning and degradation of the world’s largest pastoral alpine ecosystem Kobresia pastures of Tibet. Sci. Total Environ. 2019, 648, 754–771. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yi, S.; Chen, J.; Qin, Y.; Chang, L.; Sun, Y.; Shangguan, D. Characteristics and controlling factors of alpine grassland vegetation patch patterns on the central Qinghai-Tibetan plateau. Ecol. Indic. 2021, 125, 107570. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; He, Y.; Niu, B.; Wu, J. Assessment of the vulnerability of alpine grasslands on the Qinghai-Tibetan Plateau. PeerJ 2020, 8, e8513. [Google Scholar] [CrossRef]
- Chu, D.; Lu, L.; Zhang, T. Sensitivity of Normalized Difference Vegetation Index (NDVI) to seasonal and interannual climate conditions in the Lhasa area, Tibetan Plateau, China. Arct. Antarct. Alp. Res. 2007, 39, 635–641. [Google Scholar] [CrossRef]
- White, S.R.; Carlyle, C.N.; Fraser, L.H.; Cahill, J.F. Climate change experiments in temperate grasslands: Synthesis and future directions. Biol. Lett. 2012, 8, 484–487. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Zhu, W.; Schwartz, M.W.; Ganjurjav, H.; Wan, Y.; Qin, X.; Ma, X.; Williamson, M.A.; Li, Y. Climatic change controls productivity variation in global grasslands. Sci. Rep. 2016, 6, 26958. [Google Scholar] [CrossRef]
- Lin, X.; Niu, J.; Berndtsson, R.; Yu, X.; Zhang, L.; Chen, X. Ndvi dynamics and its response to climate change and reforestation in Northern China. Remote Sens. 2020, 12, 4138. [Google Scholar] [CrossRef]
- Nordberg, M.L.; Evertson, J. Monitoring change in mountainous dry-heath vegetation at a regional scale using multitemporal Landsat TM data. AMBIO A J. Hum. Environ. 2003, 32, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, C.; Zhou, P.; Chen, X. A probabilistic assessment of the likelihood of vegetation drought under varying climate conditions across China. Sci. Rep. 2016, 6, 35105. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Tang, G.; Yuan, Y.; Guo, H.; Xu, Z.; Jiang, G.; Chen, X. Unraveling the relative impacts of climate change and human activities on grassland productivity in Central Asia over last three decades. Sci. Total Environ. 2020, 743, 140649. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Environ. Chang. 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Jeong, S.J.; Ho, C.H.; Gim, H.J.; Brown, M.E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Chang. Biol. 2011, 17, 2385–2399. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Wang, W.J.; Bao, G. NDVI, temperature and precipitation changes and their relationships with different vegetation types during 1998-2007 in Inner Mongolia, China. Int. J. Climatol. 2013, 33, 1696–1706. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Xie, D.; Yin, X.; Liu, C.; Liu, G. Application of synthetic NDVI time series blended from landsat and MODIS data for grassland biomass estimation. Remote Sens. 2016, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.Q.; Yang, T.B.; Dai, J.G.; Shi, L.; Lu, Z.Y. Vegetation cover changes and their relationship to climate variation in the source region of the Yellow River, China, 1990–2000. Int. J. Remote Sens. 2008, 29, 2085–2103. [Google Scholar] [CrossRef]
- Hu, M.Q.; Mao, F.; Sun, H.; Hou, Y.Y. Study of normalized difference vegetation index variation and its correlation with climate factors in the three-river-source region. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 24–33. [Google Scholar] [CrossRef]
- Bai, Y.; Guo, C.; Degen, A.A.; Ahmad, A.A.; Wang, W.; Zhang, T.; Li, W.; Ma, L.; Huang, M.; Zeng, H.; et al. Climate warming benefits alpine vegetation growth in Three-River Headwater Region, China. Sci. Total Environ. 2020, 742, 140574. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, T.; Yi, G.; He, D.; Zhou, X.; Li, J.; Bie, X.; Miao, J. Dynamic changes of NDVI in the growing season of the Tibetan Plateau during the past 17 years and its response to climate change. Int. J. Environ. Res. Public Health 2019, 16, 3452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, T.; Zou, X.; Liu, Y.; Wu, S.; He, G. Contributions of climatic and non-climatic drivers to grassland variations on the Tibetan Plateau. Ecol. Eng. 2017, 108, 307–317. [Google Scholar] [CrossRef]
- Jiang, L.; Jiapaer, G.; Bao, A.; Kurban, A.; Guo, H.; Zheng, G.; De Maeyer, P. Monitoring the long-term desertification process and assessing the relative roles of its drivers in Central Asia. Ecol. Indic. 2019, 104, 195–208. [Google Scholar] [CrossRef]
- Wulan County Local Chronicles Compilation Committee. Local Chronicles of Wulan County, Qinghai Province, China; San Qin Press: Xi’an, China, 2003. (In Chinese) [Google Scholar]
- Liu, H.; Song, X.; Qin, L.; Wen, W.; Liu, X.; Hu, Z.; Liu, Y. Improvement and application of key pasture theory for the evaluation of forage–livestock balance in the seasonal grazing regions of China’s alpine desert grasslands. Sustainability 2020, 12, 6794. [Google Scholar] [CrossRef]
- Feng, K.; Wang, T.; Liu, S.; Yan, C.; Kang, W.; Chen, X.; Guo, Z. Path analysis model to identify and analyse the causes of aeolian desertification in Mu Us Sandy Land, China. Ecol. Indic. 2021, 124, 107386. [Google Scholar] [CrossRef]
- Li, J.; Fei, L.; Li, S.; Xue, C.; Shi, Z.; Hinkelmann, R. Development of “water-suitable” agriculture based on a statistical analysis of factors affecting irrigation water demand. Sci. Total Environ. 2020, 744, 140986. [Google Scholar] [CrossRef]
- Editorial Board of Vegetation Map of China, Chinese Academy of Sciences. 1:1,000,000 Vegetation Atlas of China; Science Press: Beijing, China, 2001. (In Chinese) [Google Scholar]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, L.; Zhang, Y.; Wang, Z.; Wu, J.; Li, L.; Li, S.; Paudel, B. Identification of impact factors for differentiated patterns of NDVI change in the headwater source region of Brahmaputra and Indus, Southwestern Tibetan Plateau. Ecol. Indic. 2021, 125, 107604. [Google Scholar] [CrossRef]
- Guo, B.; Niu, Y.; Zhang, L.; Liu, G. The variation of rainfall runoff after vegetation restoration in upper reaches of the Yellow River by the remote sensing technology. Environ. Sci. Pollut. Res. 2021, 28, 50707–50717. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Wang, Z.; Li, D.; Zhang, Y.; Qin, D.; Li, S. Elevation-dependent decline in vegetation greening rate driven by increasing dryness based on three satellite NDVI datasets on the Tibetan Plateau. Ecol. Indic. 2019, 107, 105569. [Google Scholar] [CrossRef]
- Katata, G.; Grote, R.; Mauder, M.; Zeeman, M.J.; Ota, M. Wintertime grassland dynamics may influence belowground biomass under climate change: A model analysis. Biogeosciences 2020, 17, 1071–1085. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Zhou, L.; Liu, W.; Zhou, H.K. Using remote sensing and GIS technologies to estimate grass yield and livestock carrying capacity of alpine grasslands in Golog Prefecture, China. Pedosphere 2010, 20, 342–351. [Google Scholar] [CrossRef]
- Hossain, M.L.; Li, J. Effects of long-term climatic variability and harvest frequency on grassland productivity across five ecoregions. Glob. Ecol. Conserv. 2020, 23, e01154. [Google Scholar] [CrossRef]
- Ding, M.; Zhang, Y.; Liu, L.; Zhang, W.; Wang, Z.; Bai, W. The relationship between NDVI and precipitation on the Tibetan Plateau. J. Geogr. Sci. 2007, 17, 259–268. [Google Scholar] [CrossRef]
- Dai, Z.; Zhao, X.; Li, G.; Wang, X.; Pang, L. Spatial-temporal variations of vegetation coverage in Qinghai from 2000 to 2015. J. Northwest A F Univ. (Nat. Sci. Ed.) 2018, 46, 54–65. (In Chinese) [Google Scholar]
- Zhang, X.; Lu, X.; Wang, X. Spatial-temporal NDVI variation of different alpine grassland classes and groups in Northern Tibet from 2000 to 2013. Mt. Res. Dev. 2015, 35, 254–263. [Google Scholar] [CrossRef]
- Deng, L.; Shangguan, Z.P.; Li, R. Effects of the grain-for-green program on soil erosion in China. Int. J. Sedim. Res. 2012, 27, 120–127. [Google Scholar] [CrossRef]
- Huang, L.; Xiao, T.; Zhao, Z.; Sun, C.; Liu, J.; Shao, Q.; Fan, J.; Wang, J. Effects of grassland restoration programs on ecosystems in arid and semiarid China. J. Environ. Manag. 2013, 117, 268–275. [Google Scholar] [CrossRef]
- Yang, D.; Yi, G.; Zhang, T.; Li, J.; Qin, Y.; Wen, B.; Liu, Z. Spatiotemporal variation and driving factors of growing season NDVI in the Tibetan Plateau. Chin. J. Appl. Ecol. 2021, 32, 1361–1372. (In Chinese) [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Liu, L.; Wu, J.; Wang, Z.; Li, S.; Zhang, H.; Zu, J.; Ding, M.; Paudel, B. Spatiotemporal patterns of vegetation greenness change and associated climatic and anthropogenic drivers on the Tibetan Plateau during 2000–2015. Remote Sens. 2018, 10, 1525. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Yan, C.; Wei, W. Grassland dynamics and the driving factors based on net primary productivity in Qinghai Province, China. ISPRS Int. J. Geo-Inf. 2019, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Rui, W.; Min, H.E.; Zhenguo, N.I.U. Responses of alpine wetlands to climate changes on the Qinghai-Tibetan Plateau based on remote sensing. Chin. Geogr. Sci. 2020, 30, 189–201. [Google Scholar] [CrossRef]
- Dai, L.; Ke, X.; Guo, X.; Du, Y.; Zhang, F.; Li, Y.; Li, Q.; Lin, L.; Peng, C.; Shu, K.; et al. Responses of biomass allocation across two vegetation types to climate fluctuations in the northern Qinghai–Tibet Plateau. Ecol. Evol. 2019, 9, 6105–6115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, H.; Xue, X.; Wang, T.; Kang, W.; Liao, J.; Liu, S. Spatial and temporal differences in alpine meadow, alpine steppe and all vegetation of the Qinghai-Tibetan Plateau and their responses to climate change. Remote Sens. 2021, 13, 669. [Google Scholar] [CrossRef]
- Yao, T.; Lu, H.; Feng, W.; Yu, Q. Evaporation abrupt changes in the Qinghai-Tibet Plateau during the last half-century. Sci. Rep. 2019, 9, 20181. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, Q.; Peng, C.; Wu, N.; Wang, Y.; Fang, X.; Gao, Y.; Zhu, D.; Yang, G.; Tian, J.; et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob. Chang. Biol. 2013, 19, 2940–2955. [Google Scholar] [CrossRef]
- Xu, H.J.; Wang, X.P.; Zhang, X.X. Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012. Ecol. Eng. 2016, 92, 251–259. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Ren, Z.; Huang, J.; Wang, X.; Liu, S.; Deng, H.; Lin, W. Increased evapotranspiration from land cover changes intensified water crisis in an arid river basin in northwest China. J. Hydrol. 2019, 574, 383–397. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, C.; Li, W.; Tian, L.; Zhu, Q.; Chen, H.; Fang, X.; Zhang, G.; Liu, G.; Mu, X.; et al. Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecol. Indic. 2016, 61, 404–412. [Google Scholar] [CrossRef]
- Kleinherenbrink, M.; Lindenbergh, R.C.; Ditmar, P.G. Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. J. Hydrol. 2015, 521, 119–131. [Google Scholar] [CrossRef]
- Wu, Z.; Dijkstra, P.; Koch, G.W.; Penuelas, J.; Hungate, B.A. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Glob. Chang. Biol. 2011, 17, 927–942. [Google Scholar] [CrossRef] [Green Version]
Vegetation Type | Slope (yr−1) | p-Value | Description | |
---|---|---|---|---|
Shrubland | 0.0058 | 0.426 | 0.0018 | Extremely significant increase |
Rest vegetation | 0.0049 | 0.420 | 0.0020 | Extremely significant increase |
Meadow | 0.0034 | 0.399 | 0.0028 | Extremely significant increase |
Steppe | 0.0049 | 0.463 | 0.0009 | Extremely significant increase |
Desert steppe | 0.0026 | 0.597 | 0.0001 | Extremely significant increase |
Type | Factor | Direct Path Coefficient | Indirect Path Coefficient | Contribution Rate (%) | ||||
---|---|---|---|---|---|---|---|---|
GSAT | GSP | GSE | GSARH | Total | ||||
County | GSAT | −0.150 | −0.018 | −0.103 | −0.098 | −0.219 | 5.5 | |
GSP | 0.119 | 0.022 | 0.315 | 0.147 | 0.484 | 7.2 | ||
GSE | −0.617 | −0.025 | −0.061 | −0.157 | −0.243 | 53.1 | ||
GSARH | 0.273 | 0.054 | 0.064 | 0.356 | 0.474 | 20.4 | ||
Shrubland | GSAT | −0.160 | −0.021 | −0.093 | −0.101 | −0.215 | 6.0 | |
GSP | 0.139 | 0.024 | 0.285 | 0.152 | 0.461 | 8.4 | ||
GSE | −0.559 | −0.027 | −0.071 | −0.163 | −0.261 | 45.8 | ||
GSARH | 0.283 | 0.057 | 0.075 | 0.322 | 0.454 | 20.9 | ||
Steppe | GSAT | −0.195 | −0.025 | −0.102 | −0.070 | −0.197 | 7.6 | |
GSP | 0.167 | 0.029 | 0.311 | 0.106 | 0.446 | 10.2 | ||
GSE | −0.610 | −0.032 | −0.085 | −0.114 | −0.231 | 51.3 | ||
GSARH | 0.197 | 0.070 | 0.090 | 0.352 | 0.512 | 13.9 | ||
Meadow | GSAT | −0.112 | −0.022 | −0.088 | −0.116 | −0.226 | 3.8 | |
GSP | 0.144 | 0.017 | 0.268 | 0.174 | 0.459 | 8.7 | ||
GSE | −0.526 | −0.019 | −0.073 | −0.187 | −0.279 | 42.4 | ||
GSARH | 0.324 | 0.040 | 0.078 | 0.303 | 0.421 | 24.2 | ||
Desert steppe | GSAT | −0.114 | −0.011 | −0.110 | −0.103 | −0.224 | 3.9 | |
GSP | 0.076 | 0.017 | 0.338 | 0.155 | 0.510 | 4.5 | ||
GSE | −0.663 | −0.019 | −0.039 | −0.166 | −0.224 | 58.8 | ||
GSARH | 0.288 | 0.041 | 0.041 | 0.382 | 0.464 | 21.7 | ||
Rest vegetation | GSAT | −0.194 | −0.008 | −0.096 | −0.118 | −0.222 | 8.1 | |
GSP | 0.055 | 0.029 | 0.294 | 0.177 | 0.500 | 3.1 | ||
GSE | −0.577 | −0.032 | −0.028 | −0.190 | −0.250 | 47.7 | ||
GSARH | 0.329 | 0.069 | 0.030 | 0.333 | 0.432 | 25.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Song, X.; Wen, W.; Jia, Q.; Zhu, D. Quantitative Effects of Climate Change on Vegetation Dynamics in Alpine Grassland of Qinghai-Tibet Plateau in a County. Atmosphere 2022, 13, 324. https://doi.org/10.3390/atmos13020324
Liu H, Song X, Wen W, Jia Q, Zhu D. Quantitative Effects of Climate Change on Vegetation Dynamics in Alpine Grassland of Qinghai-Tibet Plateau in a County. Atmosphere. 2022; 13(2):324. https://doi.org/10.3390/atmos13020324
Chicago/Turabian StyleLiu, Hui, Xiaoyu Song, Wang Wen, Qiong Jia, and Deming Zhu. 2022. "Quantitative Effects of Climate Change on Vegetation Dynamics in Alpine Grassland of Qinghai-Tibet Plateau in a County" Atmosphere 13, no. 2: 324. https://doi.org/10.3390/atmos13020324
APA StyleLiu, H., Song, X., Wen, W., Jia, Q., & Zhu, D. (2022). Quantitative Effects of Climate Change on Vegetation Dynamics in Alpine Grassland of Qinghai-Tibet Plateau in a County. Atmosphere, 13(2), 324. https://doi.org/10.3390/atmos13020324